
S2 Appendix

Here we provide more details about the algorithms of Patch. We take Abyss-assembled contigs, corrected PacBio long reads (CPBLR1a, SMRT1

corrected by PBcR pipeline) and Miseq short reads as inputs to Patch.

myconfig:

source=/ patch

in_ref=/Abyss.ctg.fa

in_clr=/Pacbio_Illumina.fasta # CPBLR1a were generated by correcting the subreads of SMRT1 data by PBcR pipeline with Miseq short reads

nucmer=/nucmer

makeblastdb=/makeblastdb

blastn=/blastn

2bwt-builder=/2bwt-builder

soap=/soap

read1=/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq

read2=/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq

min_i=262

max_i=333

genomesize=4650000

$ python patch.py myconfig

whole:4647119

N50: 656546

Number of contigs: 10

Length of the longest contig: 1808593

Step 1: Assembly modification

Input: my_ref.fa and my_CLR.fa

If the genome size was specified in the config file, the longest 15X CPBLRs are selected and saved as my_CLR.fa.Long.fa

---Gap-Filling---

Inupt: my_ref.fa and my_CLR.fa.Long.fa

Any N within a contig defines a gap. The 100-bp flanking sequences of the gap are used to identify those CPBLRs spanning the gap. We replace

the gap with the corresponding sequence which has multiple and maximal occurrences. The schematic diagram for gap-filling is shown in Fig.

1A. As can be seen in Filled_info.txt, there were 9 gaps in the Abyss-assembled contigs and the nine gaps were filled by Patch using the

corresponding sequences of CPBLRs. After gap-filling, Filled_my_ref.fa is produced.

>ref_66_len:64344

clr:>clr_8229_len:5928 gap_related_seq:CTCCCGCCGTACCTGTT

clr:>clr_1547_len:6027 gap_related_seq:CTCCCGCCGTACCTGTT

clr:>clr_2029_len:5468 gap_related_seq:CTCCCGCCGTACCTGTT

Replace with :CTCCCGCCGTACCTGTT

>ref_133_len:66658

clr:>clr_9785_len:2199 gap_related_seq:AAACCGCTGGATAAAACCCGCGCTAATTCCCT

clr:>clr_7310_len:1869 gap_related_seq:AAACCGCTGGATAAAACCCGCGCTAATTCCCT

clr:>clr_5549_len:6242

gap_related_seq:AAACCGCTGGATAAAACCCGCGCTAATTCCCTGACCCGCCACTTTATCACTCAGCATCTACCCACCGATTAACCGAG

GAGACGTGATGTCCCGAGCGGCGCTGGGGCACCAACCGCTAGAAAAACACCCGCGCTAATTCCCT

clr:>clr_7939_len:4000 gap_related_seq:AAACCGCTGGATAAAACCCGCGCTAATTCCCT

Replace with :AAACCGCTGGATAAAACCCGCGCTAATTCCCT

...

---Splitting---

Input: Filled_my_ref.fa and short reads

We have used SOAP2 (SOAP aligner) to align short reads to the Filled_my_ref.fa so as to estimate read coverage statistics. Contigs are split or

trimmed (the 1% end-regions of contigs) in the zero-coverage positions (as shown in Fig. 1B). Contigs larger than 50 bp are saved as

Split_Ref.fa.

For example,

ref_3_len:35361 was trimmed to ref_3_35361_trimmed_1_len:35359

ref_133_len:66658 was split into ref_133_66656_split_1_len:12196, ref_133_66656_split_2_len:29616,and ref_133_66656_split_3_len:24699

Step 2: Representative sequence selection

---Contig/CPBLR selection---

Input: Split_Ref.fa or Filled_my_ref.fa and my_CLR.fa.Long.fa in Step 1

We concatenate Split_Ref.fa (or Filled_my_ref.fa) and my_CLR.fa.Long.fa into a single file. We then employ NUCmer with the default

setting to perform sequence alignment (one vs. all-minus-one). We select the longest sequence among contigs and CPBLRs as a representative

sequence and remove the contigs and CPBLRs whose major portion of sequence (>95% alignment rate and sequence identity) is found in the

representative sequence. The longest sequence of the remaining sequences is iteratively selected as a subsequent representative sequence until no

sequence remained. The IDs of the removed sequences can be found in explained.txt. The representative contigs and CPBLRs are stored in the

file of Merge_Contigs.fa.

For example, as data shown in the file of explained.txt:

RefID: ref_50_203438_trimmed_1_len:203435

clr_3130_len:4055 clr_7724_len:1032 clr_8616_len:767 clr_8015_len:931......(over 380 IDs)

We firstly selected the longest sequence ref_50_203438_trimmed_1_len:203435 as a representative sequence and performed sequence alignment

for getting the explained information so as to remove the explained sequences (i.e., clr_3130_len:4055 clr_7724_len:1032 clr_8616_len:767

clr_8015_len:931....). The second longest sequence ref_77_222518_split_2_len:194038 was selected as a representative sequence and

performed sequence alignment for getting the explained information and so on and so forth.

Step3: Iterative connection

Input: Merge_Contigs.fa in step 2

---Strict bridging---

The representative sequences were self-aligned with blastn (all vs. all) to identify end-to-end overlaps. The blast results are saved in

My_result.txt. If a representative sequence uniquely bridged either two representative contigs or one representative contig and one CPBLR, the

representative sequence was selected as a candidate for connection. Here, we defined "strict bridging" for the unique bridge whose ends were

aligned to a single end of the sequence of choice, i.e. the length of end-to-end alignment was maximal and at least 1.25-fold larger than the

secondary choice.

To demonstrate "strict bridging", we selected two CPBLRs as examples:

BLASTN 2.2.25+

Query: clr_72_len:9111

Database: Side_DB

Fields: query id, subject id, q. start, q. end, s. start, s. end, alignment length, evalue, score

6 hits found

clr_72_len:9111 clr_72_len:9111 1 9111 1 9111 9111 0.0 9111

clr_72_len:9111 ref_3_35361_trimmed_1_len:35359 2 6622 6621 1 6621 0.0 6621

clr_72_len:9111 ref_79_115397_split_4_len:71291 6616 9111 71291 68796 2496 0.0 2496

clr_72_len:9111 clr_653_len:6606 3551 3603 73 21 53 4e-13 41

clr_72_len:9111 clr_141_len:8437 3551 3603 1124 1176 53 4e-13 41

clr_72_len:9111 ref_31_8924_trimmed_1_len:8921 3551 3603 4837 4785 53 4e-13 41

We selected clr_72_len:9111 as a candidate for connection between ref_3_35361_trimmed_1_len:35359 and ref_79_115397_split_4_len:71291,

because its ends are uniquely aligned to these two sequence ends, respectively. Similar bridging candidates are listed in

Filtered_1_Bridges_clr_as_Bridge.txt.

One the contrary, the following CPBLR (clr_194_len:8030) was not selected for strict bridging because we request that the length of end-to-end

alignment is maximal and at least 1.25-fold larger than the secondary choice.

BLASTN 2.2.25+

Query: clr_194_len:8030

Database: Side_DB

Fields: query id, subject id, q. start, q. end, s. start, s. end, alignment length, evalue, score

31 hits found

clr_194_len:8030 clr_194_len:8030 1 8030 1 8030 8030 0.0 8030

clr_194_len:8030 ref_24_179382_split_1_len:45827 1 7610 7610 1 7610 0.0 7607 # the maximal front-end alignment

clr_194_len:8030 clr_361_len:7395 577 5248 1 4672 4672 0.0 4672

clr_194_len:8030 clr_1350_len:5451 3359 8030 2 4673 4672 0.0 4669 # the maximal back-end alignment

clr_194_len:8030 clr_811_len:6257 3655 8030 1 4376 4376 0.0 4373 # the second back-end alignment, 4669/4373<1.25

clr_194_len:8030 clr_828_len:6229 5877 8030 6229 4076 2154 0.0 2151

......

Although the front end of clr_194_len:8030 uniquely aligns to ref_24_179382_split_1_len:45827, its back end ambiguously aligns to multiple

sequences. Such a sequence was not selected for connection and its blast results are listed in Bad_Bridge.txt.

The candidate CPBLRs were ordered by length from longest to shortest and bridged two adjacent sequences

(Filtered_1_Bridges_clr_as_Bridge.txt). The connection information are saved in 2_aliases.txt. Please note that we connect two representative

contigs prior to connect one representative contig with one representative CPBLR.

If the two adjacent sequences bridged by a CPBLR overlapped, the overlapping sequence of the shorter segment was trimmed to connect with

the other sequence. If a CPBLR spanned a gap between two adjacent sequences, the gap was filled with the corresponding sequence of CPBLR.

For examples,

Overlapped sequences were connected by a CPBLR:

Connected_Contig_1_1 from: ref_3_35361_trimmed_1_len:35359 clr_72_len:9111 ref_79_115397_split_4_len:71291 [see 2_aliases.txt]

In Filtered_1_Bridges_clr_as_Bridge.txt

clr_72_len:9111 ref_3_35361_trimmed_1_len:35359 2 6622 6621 1 6621 0.0 6621

clr_72_len:9111 ref_79_115397_split_4_len:71291 6616 9111 71291 68796 2496 0.0 2496

Therefore, Patch produced Connected_Contig_1_1_len:106644 in 2_Contigs_B.fa.

A sequence gap between two adjacent sequences was filled by a CPBLR:

ref_3_35361_trimmed_1_len:35359

Connected_Contig_1_1_len:106644

2 6622

6621 1

6616 9111

 71291 68796
ref_79_115397_split_4_len:71291

clr_72_len:9111

Connected_Contig_1_2 from: ref_120_133699_trimmed_1_len:133696 clr_98_len:8801 ref_4_55928_trimmed_1_len:55924 [see 2_aliases.txt]

In Filtered_1_Bridges_clr_as_Bridge.txt

clr_98_len:8801 ref_120_133699_trimmed_1_len:133696 1 3677 3677 1 3677 0.0 3674

clr_98_len:8801 ref_4_55928_trimmed_1_len:55924 3706 8801 55924 50829 5096 0.0 5096

Therefore, Patch produced Connected_Contig_1_2_len:189648 in 2_Contigs_B.fa.

This process (strict bridging) was performed iteratively until no CPBLR remained for bridging. We then employed the connected sequences as

candidates for connection and performed strict bridging iteratively. As can be seen in the fold of strict_bridging_5, no CPBLR can be used for

bridging, we therefore take contigs as candidates for connection (Filtered_1_Bridges_assembler_ctg_as_Bridge.txt).

---Easy bridging---

At the end of strict bridging, we prepared a new list of CPBLR for "easy bridging". If a CPBLR are end-to-end overlapping with only two

individual contig sequences, we keep this CPBLR. Otherwise we remove such a CPBLR and get its explaining sequences, if any, based on the

file of explained.txt in Step 2.

For examples, as shown in Bad_Bridge.txt (under the fold of strict_bridging_8)

clr_468_len:7059 clr_534_len:6882 1 5840 6020 182 5840 0.0 5836

clr_468_len:7059 Connected_Contig_7_1_len:972994 1 5383 967612 972994 5383 0.0 5383

clr_98_len:8801

ref_120_133699_trimmed_1_len:133696

1 3677

3677 1

ref_4_55928_trimmed_1_len:55924

3706 8801

55924 50829

Connected_Contig_1_2_len:189648

clr_468_len:7059 ref_82_226124_split_1_len:10811 5498 7059 10811 9250 1562 0.0 1562

We found that clr_468_len:7059 can be used to bridge Connected_Contig_7_1_len:972994 and ref_82_226124_split_1_len:10811 without

considering the interference of clr_534_len:6882, such a CPBLR was therefore kept for the following analysis (easy bridging).

On the contrary, we found the front and back ends of clr_916_len:6071 ambiguously align to multiple sequences and would like to remove this

CPBLR. We traced back to the file of explained.txt in Step 2 and got its explaining CPBLRs (e.g., clr_4803_len:2618 and clr_6558_len:1494)

back.

clr_916_len:6071 ref_72_8072_trimmed_1_len:8047 1 1735 6313 8047 1735 0.0 1735

clr_916_len:6071 Connected_Contig_6_1_len:294491 1 777 293588 294364 777 0.0 777

clr_916_len:6071 Connected_Contig_3_2_len:52537 3951 6071 52537 50417 2121 0.0 2121

clr_916_len:6071 Connected_Contig_5_3_len:213812 4936 6071 213812 212677 1136 0.0 1136

clr_916_len:6071 Connected_Contig_5_15_len:69896 5203 6071 1 869 869 0.0 869

clr_916_len:6071 Connected_Contig_5_12_len:169026 5839 6071 1 233 233 2e-118 230

We therefore produced a file named Connected_Result_1.fa in the fold of easy_bridging_A.

Prior to perform easy bridge, the sequences of Connected_Result_1.fa were self-aligned by blastn to estimate the maximal size of the repetitive

regions. Possible repetitive regions were stored in Repeat_Region.txt, and the maximal size was estimated (2879) and recorded in RR.txt.

We examined each of the CPBLRs in Connected_Result_1.fa to determine whether they were capable of bridging two sequences (not bridging

CPBLRs), i.e. both ends of a CPBLR are end-to-end overlapping with only two individual contig sequences. Such a CPBLR was selected as a

candidate for easy bridging if its length was greater than the maximum size of the repetitive regions. The candidate CPBLRs were ordered by

length from longest to shortest and bridged two adjacent sequences (keep_clr_N.txt), and the connection information are saved in aliases_N.txt.

The process of easy bridging was also performed iteratively.

---Overlapping---

After the strict and easy bridging processes, the connected sequences were self-aligned by blastn. If two sequences comprised a proper

end-to-end overlap and the overlapping length was greater than the maximum size of the repetitive regions, they were connected. We have

analyzed the end-to-end overlapping conditions and divided into Extend_h.txt and Extend_t.txt. The overlapping information are saved in

Extend_info.

For example,

Connected_Contig_5_7_len:121174 Connected_Contig_5_15_len:69896 1 3095 66802 69896 3095 0.0 3095 [see Extend_h.txt]

A contig Overlap_1_1_len:187975 was therefore produced by connecting the overlapping sequences Connected_Contig_5_7_len:121174 and

Connected_Contig_5_15_len:69896. [see Extend_info]

---Easy bridging---

Finally, an alternative easy-bridging process was iteratively performed to ensure that each candidate CPBLR for bridging had been used.

In this case, no further CPBLR can be used in the process of easy_bridging_B. The whole process was ended when Connected_Results_N.fa was

identical to Connected_Results_N-1.fa. A file named patched.ctg.fa was accordingly produced as the end product of Patch.

Through the whole process of Patch, the abyss-assembled contigs (left figure) were upgraded to the patched contigs (right figure). Obviously,

most of the dark-grey segments (representing overlaps between contigs) can be eliminated by the support of spanning long reads, however, some

of the gaps (white segments in the inner circle) cannot be filled because of repetitive sequences.

