
1 Additional Details on the SynTReN Datasets

The measures considered for the construction of the similarity (or distance) matrix are applied to the generated expression
data. They can be categorized into three different groups, based on the nature of the input data structure: measures on
vectors, random variables, and symbolic dynamics. Measures operating on vectors include classical distance measures, such
as Euclidean, Manhattan and L10Norm [5], and all the three variants (i.e., Asymmetric, Symmetric1 and Symmetric2) of
Dynamic Time Warping proposed by [15], leading to a total of 6 measures. Measures operating on random variables are
based on correlation coefficients and mutual information. We consider 3 correlation coefficients, that is, Pearson, Spearman
and Kendall. Ee compute mutual information with either equal width or equal frequency discretization, by adopting either
shrinkage or optimized maximum likelihood bins estimation [22]. Orthogonally, we also investigate the possibility of gene
expression profiles to be represented as coarse-grained variables by adopting the Kolmogorov-Sinai entropy to compute
mutual information [31]. In sum, by considering all the possible combinations along the three dimensions, we obtain 8
different measures based on mutual information. Finally, measures that operate on symbolic dynamics come from computer
science: These are characterized by a qualitative description of gene expression profiles. In our study, we use 1) the symbolic
sequence similarity [10]; 2) the qualitative distance measure [27]; 3)-4) the mutual information computed on the symbol
vectors by optimized maximum likelihood with either equal frequency or equal width discretization; 5)-6) the mean between
the symbolic sequence similarity and the mutual information (equal frequency/equal width). In summary, we consider 6
measures operating on symbolic dynamics.

As scoring schemes, we used Identity (ID) which does not apply any correction, the Context Likelihood of Related-
ness (CLR) [6], the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [18], the Maximum Rele-
vance/minimum redundancy NETwork (MRNET) [20] and the Asymmetric WEighting (AWE) [10]. Since AWE is able to
identify the direction of the regulation, we also considered its use without applying the time shifting technique (AWE w/o
TS).

2 Additional Details on the Dream5 Datasets

The scores used by our algorithm are obtained with all the DREAM5 participants’ methods. Methods are grouped in six
different groups, based on the principle and methodology of scores derivation [17].

Regression methods are based on learning a regression model or a combination of such models. In the context of gene
network reconstruction, fitted parameters describe the contribution of each transcription factor in the regulation of the
target gene. The learning process is repeated for each gene in the dataset considered as target gene. The core of a method
that belongs to this group can employ different approaches for learning or fitting a regression model, with or without
resampling. In particular, the considered methods belonging to this category are: 1) Trustful Inference of Gene REgulation
using Stability Selection (TIGRESS) using the Lasso method [26] with resampling, where the regularization parameter selects
five transcription factors per target gene in each bootstrap sample [9]; 2) Combination of steady state and time series data
in disjoint groups, using the group Lasso method with bootstrapping [34]; 3) Combination of Lasso and Bayesian linear
regression [21] models learned using Reversible Jump Markov Chain [7] with Monte Carlo simulations [14]; 4) Lasso method
for learning a sparse linear regression model with bootstraping [19]; 5) Lasso method for learning a sparse linear regression
model using area under the stability selection curve for data resampling [19]; 6) Application of the Lasso toolbox GENLAB
using standard parameters [29]; 7) Lasso models combined by the maximum regularization parameter that selects a given edge
for the first time [19]; 8) Linear regression model that determines the contribution of transcription factors to the expression
of target genes [17].

Mutual Information methods work on discretized points of gene expression profiles. First, a discretization step is per-
formed, which is followed by a ranking of the edges based on variants of mutual information. Finally, a filter is used to
remove causal relationships with low scores. In particular, the considered methods belonging to this category are: 1) Context
likelihood of relatedness (CLR) with spline estimation of mutual information. Causal relationships are filtered by likelihood
score, based on its local network context [6]; 2) Simple approach that empathizes the discretization of expression values [4]; 3)
Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) with kernel estimation of mutual information.
The last step consists of data processing inequality to identify direct interactions [18]; 4) Fast kernel-based estimation of
mutual information with Bayesian Local Causal Discovery (BLCD) [16] and Markov blanket (HITON-PC) algorithm [2] to
identify direct interactions; 5) Combination of Pearson correlation coefficient and fast kernel-based estimation of mutual
information with Bayesian Local Causal Discovery (BLCD) [16] and Markov blanket (HITON-PC) algorithm [2] to identify
direct interactions.

Correlation-based methods exploit variants of correlation coefficients in order to rank the relevance of identified links. The
considered methods belonging to this category are: 1) Absolute value of Pearson’s correlation coefficient [4]; 2) Signed value
of Pearson’s correlation coefficient [4]; 3) Signed value of Spearmans correlation coefficient [4].
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Bayesian networks. Methods based on this model build a dependency network and optimize the posterior probabilities
of existence of each link by exploiting different heuristic searches. The considered methods belonging to this category
are: 1) Bayesian networks using likelihood-based criteria (CATNET), which perform an exhaustive search for fixed node
orders and stochastic search of optimal orders via a simulated annealing algorithm, with aggregation of three runs [3]; 2)
Bayesian networks using likelihood-based criteria (CATNET), which are based on an exhaustive search for fixed node orders
and stochastic search of optimal orders via simulated annealing algorithm [3]; 3) Max-Min Parent and Children algorithm
(MMPC) with bootstrapped datasets [28]; 4) Markov blanket algorithm (HITON-PC) [2] with bootstrapped datasets [1]; 5)
Markov boundary induction algorithm (TIE*) with bootstrapped datasets [25]; 6) Models transcription factor perturbation
data and time series using dynamic Bayesian networks [17].

Other approaches that reconstruct networks by exploiting heterogeneous and novel methods. The considered methods
belonging to this category are described in the following: 1) GENIE3: A random forest is trained to predict target gene
expression. Putative transcription factors are selected as tree nodes if they consistently reduce the variance of the target
[11]; 2) Co-dependencies between transcription factors and target genes are detected by the non-linear correlation coefficient
η2 (two-way ANOVA). Transcription factor perturbation data are up-weighted [13]; 3) Transcription factors are selected by
maximizing the conditional entropy for target genes, which are represented as Boolean vectors with probabilities, in order to
avoid discretization [12]; 4) Transcription factors are preselected from transcription factor perturbation data or by exploiting
Pearson’s correlation and then tested by iterative Bayesian Model Averaging (BMA) [32]; 5) A Gaussian noise model is used
to estimate whether the expression of a target gene changes in transcription factor perturbation measurements [33]; 6) Target
genes are clustered by exploiting Pearson’s correlation coefficient. A genetic algorithm is adopted to learn the structure of a
neural network, whose parameters are learned by exploiting the back-propagation algorithm [23]; 7) Data are discretized by
exploiting Gaussian mixture models and a clustering algorithm (i.e., k-means). Interactions are detected by the generalized
logical network modeling (χ2 test) [24]; 8) The χ2 test is applied to evaluate the probability of a shift between transcription
factor and target gene expression in transcription factor perturbation experiments [24].

Meta predictors combine different approaches for network reconstruction. In particular, the considered methods belonging
to this category consider the following approaches: 1) Z-scores for target genes in transcription factor knockout data, time-
lagged CLR for time series, and linear ordinary differential equation models constrained by Lasso (Inferelator) in combination
with a resampling approach [8]; 2) Pearson’s correlation, mutual information and CLR with average ranking aggregation [17];
3) Computation of target gene responses in transcription factor knockout data, application of full-order, partial correlation
and transcription factor-target co-deviation analysis [17]; 4) CLR filtered by negative Pearson’s correlation coefficient, least
angle regression (LARS) of time series, and transcription factor perturbation data and combination by z-scores [30]; 5)
Pearson’s correlation coefficient, differential expression (limma) and time series analysis in combination with Näıve Bayes
[17].
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