Isolation and Identification of Cryptocaryols A-H, Pyrone-containing 1,3-polyols Implicated in Stabilizing the Tumor Suppressor Pdcd4

Tanja Grkovic, Johanna S. Blees, Nancy H. Colburn, Tobias Schmid, Cheryl L. Thomas, Curtis J. Henrich, James B. McMahon, and Kirk R. Gustafson^{*}

Supporting Information

Table of contents:

Figure S1. ¹ H NMR spectrum of cryptocaryol A (1) in CD_3OD .	SI4						
Figure S2. ¹³ C NMR spectrum of cryptocaryol A (1) in CD_3OD .	SI5						
Figure S3. Edited HSQC spectrum of cryptocaryol A (1) in CD ₃ OD.							
Figure S4. HMBC spectrum of cryptocaryol A (1) in CD ₃ OD.							
Figure S5. LRLCMS spectra of cryptocaryol A (1).							
Figure S6. HRESIMS spectrum of cryptocaryol A (1).							
Figure S7. HRESIMS/MS spectra of cryptocaryol A (1).	SI9						
Figure S8. ¹ H NMR spectrum of cryptocaryol B (2) in CD_3OD .	SI10						
Figure S9. ¹³ C NMR spectrum of cryptocaryol B (2) in CD_3OD .	SI11						
Figure S10. LRLCMS spectra of cryptocaryol B (2).	SI12						
Figure S11. HRESIMS spectrum of cryptocaryol B (2).	SI13						
Figure S12. HRESIMS/MS spectrum of cryptocaryol B (2).	SI13						
Figure S13. ¹ H NMR spectrum of cryptocaryol C (3) in CD ₃ OD.	SI14						
Figure S14. ¹³ C NMR spectrum of cryptocaryol C (3) in CD ₃ OD.	SI15						
Figure S15. LRLCMS spectra of cryptocaryol C (3).	SI16						
Figure S16. HRESIMS spectrum of cryptocaryol C (3).	SI17						
Figure S17. HRESIMS/MS spectra of cryptocaryol C (3).	SI17						
Figure S18. ¹ H NMR spectrum of cryptocaryol D (4) in CD ₃ OD.	SI18						
Figure S19. ¹³ C NMR spectrum of cryptocaryol D (4) in CD ₃ OD.	SI19						
Figure S20. LRLCMS spectra of cryptocaryol D (4).	SI20						
Figure S21. HRESIMS spectrum of cryptocaryol D (4).	SI21						
Figure S22. HRESIMS/MS spectrum of cryptocaryol D (4).	SI21						
Figure S23. ¹ H NMR spectrum of cryptocaryol E (5) in CD_3OD .	SI22						
Figure S24. ¹³ C NMR spectrum of cryptocaryol E (5) in CD_3OD .	SI23						
Figure S25. LRLCMS spectra of cryptocaryol E (5).	SI24						
Figure S26. HRESIMS spectrum of cryptocaryol E (5).	SI25						

Figure S27. HRESIMS/MS spectra of cryptocaryol E (5).	SI25
Figure S28. ¹ H NMR spectrum of cryptocaryol F (6) in CD_3OD .	SI26
Figure S29. ¹³ C NMR spectrum of cryptocaryol F (6) in CD_3OD .	SI27
Figure S30. LRLCMS spectra of cryptocaryol F (6).	SI28
Figure S31. HRESIMS spectrum of cryptocaryol F (6).	SI29
Figure S32. HRESIMS/MS spectra of cryptocaryol F (6).	SI29
Figure S33. ¹ H NMR spectrum of cryptocaryol G (7) in CD ₃ OD.	SI 30
Figure S34. ¹³ C NMR spectrum of cryptocaryol G (7) in CD ₃ OD.	SI31
Figure S35. LRLCMS spectra of cryptocaryol G (7).	SI32
Figure S36. HRESIMS spectrum of cryptocaryol G (7).	SI33
Figure S37. HRESIMS/MS spectra of cryptocaryol G (7).	SI33
Figure S38. ¹ H NMR spectrum of cryptocaryol H (8) in CD_3OD .	SI34
Figure S39. ¹³ C NMR spectrum of cryptocaryol H (8) in CD_3OD .	SI35
Figure S40. LRLCMS spectra of cryptocaryol H (8).	SI36
Figure S41. HRESIMS spectrum of cryptocaryol H (8).	SI37
Figure S42. HRESIMS/MS spectra of cryptocaryol H (8).	SI37
Table S1. ¹³ C NMR data for cryptocaryols A-H (1-8) in CD ₃ OD.	SI38

Figure S1. ¹H NMR spectrum of cryptocaryol A (1) in CD₃OD.

Figure S3. Edited HSQC spectrum of cryptocaryol A (1) in CD₃OD.

Figure S4. HMBC spectrum of cryptocaryol A (1) in CD₃OD.

Figure S5. LRLCMS spectra of cryptocaryol A (1).

Figure S6. HRESIMS spectrum of cryptocaryol A (1).

Figure S8. ¹H NMR spectrum of cryptocaryol B (2) in CD₃OD.

Figure S10. LRLCMS spectra of cryptocaryol B (2).

Figure S12. HRESIMS/MS spectrum of cryptocaryol B (2).

Figure S13. ¹H NMR spectrum of cryptocaryol C (**3**) in CD₃OD.

Figure S14. ¹³C NMR spectrum of cryptocaryol C (**3**) in CD₃OD.

Figure S15. LRLCMS spectra of cryptocaryol C (3).

Figure S16. HRESIMS spectrum of cryptocaryol C (3).

Figure S17. HRESIMS/MS spectra of cryptocaryol C (3).

Figure S18. ¹H NMR spectrum of cryptocaryol D (4) in CD₃OD.

Figure S19. ¹³C NMR spectrum of cryptocaryol D (4) in CD₃OD.

тэ

Figure S20. LRLCMS spectra of cryptocaryol C (4).

Figure S21. HRESIMS spectrum of cryptocaryol D (4).

Figure S22. HRESIMS/MS spectrum of cryptocaryol D (4).

Figure S23. ¹H NMR spectrum of cryptocaryol E (**5**) in CD₃OD.

Figure S25. LRLCMS spectra of cryptocaryol E (5).

Figure S26. HRESIMS spectrum of cryptocaryol E (5).

Figure S27. HRESIMS/MS spectra of cryptocaryol E (5).

Figure S28. ¹H NMR spectrum of cryptocaryol F (6) in CD₃OD.

Figure S30. LRLCMS spectra of cryptocaryol F (6).

Figure S32. HRESIMS spectra of cryptocaryol F (6).

Figure S33. ¹H NMR spectrum of cryptocaryol G (7) in CD₃OD.

Figure S34. ¹³C NMR spectrum of cryptocaryol G (7) in CD₃OD.

Figure S35. LRLCMS spectra of cryptocaryol G (7).

Figure S36. HRESIMS spectrum of cryptocaryol G (7).

Figure S37. HRESIMS/MS spectra of cryptocaryol G (7).

Figure S38. ¹H NMR spectrum of cryptocaryol H (8) in CD₃OD.

Figure S39. ¹³C NMR spectrum of cryptocaryol H (8) in CD₃OD.

Figure S40. LRLCMS spectra of cryptocaryol H (8).

Figure S41. HRESIMS spectrum of cryptocaryol H (8).

Figure S42. HRESIMS/MS spectra of cryptocaryol H (8).

no.	1	2	3	4	5	no.	6	7	8
2	167.0	167.0	166.3	166.3	166.3	2	166.3	166.3	166.3
3	121.4	121.4	122.9	122.9	122.9	3	122.9	122.9	122.9
4	148.6	148.6	147.1	147.1	147.1	4	147.1	147.1	147.1
5	31.0	31.0	63.4	63.4	63.4	5	63.4	63.4	63.4
6	76.6	76.6	79.2	79.2	79.2	6	79.2	79.2	79.2
7	43.9	43.9	39.4	39.5	39.4	7	39.4	39.4	39.3
8	66.6	66.6	66.7	66.7	66.7	8	66.7	66.7	66.7
9	46.0	45.8	46.1	46.1	46.1	9	45.3	46.1	46.7
10	69.9	69.87	70.0	70.0	70.1	10	70.0	70.1	68.1
11	45.3	45.3	46.0	45.3	46.0	11	46.0	46.0	45.7
12	70.2	69.93	70.2	70.0	68.3	12	70.2	68.3	69.1
13	45.9	45.9	45.8	45.8	45.8	13	46.1	45.8	39.4
14	68.3	67.5	68.3	67.5	69.1	14	68.3	69.1	26.8
15	45.8	43.3	45.3	43.3	39.3	15	45.8	39.3	
16	69.1	72.9	69.1	72.9	26.8	16	69.1	26.8	
17	39.3	36.0	39.3	36.0		17	39.3		
18	26.8	26.4	26.8	26.4		18	26.8		
(<u>C</u> H₂) _m	30.5- 31.0	30.5- 31.0	30.5- 30.8	30.5- 30.8	30.5- 30.9	(<u>C</u> H ₂) _m	30.4-31.0	30.4-30.9	30.4-30.9
(CH ₂)m <u>C</u> H ₂ CH ₂ CH ₃	33.2	33.1	33.2	33.1	33.1	<u>C</u> H ₂ CH=CH <u>C</u> H ₂	28.2	28.2	28.2
(CH ₂)mCH ₂ CH ₂ CH ₃	23.8	23.8	23.8	23.8	23.8	CH₂ <u>C</u> H= <u>C</u> HCH₂	130.9	130.9	130.9
(CH ₂)mCH ₂ CH ₂ CH ₃	14.5	14.5	14.5	14.5	14.5	(<u>C</u> H ₂) _x	30.4-31.0	30.4-30.9	30.4-30.9
О <u>С</u> ОСН₃		173.2		173.2		(CH ₂) _x <u>C</u> H ₂ CH ₂ CH ₂ CH ₃	33.1	33.1	33.1
ОСО <u>С</u> Н₃		21.2		21.2		(CH ₂) _x CH ₂ <u>C</u> H ₂ CH ₃	23.8	23.8	23.8
						(CH ₂) _x CH ₂ CH ₂ CH ₃	14.5	14.5	14.5

 Table S1. ¹³C NMR data for cryptocaryols A-H (1-8) in CD₃OD.