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Construction of the multi-network 

Construction of the co-expression layer  

Layers Filtering 

Output: List of genes contained in each one of the 
multi-network communities 

Community detection on the multi-network 

Input:  mRNA expression dataset 

Supplementary Figure S1: Schematic 
representation of the procedure proposed in 
the paper.  
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Supplementary Figure S2: Comparison of the four community detection algorithms: size 
distribution. Histograms reporting the size of the communities obtained with OSLOM (black), 
Infomap (red), Louvain (green), Modularity optimization (yellow) in gastric (a), lung (b), 
pancreas (c) and colon (d) 
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Supplementary Figure S3: Comparison of the four community detection algorithms: 
differential expression.  The four algorithms (Infomap (blue), Louvain (red), Modularity optimization 
(green) and OSLOM (violet)) were tested in their ability to detect communities differentially 
expressed between tumor and normal tissues. Each dot in the plot represents a community, a darker 
colour identifies those communities that are also functionally homogeneous. On the y-axis are 
reported the results of the three differential expression criteria: |meani�C (log2(fold change)i )| (a); 
Student’s t-test p-value (b); sdi�C (log2(fold change)i) (c).  
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Choice of the optimal community detection algorithm  
Only four of the five community detection algorithms, discussed in the main text, were considered 

for this comparison since Label propagation obtained in all the four tissues a partition composed of 

only one community. For our application to cancer data we evaluated the performances of the four 

algorithms using two criteria:  

− The percentage of functionally homogeneous communities. 

− The number of tumor vs normal differentially expressed communities.  

 

For the first criterion the comparison was only made on the tumorous multi-network for simplicity. 

We first performed an enrichment analysis testing the overlap of the communities with the 

following categories of annotated gene sets downloaded from MSigDB 1:  positional gene sets, 

Chemical and Genetic Perturbations (CGP), Canonical Pathways (CP), BioCarta, KEGG gene sets, 

Reactome gene sets, motif gene sets, GO gene sets. To ensure the specificity of MSigDB terms, we 

filtered out those general terms associated with > 500 genes. The significance of this overlap was 

verified through the hypergeometric test, the p-values results of this analysis were then corrected for 

multiple hypothesis testing according to Benjamini and Hochberg2. In this way, for each 

community, we obtained a list of biological annotations and an associated p-value. To establish 

which of these p-values were significant, we estimated, for each community, a p-value threshold 

through a null model. The null model was constructed selecting 1000 times, for each community, a 

random set of genes of the same dimension of the analyzed community. In each run, the enrichment 

in biological information of the random set of genes was computed and the minimum p-value was 

selected. At the end, the distribution of the minimum p-values of all the 1000 runs was studied and 

the 95th percentile of this distribution was selected as p-value threshold for the studied community.  
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For the second criterion we used three measures of differential expression. For each of the four 

tissues, calling T the tumor matrix and N the normal matrix, the measures applied to each multi-

network community , can be written as:  

 

• !!"#$!∈! !log! !"#$!!ℎ!"#$ ! = !!! − !!! where !!! =
!!"

!"#(!)!"#  ,  

!! =
!!"

!"#(!)!"#   

 

• Student’s t-test p-value      

      

•  !"!∈! !log! !"#$!!ℎ!"#$ ! = ! (!!!!!!!)!
!"#(!)  ,       where  !! = !! − !!!  

 

Each differential expression measure was applied to the multi-network communities identified by 

the four algorithms and for each measure we identified the best performing algorithm as the one 

with the maximum value (minimum in the case of the Students's t-test) of the estimator. Then we 

chose the algorithm with the best performances in the majority of the three tests. The two criteria 

presented here will be used also in the comparisons discussed in the main text. The algorithm which 

performed best in all the four tissues, according to both criteria, turned out to be OSLOM. More 

precisely OSLOM and Modularity optimization were those with the best performances in terms of 

Biological enrichment. Modularity optimization obtained all biologically enriched communities, but 

it also identified a really small amount of communities (5-7) compared to those identified by 

OSLOM (170-190). The results of this analysis are reported in Supplementary Table S14. Instead, 

with respect to the differential expression analysis, the best performing algorithms were OSLOM in 

lung and pancreas, Infomap in gastric, while in colon none of the five algorithms performed better 

than the others in at least two of the tests. A summary of the results for all four tissues are 

summarized in Supplementary Figure S3. Given the results of the two tests, OSLOM was the 

algorithm that we chose for our analysis and the communities obtained with this algorithm are 

reported in Supplementary Tables S3-S6.  

 

 

Partition in communities for different values of α 
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For each multi-network community obtained with the optimal α, we selected the community 

(among those obtained with different values of α) with the highest overlap. To establish which of 

these overlaps were significant, we estimated, for each community, an overlap threshold through a 

null model. The null model was constructed selecting 1000 times, for each multi-network 

community, a random set of genes of the same dimension of the analyzed community. In each run, 

the overlap of the random set of genes with the multi-network communities was computed and the 

maximum overlap percentage was selected. At the end, the distribution of the maximal overlaps of 

all the 1000 runs was studied and the 95th percentile of this distribution was selected as overlap 

threshold for the studied community. With this choice in the 99% of cases we found a one to one 

correspondence between communities obtained with different α. 

 

Chromosomal locations and microRNA regulons in Pancreatic cancer 

 

chromosomal locations 
As discussed in the paper our analysis may have three further interesting outcomes: 

- Out of the hundreds of genes contained in each enriched chromosomal location with our analysis 

we select only the few which are involved in a common co-regulatory scheme and thus are likely to 

be the real drivers of the cancer. 

- In the communities we find also genes outside the enriched chromosomal locus, related to them 

non only by a coexpression link but also by regulatory relations and this suggests that they could be 

part of a common biological pathway which is dysregulated in the tumour.  

- In some cases the community is also characterized by a GO or KEGG enriched category which 

may give some hint to identify the above pathway. 

To discuss these points more in detail we considered the Pancreatic multi-network-spefic 

communities, because they are the ones with the smallest number of enriched chromosomal 

locations. It is thus a perfect laboratory to test our results since the number is  small enough to allow 

to discuss here all of them. Of note is that we have no false positives in Pancraes: for ALL the eight 

loci the association with the pancreatic cancer is already well established.  In seven cases these are 

recurrent amplifications, which appear in several tumours and in the pancreatic cancer among the 

others, while in the remaining  case, 6p22 seems to be more specific of the pancreatic cancer and it 

was identified only recently in two independent genome wide association studies (see below). 

Let us discuss these loci more in detail: 

− The amplification of 1q21 3 is one of the most frequent genetic alterations in many solid 

tumours, including bladder, breast, nasopharyngeal carcinoma, hepatocellular carcinoma, 
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esophageal tumor,  fibrosarcoma of bone, colorectal carcinoma (and accordingly we find it 

enriched also in the CRC dataset) and in agreement with our finding, also in the pancreatic 

tumour 4,5. With 1q32 discussed below is one of the first  cancer related chromosomal 

aberrations reported in the literature 3. This locus turns out to be enriched in the 106th 

community of the pancreatic dataset, with a p-value of 10^-3. 

− Also 1q32 3, which shows an enrichment in the 43th community of the Pancreas dataset with 

a p value of 10^-4, is a common and well studied genetic alteration. It was identified as a 

specific pancreatic cancer susceptibility locus in a genome-wide association study five years 

ago 6.  This identification was recently confirmed in 7. 

− 6p22 is not a common genetic alteration. It was only recently found associated to pancreatic 

tumour in two separate studies 8,9. It seems not to be associated to any other type of tumour, 

accordingly we found it enriched only in the pancreas dataset.  This locus is enriched in the 

109th community, with a p-value of 10^-3. 

− 11q13 is a chromosomal locus associated to several types of cancer and in particular also to 

the pancreatic one 5,10. It is known to be the most common genetic aberration in the 

adrenocortical carcinoma. Also in this case the locus turns out to be enriched also in the 

CRC dataset and accordingly it is known to be associated also to the colorectal cancer 11. 

This locus is enriched in two communities: the first one, with a p-value of 10^-5 and in the 

92nd one, with a p-value of 10^-3. 

− 11p15 is a very common genetic alteration in many tumours and was recently found also in 

pancreatic cancer 12.  This locus is enriched in the 166th community, with p-value 10^-4. 

− 17p13 is a very common genetic alteration in many tumors. Its association to pancreatic 

cancer is rather old 13 and was recently confirmed in 5,8,9. This locus is enriched in the 23rd 

community, with a remarkable p-value of 10^-9. 

− 17q23 is involved in a recurrent chromosomal amplification in several types of cancer. It 

was first discovered in breast cancer 14 and then in brain, lung, ovary, bladder, testis, liver 

and also, in agreement with our findings, in pancreatic tumour  15. This locus is enriched in 

the 74th community, with a p-value of 10^-4. 

− Finally, also 18p11 is a common genetic alteration, originally found in CRC and more 

recently also in pancreatic cancers 12. This locus is enriched in the 11th community, with a p-

value of 10^-6. 

We now move to the second level of our analysis, with a closer inspection of the gene content of the 

above communities. We shall discuss in particular, as an example, two cases: the 1q21 and the 

11q13 loci. 
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− The 1q21 locus is enriched in the 106th community which contains 25 genes. Out of them 

five are located in the 1q21 locus (this explains why we found this locus enriched in this 

particular community). They are: F11R, HDGF, ILF2, PRCC and VPS72.  Among them 

F11R (also known as JAM-A) was shown a few years ago to be associated with metastasis 

and poor survival in pancreatic cancer 16. HDGF is known since 2006 17 to be a prognostic 

factor for patients with pancreatic cancer. PRCC is known to be associated to the Papillary 

Renal Cell Carcinoma (which gives the name to the gene) was recently shown to be mutated 

also in the pancreatic tumour 18. Our analysis suggests that the simultaneous presence of 

these three oncogenes in the same community is not a coincidence and that it is exactly the 

fact that they are located in the same chromosomal locus which makes alterations of this 

locus so dangerous. Moreover it is interesting to notice that with our analysis, out of the 

hundreds of genes contained in this locus we were able to single out three genes with a 

known important role in the pancreatic tumour. This strongly suggests that also the 

remaining two could play a role and prioritized their analysis.  Indeed VPS72 is involved in 

two multi-component complexes, the histone acetyltransferase complex TRRAP/TIP60 and 

the chromatin remodeling SRCAP-containing complex. In particular, the TRRAP/TIP60 

complex acetylates nucleosomal histones and is important for transcriptional regulation, 

double strand DNA break repair and apoptosis. As such it would be not too unlikely to find 

that it could play a role also in the insurgence of pancreatic cancer. Similarly ILF2 (also 

known as NF45) is known to have a tumorigenic role in other types of cancer, ranging from 

CRC 19 to the esophageal squamous cell carcinoma 20. Again it would be not too unlikely to 

expect a role also in pancreatic cancer. Notice that, interestingly, both ILF2 21 and VPS72 

play a role, via two independent pathways in DNA damage repair. A simultaneous alteration 

of their expression levels in pancreatic cancer could reduce the ability of the cell to control 

DNA aberrations . 

 

− The 11q13 locus is enriched in the first and 92nd communities. Out of the 28 genes 

belonging to 92nd community, four are contained within the 11q13 locus: FKBP2, 

RASGRP2, RIN1 and TM7SF2. Remarkably enough the last three of these genes are known 

to be involved in some type of cancer but none of them was previously associated to the 

pancreatic cancer. RASGRP2 has been shown to be activated in a mouse model of myeloid 

leukemia 22. The expression level of RIN1 has been shown to have a prognostic role both in 

the gastric adenocarcinoma 23 and in the lung cancer 24. Similarly, also TM7SF2 has been 

shown to have a prognostic role in the adrenocortical carcinoma 25. This agrees with the 
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remark we made above on the fact that aberrations in this particular locus are strongly 

correlated with the adrenocortical carcinoma. Our analysis supports a role for these genes 

also in the pancreatic cancer, maybe within the same pathways already observed for other 

types of cancer. It would be interesting to test this conjecture. However the most interesting 

case is probably that of the fourth gene: FKBP2. FKBP2 belongs to the family of FKBP 

proteins which are highly expressed in the cell and show a high degree of conservation 

across species. They modulate several signal transduction pathways in the cell and in the last 

few years they have been shown to play an important role in cancer related pathways. (for a 

recent review see 26). In particular, it has been recently shown that variability in the 

expression level of another protein of this family: FKBP5 is associated to the variation in 

response to various chemotherapeutic agents in pancreatic cancer and in particular for 

gemcitabine 27, a first line treatment for pancreatic cancer. A similar involvement in 

pancreatic cancer for FKBP2 was never observed up to now, however our analysis strongly 

supports this possibility and suggests that it could be worthwhile to explore this research 

line.  

 

Finally, as an example of the third level of analysis let us discuss the locus 1q32: 

 

- 1q32 is enriched in the 43rd community. This community contains 45 genes. Out of them 

five belong to the locus: ATF3, BTG2, CD46, IRF6 and PPP1R15B. As in the previous 

cases, also for this locus three out of these five genes ATF3 BTG2 and CD46 are already 

known markers of pancreatic cancer.  ATF3 is a well known oncosuppressor both in 

pancreatic and in other types of cancer 28. also BTG2 is an oncosuppressor whose relevance  

in other types of cancer is well known while its role in pancreatic cancer has been proved 

only recently  29. Instead, CD46 in pancreatic cancer has the opposite role. It is a cell-surface 

glycoprotein involved in protection of tumour cells against complement-mediated 

cytotoxicity and its activation is controlled by the oncogene STAT3 30. What is more 

interesting for our purposes is that in this case we have some more information on the 

possible pathways in which these genes, and the other belonging to the community, are 

involved.  Looking at the enrichment analysis for this community we find a few functional 

categories with rather good p-values. In particular we find the so called DREAM pathway 

which involves the JUN and FOS regulators.  Indeed looking at the other genes belonging to 

the community we find several genes of the JUN and FOS families, with an over-

representation which is clearly statistically significant. Moreover a closer inspection to the 
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gene set allows to find some already known synergistic interactions among these genes. In 

particular ATF3 and BTG2 are both involved in the pathways which allow p53 to exert its 

oncosuppressor function 31. They are key players in two alternative pathways and thus their 

simultaneous alteration could have dramatic consequences. As mentioned above CD46 is 

regulated by STAT3 30 which is known to act synergistically with JUN and FOS. Finally it 

was shown a few years ago that ATF3 is induced in pancreatic cancer by one of the other 

genes in the community: NR4A1 32. All these findings point to a cooperative role of several 

genes of the community (not only those belonging to the selected locus but also the other) in 

the apoptotic process and more generally in cell survival. This intuition is supported by the 

results obtained on community 43 through the Ingenuity Pathway Analysis software (IPA). 

In fact, we applied IPA to the log2fold change of expression between tumor and normal 

tissue of the genes constituting community 43 and we considered the Diseases or Functions 

Annotation, the results are reported in Supplementary Table S15. As shown in that table, 

the 43rd community is significantly enriched in genes annotated to be involved in the 

regulation of cell death and apoptosis, in particular according to the IPA analysis these 

functions result to be decreased in tumor in respect to normal tissue. Moreover the following 

community is enriched in STAT3 targets (p-value 3.02E-6), that is activated according to 

IPA analysis with an activation z-score of 2.714.  

 

miRNA regulons 
Among the microRNAs significant in at least one community in Pancreas, miR-383 is known to 

control apoptosis in cancer through the regulation of GADD45G 33, which is one of the genes 

contained in the 3rd community in which the microRNA targets were enriched. MiR-33a inhibits 

tumor cell proliferation 34,35, moreover it might function as a tumor suppressor, targeting the 3'UTR 

of β-catenin and affecting cell growth, apoptosis, EMT and GEM resistance 35. MiR-337 was found 

to be associated with longer survival in pancreatic cancer 36. In particular, it targets HOXB7 causing 

a significant suppression of PDAC cell proliferation and invasion 37. MiR-302c is part of the miR-

302 cluster whose target genes are known to be involved in developmental signaling. In human, 

miR-302 cluster is highly expressed in hESCs and iPSCs, and plays a critical role in regulating cell 

stemness and pluripotency 38. MiR-153 inhibits PDAC cell migration and invasion by targeting 

SNAI1, its expression is also an independent prognostic marker for predicting 3-year survival of 

pancreatic ductal adenocarcinoma (PDAC) patients 39. The role of mir-153 in tumorogenesis was 

highlighted also through a bioinformatics analysis in40. MiR-365 directly targets apoptosis-

mediating molecules, SHC1 and BAX, in pancreatic cancer cells 41. MiR-183 is an EMT inhibitor 
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and favors epithelial differentiation, in many tumors 42 and also in pancreas 43,44. Moreover it was 

found to be aberrantly expressed during pancreatic carcinogenesis 45. MiR-373 is down-regulated in 

pancreatic cancer, and its re-expression represses the invasiveness of pancreatic cancer cells 46. 

Moreover it is involved in ZIP4!CREB!miR!373 signaling axis that promotes pancreatic cancer 

growth, through silencing on key tumour suppressor molecules including TP53INP1, LATS2 and 

CD44  47. 
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