Supplementary Information

Functional properties of resting state networks in healthy full-term newborns

Authors: Josepheen De Asis-Cruz, M.D., Ph.D¹, Marine Bouyssi-Kobar, M.S.¹, Iordanis Evangelou, D.Phil¹, Gilbert Vezina, M.D.², and Catherine Limperopoulos Ph.D.^{1,2,3,*}

¹ Advanced Pediatric Brain Imaging Research Laboratory, Children's National Health System, Washington, D.C., USA, 20010 ² Division of Diagnostic Imaging and Radiology, Children's National Health System,

Washington, D.C., USA, 20010

³ Fetal and Transitional Medicine, Children's National Health System, Washington, D.C., USA, 20010

* Corresponding author:

Catherine Limperopoulos, Ph.D. Advanced Pediatric Brain Imaging Research Laboratory Children's National Health System 111 Michigan Avenue, NW Washington, D.C 20010 202 476 5293 CLimpero@childrensnational.org

Supplementary figure legends

Figure S1. Age distribution of n = 60 neonates. Gestational ages of neonates(GA) at scan (A) and at birth (B) are shown, along with weeks of life at scan(C). (D) shows GA at scan plotted against GA at birth. Green points in (A) and (B) show distribution of ages within each histogram bin.

Figure S2. Small-world properties of neonate resting state networks as a function of degree, *K*. Findings are consistent with correlation thresholded networks shown in Figure 1. (A) shows the C_{neo} (black) and C_{random} (red). C_{neo} is significantly greater than C_{random} at degree range 42 > K > 6, p < 0.01, Bonferroni corrected (green asterisks). (B) shows L_{neo} (black) and L_{random} (red). L_{net} and L_{random} are not different at K = 42 (green triangles). All generated random networks preserve the degree, k, and degree distribution, p(k) of the original networks. (C) shows small world index, SWI or σ (light blue). SWI > 1 (99% CI) for all thresholds tested. Also shown are γ (black) and λ (red). Here, γ >> 1 and $\lambda \geq$ 1. Error bars refer to SEM.

Figure S3. Right-tailed individual degree distributions. (A)-(C), left, shows the mean degree distribution for n = 60 neonates (blue) superimposed on individual degree distributions (gray). The histograms on the right panels show the same data as the blue plots on the left.

Figure S4. Hubs based on degree and betweenness centrality. Node-specific degree (A) and betweenness (B) values are shown for all 90 ROIs. Red lines mark mean, dashed red lines mark mean \pm 1SD.

Figure S5. Summary of graph analysis.

Figure S1

Figure S2

Figure S3

Figure S4

TABLE S1. Demographic data for 60 neonates.

	Median ± MAD	Range
GA at birth (weeks)	39.64 ± 0.74	37.57 - 41.86
GA at scan (weeks)*	41.50 ± 1.07	38.43 - 46.43
Age at scan (days)	12.50 ± 6.00	0.43 - 42.00
Birth weight (kg)**	3391.50 ± 261.47	2594 - 3968
Apgar 1	8.00 ± 0.68	1 - 9
Apgar 5	9.00 ± 0.25	5 - 9

* All subjects, except for 3, are neonates (< 4 weeks old).

** Birth weight not available for 2 infants.

*** Apgar scores not available for 14 infants.

TABLE S2. AIC values for degree distribution models

Model	AIC* Values			
Model	<i>R</i> = 0.25	<i>R</i> = 0.35	<i>R</i> = 0.45	
Power law	780	628	466	
Exponentially truncated power law	560	492	403	
Exponential	639	544	453	

* AIC: Akaike Information Criterion

Region	Abbreviation	Region	Abbreviation
Precentral gyrus	PreCG	Cuneus	CUN
Superior frontal gyrus (dorsal)	SFGdor	Lingual gyrus	LING
Orbitofrontal cortex (superior)	ORBsupb	Superior occipital gyrus	SOG
Middle frontal gyrus	MFG	Middle occipital gyrus	MOG
Orbitofrontal cortex (middle)	ORBmid	Inferior occipital gyrus	IOG
Inferior frontal gyrus (opercular)	IFGoperc	Fusiform gyrus	FFG
Inferior frontal gyrus (triangular)	IFGtriang	Postcentral gyrus	PoCG
Orbitofrontal cortex (inferior)	ORBinf	Superior parietal gyrus	SPG
Rolandic operculum	ROL	Inferior parietal lobule	IPL
Supplementary motor area	SMA	Supramarginal gyrus	SMG
Olfactory	OLF	Angular gyrus	ANG
Superior frontal gyrus (medial)	SFGmed	Precuneus	PCUN
Orbitofrontal cortex (medial)	ORBmed	Paracentral lobule	PCL
Rectus gyrus	REC	Caudate	CAU
Insula	INS	Putamen	PUT
Anterior cingulate gyrus	ACG	Pallidum	PAL
Middle cingulate gyrus	MCG	Thalamus	ТНА
Posterior cingulate gyrus	PCG	Heschl gyrus	HES
Hippocampus	HIP	Superior temporal gyrus	STG
Parahippocampal gyrus	PHG	Temporal pole (superior)	TPOsup
Amygdala	AMYG	Middle temporal gyrus	MTG
Calcarine cortex	CAL	Temporal pole (middle)	TPOmid
L]	Inferior temporal gyrus	ITG

TABLE S3. Regions of interest (ROIs). Abbreviations used by Shi et al. (2011) were adopted.

Module 1	Class	Module 2	Class	Module 3	Class	Module 4	Class
PreCG-L	primary	SFGdor-L	association	OLF-L	limbic	CAL-L	primary
PreCG-R	primary	SFGdor-R	association	OLF-R	limbic	CAL-R	primary
ROL-L	association	ORBsupb-L	paralimbic	INS-L	paralimbic	CUN-L	association
ROL-R	association	ORBsupb-R	paralimbic	INS-R	paralimbic	CUN-R	association
SMA-L	association	MFG-L	association	HIP-L	limbic	LING-L	association
SMA-R	association	MFG-R	association	HIP-R	limbic	LING-R	association
MCG-L	paralimbic	ORBmid-L	paralimbic	PHG-L	paralimbic	SOG-L	association
MCG-R	paralimbic	ORBmid-R	paralimbic	PHG-R	paralimbic	SOG-R	association
PCG-L	paralimbic	IFGoperc-L	association	AMYG-L	limbic	MOG-L	association
PCG-R	paralimbic	IFGoperc-R	association	AMYG-R	limbic	MOG-R	association
PoCG-L	primary	IFGtriang-L	association	CAU-L	subcortical	IOG-L	association
PoCG-R	primary	IFGtriang-R	association	CAU-R	subcortical	IOG-R	association
SPG-L	association	ORBinf-L	paralimbic	PUT-L	subcortical	FFG-L	association
SPG-R	association	ORBinf-R	paralimbic	PUT-R	subcortical	FFG-R	association
IPL-L	association	SFGmed-L	association	PAL-L	subcortical	ANG-L	association
IPL-R	association	SFGmed-R	association	PAL-R	subcortical	ANG-R	association
SMG-L	association	ORBmed-L	paralimbic	THA-L	subcortical	MTG-L	association
SMG-R	association	ORBmed-R	paralimbic	THA-R	subcortical	MTG-R	association
PCUN-L	association	REC-L	paralimbic			ITG-L	association
PCUN-R	association	REC-R	paralimbic			ITG-R	association
PCL-L	association	ACG-L	paralimbic				
PCL-R	association	ACG-R	paralimbic				
HES-L	primary	TPOsup-L	paralimbic				
HES-R	primary	TPOsup-R	paralimbic				
STG-L	association	TPOmid-L	paralimbic				
STG-R	association	TPOmid-R	paralimbic				

TABLE S4. Regions of interest within each module and their tissue classification*.

*Tissue classification based on Mesulam (2000)

TABLE S5. Study inclusion and exclusion criteria

Inclusion criteria	Healthy pregnancies with normal fetal echocardiogram and ultrasonogram
Exclusion criteria	Dysmorphic features by antenatal ultrasound
	Chromosomal abnormalities by amniocentesis
	Presentation after 28 weeks gestation
	Multiple gestations
	Evidence of congenital infections