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SUMMARY

Network-based molecular modeling of physiological
behaviors has proven invaluable in the study of com-
plex diseases such as cancer, but these approaches
remain largely untested in contexts involving interact-
ing tissues such as in autoimmunity. Here, using
Alopecia Areata (AA) as a model, we have adapted
regulatory network analysis to specifically isolate
physiological behaviors in the skin that contribute to
the recruitment of immune cells in autoimmune dis-
ease. We use context-specific regulatory networks
to deconvolve and identify skin-specific regulatory
modules with IKZF1 and DLX4 as master regulators
(MRs). TheseMRsare sufficient to induceAA-likemo-
lecular states in vitro in three cultured cell lines, re-
sulting in induced NKG2D-dependent cytotoxicity.
This work demonstrates the feasibility of a network-
based approach for compartmentalizing and target-
ing molecular behaviors contributing to interactions
between tissues in autoimmune disease.

INTRODUCTION

Systems-level analysis using reverse-engineered regulatory net-

works is an emerging computational discipline that has demon-

strated great promise in the study of complex diseases such as

cancer and Alzheimer’s disease (Aubry et al., 2015; Chen et al.,

2014; Shelanski et al., 2015; Zhang et al., 2013). This approach

enables the modeling of complex physiological behaviors as

modules of genes (subsets of differentially expressed genes

that associate with disease) that are controlled by master regu-

lators (MRs). MRs represent the minimal number of transcription

factors (TFs) that are predicted to specifically activate or repress

a target module and, by extension, the associated physiological

behavior (Carro et al., 2010; Lefebvre et al., 2010). They can be

regarded as molecular ‘‘switches’’ that regulate physiological

behaviors. The inference of MRs is made possible through the

reverse engineering of context-specific regulatory networks us-

ing computational algorithms such as ARACNe (Margolin et al.,

2006a).
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These MRs are validated biologically and serve as targetable

‘‘hubs’’ governing disease pathology. These approaches have

proven highly effective for the study of cell autonomous behav-

iors in diseases such as cancer. Physiological behaviors such

as mesenchymal transformation in glioblastoma (Carro et al.,

2010) and oncogenesis in B cell lymphoma or breast cancer

(Chen et al., 2014; Mani et al., 2008), as well as onset of Alz-

heimer’s disease (Zhang et al., 2013) have been functionally

linked to a relatively small number of MRs, which in turn become

the ‘‘bottleneck’’ that can be used to infer driver mutations in pa-

tients (Chen et al., 2014) or become the targets of drug screens

for treatment (Shelanski et al., 2015).

However, this type of computational approach is only starting

to be implemented to target pathogenic, non-cell autonomous

interactions between different tissues such as autoimmune dis-

ease. In particular, inferring MRs cannot be done directly using

typical ARACNe-based analysis because of fundamental as-

sumptions made during the generation of a regulatory network:

(1) that the samples used are relatively pure or represent the

one underlying transcriptional network; and (2) the underlying

molecular behavior of a data set exists at a steady state such

that each sample can be treated as a ‘‘snapshot’’ of regulatory

dependency within the overall network (Basso et al., 2005;

Califano et al., 2012; Margolin et al., 2006b). A contaminated

sample, particularly by a tissue that exhibits a different

context-specific regulatory network, can impair the accuracy

of regulatory predictions. Further, when pathogenesis is depen-

dent on the interaction between the two tissues, there will

always be an artifact correlation between contaminant gene

signatures and the molecular modules that recruit them, but

are expressed in the other tissue. This makes it difficult to

clearly define modules exclusive to one tissue or the other

when analyzing gene expression data generated from a mixture

of the two tissues.

Alopecia Areata (AA) provides an ideal model for such a study

since it is characterized by cytotoxic T cells actively infiltrating

the hair follicles and scalp skin that are typically absent in normal

skin (Xing et al., 2014). AA typically presents as loss of distinct,

random patches of hair that can spread to the entire scalp (alo-

pecia totalis) or the entire body (alopecia universalis) (Olsen et al.,

1999). Previous research from our lab and others has directly

implicated immune genes in AA (Martinez-Mir et al., 2007; Petu-

khova et al., 2010), many of which are shared with other autoim-

mune diseases such as type 1 diabetes, celiac disease, and
.
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rheumatoid arthritis (Betz et al., 2015; Farh et al., 2014; Petu-

khova et al., 2010). Previous studies have identified infiltration

of cytotoxic CD8-positive, NKG2D-positive T cells into the skin

of AA mice (Xing et al., 2014), and the pathology of AA involves

IFN-gamma-dependent signaling pathways, which are

frequently disrupted in association with immune evasion in

cancer (Dunn et al., 2002; Sato et al., 1998).

Little work has been done to determine if there are intrinsic

factors in the ‘‘end organ’’ (the tissue that suffers autoimmune

attack) that contribute to the disease, such as scalp skin in AA,

making this molecular component a prime target for the analysis.

We predict that pathogenic changes in the molecular profile of

the scalp skin will contain genes that mediate interactions with

the infiltrating T cells. As a corollary, identifying theMRswill grant

regulatory control over the modules that are sufficient to induce

immune recruitment. To study this, we leverage context-specific

regulatory networks for the regulatory deconvolution of a mixed-

signature gene expression profile of AA patients. The goal of this

work was to develop a framework capable of separating mixed

AA tissue biopsy gene expression data into skin-specific mod-

ules of AA pathology and infiltrate recruitment.

We identified a molecular profile of AA that includes the

genetic modules of infiltrate recruitment in the scalp skin by

filtering genes that do not accurately map to a skin-specific

network. This scalp skin signature allowed the subsequent iden-

tification of two MRs of scalp skin contribution to infiltration:

IKZF1 and DLX4. These two genes are expressed in primary

scalp biopsies and are sufficient to induce an AA-like molecular

signature and NKG2D-dependent cytotoxicity in independent,

wild-type cellular contexts, allowing for direct genetic induction

of immune-mediated cytotoxicity.

RESULTS

Initial Definition of a Pathogenic Expression Signature in
AA Reveals the Presence of Local Scalp Skin and
Infiltrating Immune Signals
First, we created a molecular signature comparing AA patients

to controls to generate a molecular representation of AA. We

analyzed a training set of microarray studies of patient biopsies

from an initial cohort of 34 unique biopsy samples: 21 AA

patients of varying clinical presentations and 13 unaffected con-

trols. We additionally had patient-matched, nonlesional scalp

biopsies for 12 of the 21 AA patients. These 34 patients were

gathered as the first of two cohorts totaling 96 patients, the

remainder of which was saved for validation studies.

We created an overall gene expression signature by com-

paring patients of two distinct clinical presentations, patchy AA

(AAP) and totalis and universalis (AT/AU) all against unaffected

controls. To account for artifacts in the signature associated

with secondary effects of infiltration such as hair loss, we then

performed hierarchical clustering using this gene signature on

a set of patient-matched lesional (symptomatic skin with hair

loss) and nonlesional (asymptomatic hair-bearing skin) samples.

This analysis identified gene clusters that were differentially

expressed between these samples and those that were sys-

temically equivalent across lesional and nonlesional samples.

We subsequently removed from the first expression set any

genes that fell in clusters correlating with lesional versus nonle-
Cel
sional states. This primarily removed a significant number (but

not all) of the keratin and keratin-associated proteins from the

signature.

The resulting gene expression signature, the Alopecia Areata

Gene Signature (AAGS), consisted of a total of 136 unique genes

(Table S1) and provided sufficient information to cluster the

entire training cohort into two appropriate superclusters corre-

sponding to the control and disease states (Figure 1A). Clus-

tering these genes by co-expression also revealed two distinct

modules of genes, with greater diversity of co-expression in

the genes upregulated in the disease state (Figure 1B). As a qual-

itative measure of the genes differentially expressed between

affected and unaffected patients, we analyzed them for

functional annotation enrichments. The analysis revealed the

presence of HLA genes, immune response elements, and inflam-

matory and cell death pathway gene expression in the affected

patient samples (Figure 1C). The two most significant super-

clusters of the AAGS were transmembrane signaling peptides

(p = 2.8 3 10�11) and secreted cell-cell signaling peptides (p =

2.1 3 10�10). As expected, this list also contains several anti-

gen-presenting elements and immune response elements that

are associated with AA and autoimmune disease (Figure S1;

Table S2). These results indicate that there are significant alter-

ations of multiple biological processes in AA-presenting cells.

We postulate that some subset of these genes originate from

the scalp skin and are required to induce infiltration recruitment.

There is also significant evidence for immune-related genes

originating from infiltrating immune cells that must be filtered

beforehand; or else they could confound the identification of

skin-specific molecular programs. Gene markers associated

with immune cells or immune response were detected as part

of the AAGS including CD8a, CXCL9/10, and CCL5/18/20/26 (a

full list can be found in the Supplemental Information). In primary

patient biopsy samples, defining skin-specific molecular behav-

iors contributing to AA is a difficult task due to the presence of

infiltrating T cells and secondary response pathways in AA skin

samples.

Leveraging Regulatory Networks to Deconvolve Skin
and Immune Signatures in the AAGS into Regulatory
Modules
With clear definitions of the disease signature, we sought to

deconvolve the skin molecular program in the AAGS from the

molecular program originating in infiltrating immune cells in a

systemic, unbiased manner. Rather than using GO pathway

enrichment or other annotation-basedmethods that rely on a pri-

ori knowledge and potentially ambiguous annotations, we

instead utilize our inferred regulatory networks under the hypoth-

esis that we can filter nonskin (immune infiltrate) gene expression

by identifying the genes that cannot be mapped to a skin-

specific regulatory network.

A transcriptional regulatory networkof the scalp skinwasgener-

ated using the ARACNe algorithm and associated software suites

(see Experimental Procedures). Specifically, to generate the

network, we included a cohort of 106 primary scalp skin samples

consisting of normal (unaffected) whole skin biopsies and several

samples of primary cultured dermal fibroblasts and dermal papilla

cells, which contain few or no T cell infiltrates. This network repre-

sents the regulatory network in uninfiltrated skin-derived tissues
l Systems 1, 326–337, November 25, 2015 ª2015 Elsevier Inc. 327
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Figure 1. Gene Expression Analysis Iden-

tifies Mixed-Tissue Gene Signatures

(A) Unsupervised hierarchical clustering of a cohort

of AAP, AT/AU, and unaffected controls (Normal)

using the AAGS (blue, underexpression and red,

overexpression).

(B) Gene co-similarity matrix showing gene clus-

ters. The stronger orange indicates lower dissimi-

larity in gene expression. The clusters over- and

under-expressed in AA are indicated.

(C) Graphical representation of genes in the

signature and the statistically enriched functional

categories associated with them. The blue in-

dicates signaling pathways; the yellow indicates

immune/inflammation pathways; the orange in-

dicates HLA; and the red indicates cell death

pathways. The pathways at p < 0.05 FDR corrected

were kept for this analysis.
and serves as the cornerstone of the deconvolution, which occurs

in two primary steps as detailed in Figure 2.

For deconvolution of regulatorymodules, the genes in theAAGS

are directly mapped to the regulatory network (Figure 2A; see

Experimental Procedures fordetails). Agene in theAAGS isonly re-

tained if there is a direct regulatory interaction between it and a TF

using the regulatory logic of a skin ARACNe network (red, solid

edges).Anygenes thatcomeuniquely from infiltrating immunecells

will nothavesignificant representation in theARACNenetwork,and

aresubsequently removed fromtheAAGS(black,dottededges) for

skin, and added to an Immune Gene Signature (IGS).

The IGS was used as a ‘‘negative control’’ signature, adapted

from previous work in characterizing cancer immune infiltrates

(Bindeaet al., 2013). The signaturesweredefinedasa set of genes

that are specifically expressed in each immune cell type, including

T cells, B cells, mast cells, and macrophages. This step iteratively

re-defines the AAGS and IGS by separating those genes whose

regulation can be accounted for by an uninfiltrated regulatory

network (AAGS) from those that cannot (IGS).Byextension,weex-

pected the filtered AAGS to be enriched enough in skin gene

expression to generate accurate skin-specific regulons.

As indicated in Figure 2B, 13 infiltrate-specific genes were

removed from the AAGS (9.5% of the total signature) when

passed through the skin-specific regulatory network. These

genes are also listed in Table S1. This resulted in two mutually
328 Cell Systems 1, 326–337, November 25, 2015 ª2015 Elsevier Inc.
exclusive gene modules (no overlapping

genes, p = 1.77 3 10�4), the AAGS and

the IGS. A subsequent pathway enrich-

ment analysis further confirmed loss of

statistical enrichment of the ‘‘T cell activa-

tion’’ and ‘‘Immune response’’ categories

(see Table S2), while retaining the other

clusters including known skin immune

response elements (such as the HLA

genes). This left a total of 123 genes in

the AAGS that we interpret to represent

all end-organ programs associated with

AA pathology, including end-organ-initi-

ated immune recruitment and immune

response (Table S1, starred entries).
Note that we have made the distinction between annotations

associated with immune cells (e.g.,CD8a) and annotations asso-

ciated with immune response genes (e.g., HLA). The former are

removed by the regulatory network as unrepresented in a skin

regulatory network. The latter are signature genes that we aim

to keep, as they represent the response elements in the skin

and are relevant for the pathology of the disease.

Clustering the filtered AAGS revealed two distinct molecular

modules that define the transition from unaffected patients

(Figure 2B, second) to an AA disease state (Figure 2B, third).

Each node represents a gene in the signature, and its size repre-

sents the relative expression in each state (larger means higher

expression). We labeled these gene groups: (1) genes whose

expression is increased when transitioning into the disease

state, and (2) genes whose expression is lost in the transition.

This filtered AAGS reflects end-organ-specific gene modules

and served as the input to our MR analysis.

IKZF1 and DLX4 Are MRs of the Skin AAGS and, by
Extension, Infiltrate Recruitment
The next step is themost important in identifying end-organ-spe-

cific MRs. We performed MR analyses on both the deconvolved

AAGS and the IGS independently and in parallel using the scalp

skin regulatory network (Figure 2C, first, red outline). Using only

regulatory interactions represented in skin, we identified the
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Figure 2. Identification of IKZF1 and DLX4 as MR

An overall flow of the pipeline used to deconvolve regulators of genes expressed in the end organ (skin) from those expressed in infiltrating tissue (immune cells).

(A) Genes (aqua nodes labeled A–F) measured from a complex primary tissue sample are assigned to either end-organ (red, AAGS) or infiltrate (blue) based on

whether or not they can be mapped to regulators in the skin network (R). Only the genes mapped to the red node are considered for MR analysis. The genes

mapped to the blue node are pruned away.

(B) The resulting pruning of the AAGS provides an end-organ-enriched gene expression signature (aqua nodes) that is mutually exclusive with an IGS, p = 1.773

10�4, that is overexpressed (cluster 1, node sizes proportional to fold change) and suppressed (cluster 2) in AA.

(legend continued on next page)
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transcriptional regulators that had the highest specificity for the

deconvolved AAGS (red arrows) and repeated the analysis for

the IGS (black arrows). This step compares the AAGS against

the IGS in terms of regulatory logic in the scalp skin, as opposed

to direct coverage of gene expression. This analysis assays

which TFs are the best candidates for the deconvolved AAGS

(and not for the IGS) using a molecular regulatory network spe-

cific to the skin. We identify skin-specific candidate MRs by

keeping only the candidates that were both significant in AAGS

coverage and insignificant for IGS coverage.

Of the significant candidate MRs specifically for the AAGS,

we employed a greedy sort to identify the fewest number of reg-

ulators needed tomaximize the coverage of the AAGS.We found

that two MRs were sufficient to cover >60% of the AAGS: IKZF1

and DLX4. Any additional candidates boosted the coverage by a

statistically insignificant margin (<5%). We conclude that the

maximum AAGS fidelity (most faithful recreation of the expres-

sion signature) andefficiency (fewest necessary regulators) could

be achieved through these two genes (IKZF1 p= 4.173 10�4 and

DLX4 p = 4.8 3 10�10 FDR-corrected).

An equivalentMRanalysis conductedon the IGSmodules failed

to generate any statistically significant or meaningful MRs when

using the scalp-skin regulatory network.Specifically, thebest can-

didates for theAAGS, IKZF1andDLX4, fall to statistical irrelevance

(falling from first and second to 159th and 210th, respectively,

FDR = 1) (Figure 2C, IGS.FDR). Conducting the MR analysis on

the AAGS without deconvolution fails to generate MR candidates

at the threshold that is typically expected (both in p value and

signature coverage) due to the presence of contaminating genes

in the signature which cannot accurately be mapped to a MR,

but nonetheless count against enrichment in the analysis.

These two candidates represent the minimum number of reg-

ulators required to recreate the AAGS using regulatory interac-

tions derived from a specific tissue context (scalp skin), distinct

from any immune-specific regulatory modules that were decon-

volved away using this method. IKZF1 and DLX4 therefore

represent a genetic regulatory module in the scalp skin that con-

tributes to AA pathogenesis (Figure 2C, last) and may be suffi-

cient to induce infiltration recruitment in an AA-like manner.

The identification of IKZF1 was unexpected, since it is a well-

established T cell differentiation factor, though it is not without

precedent that IKZF1may have a role in cells outside the immune

system (Javierre et al., 2011). However, it is important to note that

this analysis doesnot imply that aMRsuchas IKZF1hasno role in

T cells contributing to AA pathogenesis, but rather, that there is

significant evidence that IKZF1 additionally functions in the scalp

skin to mediate the interactions between the tissues.
Expression of IKZF1 and DLX4 Induces an AAGS-like
Signature in Normal Hair Follicle Dermal Papillae and
Human Keratinocytes
To validate our MR predictions with functional studies, we exog-

enously overexpressed IKZF1 and DLX4 in skin-derived cell
(C) To deconvolve the scalp skin regulators, we performedMR analysis on the AAG

the skin (R2) will only appear when using the AAGS and not in the IGS. The infiltrate

have significant FDR values when using the AAGS and are insignificant (FDR = 1

(aqua squares) and MRs (yellow squares) in the skin (right).
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lines and cultured cells to test for sufficiency in influencing

expression of the AAGS. We cloned DLX4 and two isoforms of

IKZF1 for exogenous expression in cultured cells. The active

IKZF1 isoform served as the experimental arm of the study, while

the isoform that lacks a DNA binding domain was included as a

negative control (IKZF1d). We expressed these genes in cultured

primary human hair follicle dermal papillae (huDP) and human

keratinocytes (HK). This experimental system allowed us to

directly test two distinct, but related, hypotheses: (1) IKZF1

and DLX4 can induce AA-like recruitment of immune cells, and

(2) they do so through expression in the skin (not the immune

infiltrates).

We identified a set of genes that were significantly differentially

expressed in the same direction in IKZF1 andDLX4 transfections

across both cell types. Unsupervised hierarchical clustering of all

samples based on these transcripts reveals clean co-segrega-

tion of IKZF1 and DLX4 transfections from IKZF1d and RFP

(red fluorescent protein) controls (Figure 3A). Furthermore, we

observed that the subclustering within these supergroups was

not biased based on cell type used (HK did not cluster with

HK, and DP did not cluster with DP), supporting that we have

identified context-independent effects of MR overexpression.

Interestingly, we observed that DLX4 transfections resulted in

increased levels of IKZF1 transcript and protein, whereas the

IKZF1 transfections did not influence DLX4 expression (Figures

3B and 3C).

We subsequently interrogated the expression data for enrich-

ment of the AAGS genes using gene set enrichment analysis

(GSEA). We performed two differential gene expression studies

comparing the IKZF1 transfections versus RFP controls and

DLX4 transfections versus RFP controls. The results show that

the ectopic expression of the MRs is followed by significant

enrichment in the induction of the AAGS (IKZF1 p = 0.012 and

DLX4 p = 2.08 3 10�4; Figures 3D and 3E).
IKZF1 and DLX4 Expression Are Sufficient to Induce
NKG2D-Mediated Cytotoxicity in Normal Cultured Skin
IKZF1 and DLX4 overexpression suggest that these two genes

are MRs capable of mediating the AAGS when applied to HK

and huDP. However, the functional relevance of these MRs to

autoimmunity and immune infiltration is whether or not their

expression is sufficient to induce a targeted autoimmune

response. In order to investigate this ex vivo, we performed

experiments measuring the level of cytotoxic cell death in HK

and huDP cells when exposed to peripheral blood mononuclear

cells (PBMCs).

We again transfected both HK and huDP cells with one of four

expression constructs: IKZF1, DLX4, RFP (negative control), or

IKZF1d (negative control). At 24 hr post-transfection, these cells

were incubated with fresh, purified PBMCs. We additionally

cultured human dermal fibroblasts and autologous healthy donor

PBMCs. The PBMCs were obtained from a healthy control sub-

ject with no history of AA or any other autoimmune disease.
S and the IGS, yielding candidate regulators of each signature. The trueMRs in

regulators (R1) will not be detected using the AAGS. The IKZF1 andDLX4 only

) when using the IGS, left. This analysis establishes IKZF1 and DLX4 as AAGS

.



Figure 3. Exongeous Expression of IKZF1

and DLX4 Induces a Context-Independent

AA-like Gene Expression Signature

(A) 2D hierarchical clustering of gene expression

measured in huDP and HK transfected with

plasmid vectors expressing IKZF1, DLX4, or con-

trols expressing RFP and IKZFd, an isoform lacking

DNA binding domains. The treatment type and cell

type for each experiment are indicated at the top

of the heatmap. The blue indicates decreased

expression and the red indicates overexpression.

(B) Analysis of IKZF1 and DLX4 mRNA expression

in transfected cells in quadruplicate, represented

as average ± SEM, normalized to B-actin.

(C) Western blot confirming IKZF1 and DLX4 pro-

teins. The GSEA plots measuring the specificity of

AA-like response assayed by differential expres-

sion of the AAGS following (D) IKZF1 or (E) DLX4

overexpression. The genes are ranked left to right

from most- to least-differentially expressed on the

x axis and barcodes represent the positions of

IKZF1 and for DLX4 signature genes. The Enrich-

ment Score (ES) is shown in the plot, and the

normalized Enrichment Score (nES) is displayed at

the top. The nES is derived from the ES at the

‘‘leading edge’’ of the plot, that is, the first maximal

ES peak obtained. The p value is computed for the

nES compared against a randomized null

distribution.
In all comparisons, we observed a statistically significant

increase in PBMC-dependent cytotoxicity for the IKZF1 and

DLX4 transfections compared to RFP and IKZF1d controls

(Figure 4, center columns, total bar height). The patient-matched

PBMCs andRFP-control transfected fibroblasts exhibited no ev-

idence of cytotoxic interactions, as expected in healthy target

cells (Figure 4A, center). However, the introduction of IKZF1

and DLX4 were both sufficient to induce an interaction between

these previously non-interacting cells, resulting in significant

increase of total cytotoxicity. In a similar fashion, both huDP (Fig-

ure 4B, center) and HK cells (Figure 4C, center) showed a signif-

icant increase above background levels in cytotoxic sensitivity to

the PBMCs.

Since we previously showed that the likely pathogenic

immune cells in AA are CD8+ NKG2D+ activated T cells, we
Cell Systems 1, 326–337, N
also performed all treatments with the

addition of an NKG2D-blocking antibody

(see Experimental Procedures) to pre-

vent NKG2D-dependent interactions. In

all cases, we observed that blocking

NKG2D suppressed the cytotoxicity in

both IKZF1 and DLX4 treatments to

levels comparable to controls (Figure 4,

center, gray bars). From the difference

between the inhibitor-treated and un-

treated cells, we can infer the cytotox-

icity that is NKG2D-dependent (Figure 4,

center, white bars), which can be

normalized to that observed in controls

for a relative fold change analysis. From

the NKG2D blockade, we observed a
statistically significant increase specifically in IKZF1 and DLX4

transfections across all trials (Figure 4, right). There was a large

(>50-fold) increase in patient-matched cytotoxicity compared

to the control transfection, which again showed no significant

cytotoxicity. There was approximately a 2- to 8-fold increase

in NKG2D-dependent cytotoxicity compared to both controls,

despite a statistically significant, but small (<10%), increase

in NKG2D-independent cytotoxicity. We conclude from these

experiments that IKZF1 and DLX4 are capable of inducing

NKG2D-dependent interactions with normal PBMCs that result

in toxicity for the transfected cells irrespective of the exact

tissue type.

Importantly, these experiments establish the cell autonomous

function for IKZF1 andDLX4 in the scalp skin as opposed to infil-

trating cells, since the exogenous modification was done strictly
ovember 25, 2015 ª2015 Elsevier Inc. 331
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Figure 4. Exogenous Expression of IKZF1 andDLX4 Induces IncreasedNKG2D-Dependent PBMC-Associated Cytotoxicity in Three Cultured

Cell Types

The schematic on the left of each row describes the tissues introduced to PBMCs for cytotoxicity assays (in triplicate). The colors indicate host sources (matching

colors indicate host-matched tissues). The middle bar graphs present the cytotoxicity values obtained after either 6 hr of incubation (total bar height) or the

cytotoxicity observed after 6 hr with the addition of human anti-NKG2D monoclonal antibody (gray bar). The NKG2D-dependent cytotoxicity is the difference

between the two (white bar). The right bar graphs report the changes in NKG2D-dependent cytotoxicity normalized to the RFP controls. IKZF1.2B indicates cells

transfected with the IKZF1d vector, and IKZF1.3B indicates the full-length transcript. The y axis reports cytotoxicity measured as a fraction of maximum cyto-

toxicity (total cell count). All error bars report ± SEM. ** indicate statistically significant difference from RFP control at FDR <0.05.

(A) Dataseries corresponding to WB215J PBMCs and WB215J fibroblasts.

(B) WB215J PBMCs against cultured huDP.

(C) WB215J PBMCs against cultured HK.
on normal cultured cells and exposed to healthy PBMCs from a

source with no history of autoimmune disease.

MR Expression Permits Reconstruction of a Directional
Skin-Specific MR Module of Infiltration Recruitment
After establishing that IKZF1andDLX4are sufficient to induce the

AAGS, we sought to use this data to fully reconstruct the AA MR

module. ARACNe is capable of detecting direct transcriptional

dependencies between a TF and nonregulatory genes that are

potential targets (T) because we can infer that the regulation is
332 Cell Systems 1, 326–337, November 25, 2015 ª2015 Elsevier Inc
TF / T. ARACNe cannot infer directional interactions between

TF-TF pairs and subsequently cannot infer secondary T of MRs

due to the regulatory equivalence of TFs (Figure 5A, first). Howev-

er, sincewe have directly perturbedHKs and huDPswith specific

MRs (Figure 5A, asterisks), we can use the gene expression data

to infer directionality. If TFB is a T of our MR (TFA), then overex-

pression of TFA will result in the differential expression of TFB
and we can infer that TFA / TFB. Subsequently, any marker

genes in the signature associated with TFB can be linked to MR

as secondary T TFA / TFB / T (Figure 5A, top). If TFB functions
.



A B

C

Figure 5. The Fully Reconstructed Master

Regulator Module Predicts Both Immune

Infiltration and Severity

(A) Using the exogenous expression data, it is

possible to infer both direct transcriptional MR T

(MR/ T), as well as T regulated by TFs that are T of

the MR (MR / TF / T). Any TF (TFB) that is paired

with MRs IKZF1 or DLX4 (TFA) and that exhibits

changes in expression upon overexpression of the

TFA is regulated by the TFA. Subsequently, any

genes (T) in the AAGS that are linked to TFB are

secondary T of TFA (TFB responds). Any TFB that

does not respond to transfection of TFA is not

regulated by the TFA, so either TFB regulates TFA
(TFB stable, left) or both are co-regulated by a third,

TFC (TFB stable, right).

(B) Using this approach, 78% of AAGS can be

mapped to IKZF1 or DLX4 within one indirect TFB.

The blue nodes represent AAGS genes that respond

to IKZF1 or DLX4 expression, the size of nodes

scaled to the fold change experimentally observed

(only nodes having at least 25% change are shown).

(C) Using these T, we generate single numeric

scores of IKZF1 and DLX4 transcriptional activity

and used them to create classifiers for AA severity.

The AA samples are then imposed over the search

space to assess accuracy (top chart). The table

provides quantitation and statistics for separation of

presentations across territories in the search space

(unaffected: NC; patchy AA: AAP; and totalis/uni-

versalis: AT/AU). The centroid representations can

be used to show how populations transition into

disease states by moving across the trained

boundaries (bottom chart; nonlesional: AAP-N and

lesional: AAP-L).
upstream of or in parallel with MR then the expression of TFB and

T will not be affected by overexpression of TFA (Figure 5A,

bottom).

Using this logic, we reconstructed the regulatory module to

measure the full extent of the coverage obtained by overex-

pressing IKZF1 and DLX4 in these cellular contexts. We mapped

any downstream T of TFs that both (1) respond to IKZF1/DLX4

expression in the experiments, and (2) are predicted to have

mutual information with the expressed MR by ARACNe to

the regulatory module. We found that 78% of the responding

AAGS are within 2� of downstream separation from the MRs

IKZF1 and DLX4 based on these criteria (Figure 5B; full module

listed in Table S4).

IKZF1 and DLX4 Can Be Used to Predict Both Immune
Infiltration and Disease Severity in an Independent
Cohort
As validation of this module, we returned to our original AA array

cohort and performed amachine-learning analysis.We attempted
Cell Systems 1, 326–337,
to classify a validation AA set into control

and affected samples using only the inferred

IKZF1 and DLX4 activity. Using the earlier

training set from Figure 1, we arrayed the

samples into a search space of two dimen-

sions: the consensus activity of IKZF1
(x axis), and the consensus activity of DLX4 (y axis) (see Experi-

mental Procedures). From the training set, we generated a topo-

graphical map of the consensus activity space to define ranges

of IZKF1 and DLX4 activity associated with control samples,

patchyAA, andAT/AU samples (Figure 5C, black lines). The region

in Figure 5C closest to the origin of the plot represents the lowest

combined IKZF1 and DLX4 activity; its upper bound (the lower

black line) is the support vector machine (SVM) margin that maxi-

mizes the difference between control and all AA patients. The next

upper bound (the upper black line) represents theSVMmargin that

maximizes the separation of AT/AU patients from AAP.

Using these measures of MR activity, we turned to the valida-

tion set and tested for the predictive power of these parameters

in separating patients and controls. We observed a strong ability

to separate samples into disease and control states, in addition

to clinical severity (Figure 5C, top, p < 13 10�5). A centroid map

of each patient subgroup more clearly reveals how the transition

of patient groups from Control (NC) to AAP and AT/AU is re-

flected by relative IKZF1 and DLX4 activity (Figure 5C, bottom).
November 25, 2015 ª2015 Elsevier Inc. 333



p-value tail
AA vs AD 0.003 left
AA vs Ps 3.93x10-13 left
AD vs Ps 0.0173 right

A
ADPs

71

2221

178

1

13

216

AA
Ps

AD

psoriasis Ps p-value IGS p-value
POL2R2 2.02x10-4 1

SOX15 2.07x10-5 1
HTLF 8.36x10-5 1

SMAD2* 5.06x10-5 1
TGFBR1* 4.75x10-5 1

atopic.derm AD p-value IGS p-value
HLTF 1.78x10-7 0.944

SMAD2 1.96x10-5 0.990
ETS1 4.13x10-5 0.817
RB1 4.16x10-5 0.707

CIR1 7.42x10-5 0.320

*studied in published work in psoriasis

common MR in psoriasis and AD

AA

AD

Ps

B

Figure 6. Deconvolved Regulatory Modules

Can Be Generated for AA, Ps, and AD Using

the Same Naive Framework

(A) Disease-associated gene expression signatures

for Ps and AD can be clearly defined by differential

expression. The comparison of these signatures to

the AA gene signature reveals that the AA signature

is statistically distinct from both Ps and AD signa-

tures (Fisher’s exact test), whereas there is statis-

tical evidence for some sharing between the Ps and

AD signatures.

(B) Translating these signatures into regulatory

modules reveals entirely different MRs governing

AD and Ps compared to AA. The yellow nodes = AA

gene signature; the blue nodes = AD gene signa-

ture; the aqua nodes = Ps gene signature; the or-

ange nodes = AA MR; the dark blue nodes = AD

MR; and the cyan nodes = PsMR. The list of top five

AD and Ps MRs are provided, ranked by coverage

of the corresponding signature. Also provided are

the p values of eachMRwithout deconvolution (IGS

p value) (* indicates published regulators and y in-
dicates an MR common to AD and Ps).
For comparison, we also included a centroid for the AAP

nonlesional sample biopsies, which were not included in the

training set.

Deconvolution Applied to Independent Inflammatory
Skin Diseases Identifies Known Genes
For comparison, and to provide proof-of-concept for the gener-

alizability of our approach, we downloaded publicly available

gene expression data sets for atopic dermatitis (AD) (Suárez-

Fariñas et al., 2011) and psoriasis (Ps) (Yao et al., 2008). We

generated gene expression signatures for each disease by

comparing lesional biopsies to unaffected biopsies, similar to

our AA analysis (Figures 6A and S2; Table S3). A direct compar-

ison of the genes within the AA, AD, and Ps signatures revealed

statistically significant evidence that the AAGS is distinct from

both AD and Ps (p = 0.003 and 3.93 3 10�13, respectively).

By contrast, comparison of the AD and Ps signatures to each

other revealed statistically significant evidence for shared mo-

lecular signatures and, by extension, possible shared molecular

pathology (p = 0.0173).

These two signatures were applied to our pipeline. Figure 6B

reports the top five MRs identified after the analysis, ranked by

their total coverage of the appropriate disease signatures (Ps

or AD). Also provided are the ranks of the MRs using the corre-

sponding deconvolved IGS. The results indicate that the key reg-

ulatory hubs associated with AA (specifically IKZF1 and DLX4)
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are unique to AA. Each disease was as-

signed its own unique list of MRs, but

there additionally was overlap of two

candidate MRs in AD and Ps: SMAD2

and HLTF. SMAD2 and TGFBR1 are TFs

with published evidence of involvement

in Ps, and our pipeline was able to identify

them with no a priori evidence, using a

basic definition of a Ps gene expression

signature (Doi et al., 2003; Gambichler
et al., 2013). These results demonstrate the effectiveness of

modeling complex genetic behaviors as regulatory modules to

differentiate mechanisms of pathology.

DISCUSSION

Systemic generation and analysis of gene regulatory networks

and gene expression data capitalizing on genome-wide profiling

has proven to be instrumental in the study of complex diseases.

Integrative projects to interrogate functional interactions have

recently been leveraged in genome-wide expression signature

deconvolution (Bindea et al., 2013; Newman et al., 2015) and

cross-tissue interactions (MacNeil et al., 2015) in diabetes and

atherosclerosis (Hecker et al., 2009; Keller et al., 2008). These

studies have been invaluable in identifying infiltrating gene signa-

tures, which provide insight into the types of pathogenic immune

infiltrates associated with disease. They have also helped iden-

tify driver genes from eQTLs and other genomic association

tests, similar to the systematic algorithms being developed in

cancer and Alzheimer’s disease research (Chen et al., 2014;

Zhang et al., 2013) by providing significant genome-level

coverage of regulatory activity and tissue-level gene panels of in-

teracting tissues.

However, particularly in contexts such as AA, little has been

done to characterize the modular regulation of discrete patho-

genic molecular behaviors within a gene expression profile and



how they translate to physiological interactions between tis-

sues of the disease. Modeling physiological traits as genetic

programs controlled by MRs provides a uniquely powerful

perspective in the study of complex disease. The approach

canalizes large gene expression signatures into a relatively

few number of selected MRs that subsequently become the T

of manipulation via gene therapies or drugs and small

molecules.

Here, we extend the application of regulatory networks to

interrogate the complex molecular state of a mixed sample of

end organ (scalp skin) and infiltrating (immune infiltrates) tissue

in AA by comparing regulatory networks of different skin con-

texts (infiltrated and normal). We establish that in addition to their

typical use for identifying the key regulatory hubs governing mo-

lecular phenotype switches, these networks can be used to

isolate and compartmentalize molecular behaviors that originate

from different tissues based on whether or not they are accu-

rately represented in an independent context-specific network.

This allows for more precise identification of tissue-specific

molecular programs from a mixed sample that contribute to an

integrated, interactive physiological behavior such as immune

infiltration. Using this pipeline, we were able to reconstruct the

MRs mediating infiltration from the skin not only in the context

of AA, but our analysis of Ps and AD provides additional candi-

dates for the genetic regulation of inflammatory skin diseases

in general, and demonstrates the general applicability of the

approach.

Aside from the direct implications in AA pathology, this work

provides the proof-of-principle for two key, generalizable

notions: (1) a complex interaction between two tissues can be

modeled as quantifiable, molecular gene expression modules;

and (2) these modules and their regulators can be extracted

from expression data, compartmentalized to a tissue, and co-

opted to induce the associated interaction in normal cell types.

This was evidenced by our ability to recapitulate the AAGS

upon ectopic expression of MRs IKZF1 and DLX4 and to subse-

quently induce enhanced cytotoxicity in non-AA cell lines using

normal (non-AA) PBMCs solely via the manipulation of IKZF1

and DLX4 expression within the end organ itself (no genetic

manipulation of the PBMCs).

Specifically, our analysis identified MRs that are sufficient to

induce interactions with immune cells when expressed solely

in scalp skin. Even in a patient-matched context with samples

from a healthy, AA-unaffected patient, IKZF1 and DLX4 expres-

sion were sufficient to induce aberrant NKG2D-depedent inter-

actions between dermal fibroblasts and PBMCs resulting in

cytotoxicity. These interactions were not present in control

transfections and they were repeated in two other (nonpatient-

matched) cell types, indicating that the expression of IKZF1 or

DLX4 is sufficient to induce interactions with normal immune

cells irrespective of the specific tissue or host matching. The

identification of IKZF1 and DLX4 would have been impossible

without our network-based deconvolution, since the significant

presence of infiltrating signature in the original AAGS would

have prevented any accurate identification of candidate MRs.

Instead, network-based deconvolution identified MRs that are

capable of inducing specific molecular interactions in any of

several molecular contexts that are completely independent of

AA itself.
Cel
The identification of IKZF1 was unexpected, since IKZF1 is

widely studied in the context of T cell differentiation (Kleinmann

et al., 2008). However, its identification came solely from using a

deconvolved AA signature, and not the IGS, using regulatory logic

derived from skin. Had we relied on public databases, previous

literature, or GO annotations to filter our gene expression data,

we would have disregarded and removed IKZF1 entirely due to

extensive annotation as a T cell differentiation factor. Instead, by

turning to regulatory networks, we were able to identify the possi-

bility that local expression of IKZF1 could have a pathogenic rele-

vance independent of its established role directly in immune cells.

While IKZF1 is well characterized in the context of immune

cells, a role for IKZF1 outside of immune cells is not without pre-

cedent in the literature. The losses of IKZF1 and DLX4 loci are

also associated with oncogenesis in colorectal, lung, and breast

cancers, and low-grade squamous intraepithelial lesions (Jav-

ierre et al., 2011; Sakane et al., 2015; Tomida et al., 2007). These

studies obtain their genomic information directly from tumor

masses, indicating that somatic losses of these two loci can

contribute to cancer pathophysiology as end organ genomic al-

terations. Our studies into IKZF1 and DLX4 as MRs inducing im-

mune infiltration support these results and raise the possibility

that the loss of these loci may contribute to immune evasion in

cancer. Further, these observations, and the identification of

IKZF1 and DLX4 as MRs of immune infiltration recruitment, pro-

vide support that there is a function for IKZF1 outside of its role

as a T cell-specific differentiation factor and raises support for

the hypothesis that autoimmunity in AA and tumor immune-

evasion exist at opposite extremes of normal immune interac-

tions. The loss of the MRs of immune infiltration is associated

with cancer, and their overexpression is associated with the

onset of autoimmune disease in AA.

We have shown that systems biology and network analysis

can be used to model the molecular mechanisms mediating

interactions between two distinct tissues, identify the key regu-

lators, and use them to re-create the interactive trait in other con-

texts. While the output for the validation of these MRs was

ultimately induction of cell death, the function of these MRs in

the context of autoimmune disease is to induce a molecular pro-

file that ultimately signals to and recruits immune infiltrates. Up to

this point, applications of systems biology have mainly been to

identify ‘‘breakpoints’’ in cell-autonomous molecular behaviors

of cancers. The controlled induction of cross-tissue interactions,

particularly those involving the immune system, invites poten-

tially significant avenues for modeling complex genetic traits

with regulatory networks that has previously not been feasible.

We provide a proof-of-concept framework that can be used to

actively compartmentalize molecular behaviors for study even

in complex diseases involving interactions between different

tissues.

EXPERIMENTAL PROCEDURES

This section contains a description of the less common or unique methods im-

plemented in this study. The remaining methods are detailed in Supplemental

Information.

ARACNe

To generate a context-specific transcriptional interaction network for scalp

skin, we employed the ARACNe algorithm (Margolin et al., 2006a) on a set
l Systems 1, 326–337, November 25, 2015 ª2015 Elsevier Inc. 335



on of 128 microarray experiments independent of the analytic cohorts in this

study. These experiments represent platform-matched (Affymetrix U133

2plus) data acquired on whole skin samples from a mixture of normal whole

skin biopsies, AA patient biopsies, microdissected dermal papillae, and sepa-

rated dermis and epidermis samples. These samples collectively provide the

heterogeneity required for accurate detection of transcriptional dependencies

in the scalp skin. The experiments were pooled and post-processed as

described above and a standard ARACNe analysis was performed. The ARA-

CNe software suite is available from the Califano lab website, http://wiki.c2b2.

columbia.edu/califanolab/index.php/Software.

MR Analysis

MRs for a specific gene expression signature were defined as TFs whose

direct ARACNe-predicted T (regulon) are statistically enriched in the gene

expression signature. Each TF’s regulon was tested for enrichment of the

AAGS using Fisher’s exact test, FDR = 0.05. This analysis allows for the

ranking and determination of the minimum number of TFs required to specif-

ically cover a gene expression module associated with a physiological trait.

http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/MARINA

MR Activity Classifiers

The ARACNe-predicted T of IKZF1 and DLX4 were integrated with the exoge-

nous gene expression studies to identify all genes in the AAGS that could be

mapped as T of IKZF1 and DLX4. This was done by intersecting the ARACNe

regulons of IKZF1 and DLX4 with the AAGS. The intersection of these two sets

was then screened in the expression studies for any genes that respondedwith

at least 25% fold change. This set of genes was used to construct a consensus

‘‘meta-activity’’ for the IKZF1 and DLX4 loci. The rank-normalized change of

each gene across the AA patient cohort was integrated into an average as a

consensus measure of the relative activity of the parent MR.

These values were subsequently used to define a 2D search space, ðX3YÞ,
where X = IKZF1 meta-activity and Y = DLX4 meta-activity, to classify each of

the patients in the AA training set. The meta-activity vectors were rank trans-

formed such that the minimum values were bound to the origin of the search

space (0,0) and such that activity measures were positive. This transformation

has no influence on the results other than projecting the search space into a

more intuitive grid for display purposes, in which both axes are bound between

[0,n], where n is positive.

Classification in this spacewas done using amodified nonlinear, soft-margin

SVM algorithm. The algorithm is formalized:

X = ranksortðactivityIKZF1Þ
Y = ranksortðactivityDLX4Þ

defineðA3BÞ : ca˛X; arg max
b˛Y

fða;bÞ=
�
pðSj ;QIÞ3pðSi ;QIIIÞ
pðSi ;QIÞ3pðSj ;QIIIÞ

� :

The algorithm defines a vector set ðA3BÞ, which exists within the search space

ðX3YÞ, such that every given pair ða;bÞ maximizes the likelihood ratio fða;bÞ.
This function is defined such that Sj is the next order of disease severity to Si

andQI andQIII are the quadrants I and III of the grid created by the hyperplanes

ða3RÞ and ðR3bÞ. Samples in the training set are mapped to each grid with

known molecular subtypes and the likelihood ratio is computed for the segre-

gation of subtypes defined by S. The severity ranking used for Swas Normal <

Mild < Severe. Each coordinate set in ðA3BÞ therefore defines the points to a

nonlinear plane that maximizes the separation between samples of different

molecular classes in the IKZF1/DLX4 meta-activity space.

Cytotoxicity Assay

PBMC-dependent cytotoxicity wasmeasured using the CytoTox 96 Nonradio-

active Cytotoxicity Assay available through Promega. For the processing of

samples and solutions, we followed manufacturer protocols. The optimization

for PBMC:T was done as below, but using variable concentrations (1:1, 5:1,

and 10:1) (Figure S3).

Cytotoxicity experiments were set up in 96-well format, with each treatment

done in triplicate. Transfections were done 36 hr prior to the experiment. The

day of the experiment,HK andhuDPcells were trypsinized anddilutedwithDul-

becco’s modified Eagle’s medium (DMEM) into working stocks. The T concen-

trationperwellwas80,000cells in 50ml DMEM,combinedwith800,000PBMCs.
336 Cell Systems 1, 326–337, November 25, 2015 ª2015 Elsevier Inc
The NKG2D inhibitor was the Human NKG2D MAb (clone 149810) from R&D

Systems (Cat. MAB139), used at a final concentration of 20 mg/ml. Each trans-

fection was allocated in triplicate according to manufacturer instructions.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cels.2015.11.001.
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Supplemental Figure Legends 
S1, Enriched pathways in the AAGS, Figure1. Supplemental Ingenuity Pathway 
Analysis shows enrichment of immune and cytotoxic signaling cascades for both 
infiltrating populations and end organ processes within the AAGS. 
 
S2, AD and Ps disease gene signatures, Figure6. Unsupervised hierarchical 
clustering of lesional and unaffected patient samples using gene expression. Patients 
cleanly segregate by clinical presentation in both psoriasis (A) and atopic dermatitis (B) 
using the associated gene expression signatures. Sample dendrograms are provided 
here for reference for the heatmaps provided in figure 6.  
 
S3, Cytotoxicity assays, Figure4. Optimizations of PBMC concentration (A) and time 
window (B) for cytotoxicity assays identify a PBMC:target ratio of 100:1 and a time of at 
least 6 hours to achieve optimal separation. 
 
 
Supplemental Tables 
S1, AAGS functional categories, Figure1. This table shows all genes that are in the 
original AAGS. Genes that survived de-convolution are marked with an asterisk. P-
values and fold-changes comparing AA patients vs controls for each gene are provided. 
 
S2, AAGS signature, Figure2 These tables synopse the statistically enriched GO 
pathways (bold titles) and the genes in the AAGS that comprise each category. Immune-
specific category enrichments are lost following de-convolution. 
 
S3, Directional modeule, Figure 5. This table details the IKZF1 and DLX4 edges of the 
ARACNe regulatory network (MI values provided) that were validated by exogenous 
expression of the MRs according to the criteria detailed in Methods. 
 
S4, AD/PS signatures, Figure6. This table lists the deconvolved psoriatic and atopic 
dermatitis signatures used in the comparative master regulator analysis in figure 6 as 
EntrezIDs. 
 
 
Extended Experimental Methods 
Gene expression studies 

A total of 122 samples from 96 patients were profiled on the Affymetrix U133 2Plus array 

consisting of 28 AAP patients, 32 AT/AU patients, and 36 unaffected controls. The 

remaining 26 samples correspond to patient-matched non-lesional biopsies from the 

AAP cohort. These non-lesional samples were not included in the inference of an initial 

signature, but used later (below). RNA from these patient biopsies was isolated and 

processed on the Affymetrix U133 2Plus array. Data post-processing was done via R 

using MAS5 normalization(Giorgi, Bolger, Lohse, & Usadel, 2010) with standard 



packages available through Bioconductor. These data are available at the Gene 

Expression Omnibus as GSE68801. This dataset was broken into two sets for training 

and validation. 

 

An initial panel of gene markers was identified by two differential expression analyses 

comparing (1) AA vs unaffected and (2) lesional vs non-lesional in the training set. A 

threshold was set for differential expression at p<0.05 and a fold change>25%. This 

relatively lax threshold was implemented because the network analyses are based on 

consensus. The analysis is not primarily concerned with candidate ranks, but instead 

relies on having enough molecular information to infer TF activity. This approach is also 

necessarily more robust to noise that could be introduced by a more relaxed threshold, 

since the addition of noise would be applied across the entire dataset and normalized 

out of the consensus by both ARACNe and master regulator analysis (see below) 

(Margolin, Nemenman, et al., 2006a; Margolin, Wang, et al., 2006b). All X- and Y-linked 

genes were additionally removed to remove any possible gender bias in the ranking and 

clustering of differentially expressed genes. 

 

Gene Set Enrichment Analysis 

GSEA is a method for measuring nonparametric statistical enrichment in the differential 

expression of a defined panel of genes(Subramanian et al., 2005). A default differential 

expression analysis between experimental and control cohorts done, and genes are 

rank-sorted by differential expression with no threshold (all genes included). This can be 

done according to any user-specified criteria (fold-change, p-value, etc).  

 



This enrichment score is then compared to an empirically generated null distribution by 

shuffling sample labels, i.e., by randomizing case and control samples and repeating the 

analysis. This is repeated over 1000 iterations to generated a null distribution of 

Enrichment Scores, which the observed score can be compared against to generate a p-

value. 

 

Cloning 

Each primer pair provided below was used in PCR reactions with the Accuprime Taq 

PCR mixes according to manufacturer protocols on cDNAs derived from HEK293T cells. 

cDNAs were generated from cultured cells using the SuperScript First-Strand Synthesis 

System from Invitrogen. PCR products were run out by gel electrophoresis, and any 

isoforms present were separately excised using the Qiagen Gel Extraction Kit.  

 

mRNA fidelity was verified via sequencing from Genewiz, and correct sequences were 

digested with the appropriate enzymes (SPEI and ASCI) from New England Biosystems 

in SmartCut buffer for 2 hours. The pLOC-RFP vector was digested in parallel, and the 

cut backbone was excised by gel extraction. After purification of the backbone and 

inserts, each insert was ligated into the cut pLOC vector using the RapidLigation Kit from 

Roche, according to manufacturer protocols and transformed into DH5α cells for 

amplification. 

 

Successful transformations were validated for sequence fidelity via colony PCR and 

sequencing (Genewiz). Correct constructs were amplified and purified by Maxiprep 

(Qiagen) for experiments 

 



Primers used to clone genes for insertion into the pLOC vector are provided below in the 

following format, 5’ to 3’: spacer-enzyme-mRNAsequence. 

 

IKZF1.1 

Forward GGC-ACTAGT-ATGGATGCTGATGAGGGTCAA 

Reverse ATT-GGCGCGCC-TTAGCTCATGTGGAAGCGGT 

 

IKZF1.2 

Forward GGC-ACTAGT-ATGGATGCTGATGAGGGTCAAG 

Reverse ATT-GGCGCGCC-TTAGCTCATGTGGAAGCGGT (identical to 1.1) 

 

DLX4 

Forward GGC-ACTAGT-ATGAAACTGTCCGTCCTACCCC 

Reverse ATT-GGCGCGCC-TCATTCACACGCTGGGGCTGG 

 

Cell culture and transfections 

Both huDP and HK cells were kept in standard conditions for growth: DMEM 10%FBS at 

37C and 5%CO2. huDP cells are cultured primary human dermal papillae that were 

microdissected from human skin samples. For the experiments in this work, only huDP 

and HK cells with a passage number <6 were used. 

 

Cells were transformed with pLOC expression constructs using the JetPRIME 

transfection reagent according to manufacturer protocols. Transfections were allowed to 

carry overnight using a 2:1 concentration of reagent (ul) to DNA (ug).  

 

Microarrays of MR rescue 



Transfections of IKZF1 and DLX4 into HK and huDP cells were carried out as described 

above in cells cultured in 10cm plates. 36 hours post-transfection these cells were 

harvested in PBS with a cell scraped, then lysed and processed for purified RNA using 

the RNeasy kit from Qiagen following manufacturer protocols. RNA quality control was 

done using a spectrometer and submitted for processing on the Affymetrix human U133 

2Plus array by the Columbia facility (Pathology Department). Array data was again 

normalized and processed using MAS5 normalization through the Bioconductor package 

in R. 

 

qPCRs 

Quantitative PCR reactions were performed on cDNAs extracted from an independent 

cohort of eight primary lesional biopsies (one was found to be degraded and was 

excluded from the study), four unaffected controls, and five pairs of patient-matched 

lesional and non-lesional samples. Reaction mixes using SYBR Green were made in 

25ul volumes according to manufacturer protocols and analyzed on a 7300 series Real 

Time PCR Machine from Applied Biosystems. Primers for each gene are provided at the 

end of this section. 

 

All samples were tested in technical triplicates in stamp-plate format (each replicate was 

performed on one plate, with all samples and controls prepared at once, repeated three 

times). Data from these replicates was analyzed via the δδCT method, normalizing all 

experimental series to the average normalized values of the control tissues. The SEM 

was derived across the comparisons using standard statistical error propagation. 

 



Primers for assaying transcripts by qPCR are provided below, 5’ to 3’. The primers for 

full-length amplification of DLX4 were used because the transcript is ~300 bp (the 

optimal transcript length for our provided protocol is 200-300 bp). 

 

IKZF1 

Forward ACTCCGTTGGTAAACCTCAC 

Reverse CTGATCCTATCTTGCACAGGTC 

 

DLX4 

*same as cloning primers* 

 

ACTB 

Forward GAAGGATTCCTATGTGGGCGAC 

Reverse GGGTCATCTTCTCGCGGTTG 

 
Isolating fresh Peripheral Blood Mononuclear Cells 

Fresh PBMCs were isolated from whole blood draws the evening before the intended 

cytotoxicity assays. PBMCs were separated from whole blood using the Histopaque-

1077 reagent (Ficoll) by diluting 8-ml aliquots of whole blood in sterile PBS 1:1, and 

layering that solution over Ficoll at a final volumetric ratio of 2:1. This solution was 

centrifuged at 1200 rpm for 45 minutes. The monocyte-bearing interface layer was 

isolated, diluted in 5x volumes of sterile PBS and centrifuged again for 15 minutes at 

1500 rpm. Supernatant was discarded, and the pellet was resuspended in 3ml of DMEM 

10%FBS. Cell count was performed with a hemocytometer and the solution was diluted 

to a final concentration of 1x106 cells per ml with DMEM 10%FBS. This was stored 

overnight at 37C and 5% CO2 for the experiments next-morning. 
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Immune interaction network 

Cytotoxic interaction network 

Supplemental Figure 1. Differentially expressed genes regulated by MRs include many membrane-
bound, cell death- and Immune-associated proteins 
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Supplemental Figure 2. Psoriasis and Atopic Dermatitis cohorts have gene expression signatures 
that clearly delineate patients from unaffected controls 
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Supplemental Figure 3. Optiization of PBMC-dependent cytotoxicity assays for PBMC 
concentration and time of exposure to cultured human dermal papillae 


	Master Regulators of Infiltrate Recruitment in Autoimmune Disease Identified through Network-Based Molecular Deconvolution
	Introduction
	Results
	Initial Definition of a Pathogenic Expression Signature in AA Reveals the Presence of Local Scalp Skin and Infiltrating Imm ...
	Leveraging Regulatory Networks to Deconvolve Skin and Immune Signatures in the AAGS into Regulatory Modules
	IKZF1 and DLX4 Are MRs of the Skin AAGS and, by Extension, Infiltrate Recruitment
	Expression of IKZF1 and DLX4 Induces an AAGS-like Signature in Normal Hair Follicle Dermal Papillae and Human Keratinocytes
	IKZF1 and DLX4 Expression Are Sufficient to Induce NKG2D-Mediated Cytotoxicity in Normal Cultured Skin
	MR Expression Permits Reconstruction of a Directional Skin-Specific MR Module of Infiltration Recruitment
	IKZF1 and DLX4 Can Be Used to Predict Both Immune Infiltration and Disease Severity in an Independent Cohort
	Deconvolution Applied to Independent Inflammatory Skin Diseases Identifies Known Genes

	Discussion
	Experimental Procedures
	ARACNe
	MR Analysis
	MR Activity Classifiers
	Cytotoxicity Assay

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


