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Supplementary Note 1. Coupled electron-phonon Boltzmann equation 

The analysis based on coupled electron-phonon Boltzmann equation for the phonon 

drag effect has been given in previous work(1–3). We do not repeat the derivations 

but provide some necessary details to complete the computational formalism we 

propose. The coupled electron-phonon Boltzmann equation has been shown in the 

main text: 

0

*

0

*

( ) ( ) ( ) ( ) ( )
( ) ( )

( )

( ) ( ) ( ) ( )
( )

( )

e ph

e ph

f f f f f
T e

T E t

n n n n
T

T t

    
 



   













     
         

   


             

k k k k k
v k v k

k

q q q q
v q

q

 (S1) 

where f and N represent the distribution functions for electrons and phonons 

respectively, with equilibrium state described by 
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For electrons, the external driving forces include the electrochemical potential 

gradient   and temperature gradient T , while for phonons the only external 

driving force comes from the temperature gradient. The right-hand-side of Eq. (S1) 

describes the various scattering events experienced by electrons and phonons. 

 In equation (S1), we assume that all other scattering mechanisms except the 

electron-phonon interaction can be described by the mode-dependent relaxation time 

model, adding these contributions together according to Matthiessen’s rule. For 

electrons * ( ) k  describes the electron-impurity scattering. For phonons * ( ) q  

includes both phonon-phonon scattering and phonon-impurity scattering. The 

scattering rates due to the electron-phonon interaction can be obtained if we have the 

knowledge of the interaction matrix elements: 



3 
 

 

2

2

2

2

( , , ) (1 ) ( ) ( )

( , , ) ( 1) (1 ) ( ) ( )( ) 2

( , , ) (1 ) ( ) ( )

( , , ) (

e ph

g n f f E E

g n f f E Ef

t g n f f E E

g

      

      


      



  

  

  

 

 


 

      

        
 

        



q k k k k q

q k k k k q

q k k k k q

k k q k k q

k k q k k qk

k k q k k q

k k q

,

2

2

1)(1 ) ( ) ( )

( , , ) (1 ) ( ) ( )

( , , ) ( 1) (1 ) ( ) (( ) 2 1

2e ph

n f f E E

g n f f E E

g n f f E En

t

 

     

      

      


  

  

  



 

 

 



 
 
 
 
 
 
 
       

      

        
 

 


k q

q k k k k q

q k k k k q

q k k k k q

k k q

k k q k k q

k k q k k qq
2

,

2

)

( , , ) (1 ) ( ) ( )

( , , ) ( 1)(1 ) ( ) ( )

g n f f E E

g n f f E E

 
      

      

  

  


 

 











 
 
 
   

        
  
           


k k

q k k k k q

q k k k k q

k k q k k q

k k q k k q

 

with the electron-phonon interaction matrix element 
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In equation (S3), E k and E k
describes the energy of electron states, 

q
describes 

the phonon frequency and the two delta functions impose momentum and energy 

conservation respectively. In the formula for the electron-phonon interaction matrix 

element, 0m  is the mass of one unit cell, k  and k  describe the eigenstates 

of electrons, while V
q

 is the perturbing potential due to the ionic displacement 

corresponding to a phonon with wave vector q and branch number  . Note that for 

the scattering rate for phonons there is an extra 1/ 2 . This is because when k  and 

k  go over the Brillouin zone each 1 2k k  process is counted twice (let 1k k  

and 2
 k k  or vice versa). 

In equilibrium, all distribution functions take their equilibrium values. In this case, 

the scattering rates as shown in (S3) should vanish, because otherwise the state of the 

system will move away from the equilibrium (see Eq. (S1)). The lowest order 

approximation for Eq. (S3) comes by taking the first order deviation of the 

distribution functions, which gives rise to the widely-used linearized Boltzmann 

equation: 
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(S4) 

where the coefficients F and G only depends on the equilibrium distribution 

functions: 
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with 

 

   

   

2

2

2
( , , )

2
( , , )

g E E

g E E

   

   


  


  






        


         


k k q

k k q

k k q k k q

k k q k k q

  

denoting processes due to the absorption of a phonon 
q

 and the emission of a 

phonon, respectively. The first-order deviations 0f f f    
k k k

, 0f f f      
k k k

 

and 0n n n    
q q q

 characterize the non-equilibrium state of electrons and phonons. 

For normal electrical property calculations, the relaxation time approximation is often 

used. This approximation naturally arises if we assume that only the distribution of 

the initial state of the electron deviates from the equilibrium ( 0f  k  ) and that of 

the final electron state and of phonons remain at equilibrium ( 0, 0f n    
k q

), 

which is essentially the Bloch condition. In this case, the prefactor before f  k  can 

be defined as 1/ ( )e ph




k . The relaxation time ( )e ph




k  is what is usually called the 

electron-phonon relaxation time (for electrons), which determines the intrinsic 



5 
 

mobility of one material. We should also note that f 
k  is essentially neglected 

because the terms containing f 
k  sum up to approximately zero. In metals and for 

elastic scattering with impurities, this approximation is not valid and therefore an 

extra correction term (1 cos )  is often added to the electron-phonon relaxation 

time, which is called the momentum relaxation time(4). In semiconductors, however, 

it is proved, based on deformation potential models, that for nearly isotropic scattering, 

the neglect of f 
k  will not cause much difference(4). It has also been shown(5, 6) 

that without considering f 
k , good agreement for the electrical properties in silicon 

with experiments can be achieved, justifying the approximation that terms containing 

f 
k  can be neglected. 

 A more important perturbation term from equilibrium comes in the evaluation of the 

assumption 0n  
q . It is clear that this assumption makes non-equilibrium phonons 

have no effect on the electron system. When phonons are far away from equilibrium, 

assuming n 
q

 to be zero is no longer valid. These non-equilibrium phonons 

described by non-zero n 
q  

in the electron system (the last term in the first equation 

of (S4)) are responsible for the phonon drag effect. 

The above picture is based on the Seebeck effect, where a temperature gradient 

induces a phonon heat flow, which delivers part of its momenta to the electron system 

and gives rise to an extra current. Because of the Kelvin relation TS  , an extra 

contribution to the Seebeck coefficient also implies an extra Peltier coefficient. We 

want to further clarify the phonon drag effect in the context of the Peltier effect, 

which completes the picture and provides a straightforward derivation of equation (2) 

in the main text. For the Peltier effect, electrons are first driven by the electric field. 

These non-equilibrium electrons can then deliver their momenta to the phonon system 

through the first two terms of the right-hand-side in the second equation of (S4), 

which can be analogously called the “electron drag” effect but is essentially just the 

manifestation of the “phonon drag” effect in the Peltier effect. Therefore the phonon 
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system acquires an extra heat flow due to electron motions, which contributes to the 

Peltier coefficient. 

Now we still have one term left (the last term in the second equation of (S4)), which 

describes the scattering of phonons by equilibrium electrons. The prefactor of n 
q

 

in the phonon Boltzmann equation can be readily written as 1/ ( )e ph




q
 
(just as the 

definition of electron-phonon relaxation time for electrons). Apparently, higher 

doping concentrations lead to stronger scattering. We show in our paper that this 

higher doping concentration is responsible for the reduction of the phonon drag effect 

in heavily-doped samples compared to lightly-doped samples. Besides, this “electron 

drag” also accounts for some fraction of the reduction of the thermal conductivity in 

heavily-doped materials(7). 

Having discussed the meaning of each term in equation (S1) and (S4), now we want 

to make the inclusion of these scattering terms more compact by rearranging them. If 

we incorporate the first term of the right-hand-side in the first line of Eq. (S4) and the 

last term in the second line of Eq. (S4) into the relaxation times we have in (S1), the 

coupled Boltzmann equation now becomes 
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where the relaxation times also include the electron scattering by equilibrium phonons 

( )eph

 k  as well as the phonon scattering by equilibrium electrons ( )eph

 q : 
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with 
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and the remaining terms describe the coupling between non-equilibrium states in 

electron and phonon systems. 
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Supplementary Note 2. Derivation of the phonon drag Seebeck coefficient 

We have above derived the coupled electron-phonon Boltzmann equation in a 

compact form as shown in Eq. (S6). The electron relaxation time ( ) k  incorporates 

electron-impurity scattering and electron scattering by equilibrium phonons, while the 

phonon relaxation time ( ) q  contains phonon-phonon interaction, phonon-impurity 

scattering and phonon scattering by equilibrium electrons. The coupling through the 

non-equilibrium distribution is manifested by the collision terms that are not 

described by the relaxation times in Eq. (S6) and those collision terms are responsible 

for the phonon drag effect. In the main text we have derived the formalism based on 

the Seebeck picture (the temperature gradient generates a voltage difference), here we 

adopt the Peltier picture (the isothermal electric field produces a heat flow), which 

directly provides the phonon drag contribution from each phonon mode and also 

shows as an explicit proof of the Kelvin relation for the phonon drag effect. 

For the Peltier effect, a non-equilibrium distribution of electrons is generated first 

by the electric field, which will then drive the phonons away from equilibrium. The 

induced non-equilibrium phonons will now perturb the electrons in a second-order 

effect, which can be justified by the fact that the phonon drag phenomenon is found to 

have a small influence on the electrical conductivity(3). Therefore for the electron 

system, we can then assume that phonons are at equilibrium ( 0n  
q

 in the first line 

in (S6), and note that for the Peltier effect the phonon drag comes in through the last 

term in the second equation of (S6) instead of the last term in the first equation). This 

assumption exactly corresponds to the treatment we did in the main text to decouple 

the phonon transport from the electron system (i.e., assume 0f  k  in the phonon 

BTE) when deriving the phonon drag formula in the Seebeck picture. As a result, the 

electron distribution function can be directly written down using the relaxation time 

model 
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The energy current not only can come from the electrons, but also has its origin in 

the phonon heat flow. As we have discussed, in the isothermal condition the phonons 

acquire the momentum via the electron-phonon coupling shown by the last term in the 

second equation of (S6) and lead to an extra heat flow, which manifests the “phonon 

drag” effect. Given the electron distribution in (S6), the phonon Boltzmann equation 

now becomes 
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(S9) 

where the drift term vanishes because there is no temperature gradient. It can be 

readily solved to obtain the phonon distribution function 
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Considering the heat flow described by n  


  q q q

q

q v , we finally arrive at the 

phonon drag Peltier coefficient. 
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(S11) 

The comparison of Eq. (S11) with Eq. (2) in the main text clearly shows the Kelvin 

relation (
ph phTS  ). 
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Supplementary Note 3. Simulation details 

Knowing all the quantities in Eq. (2) of the main text, phonon drag Seebeck 

coefficient can be calculated on an equal electron and phonon Brillouin zone mesh. 

The total electron relaxation time 
k

, as we have elaborated, combines both 

electron-phonon scattering as well as the electron-impurity scattering, according to 

Matthiessen’s rule. Similarly, the phonon relaxation time  includes both 

phonon-phonon scattering, phonon-electron scattering and phonon-impurity scattering. 

Supplementary Table S1 shows the scattering mechanisms considered in this work 

and how they are treated. 

 

Supplementary Table S1. Scattering mechanisms for electrons and phonons 

Carrier Scattering Method 

Electron 
Electron-phonon DFT 

Electron-impurity Brooks-Herring model(4, 8) 

Phonon 

Phonon-phonon DFT 

Phonon-electron DFT 

Phonon-impurity Tamura model(9) 

 

The equilibrium properties of electrons and phonons are calculated from first 

principles using the QUANTUM ESPRESSO package(10) as described in Methods. 

Apart from these equilibrium properties, the key ingredients towards the first 

principles result are the quantities describing non-equilibrium properties. The electron 

phonon interaction matrix element 

1/2

0

( , , )
2

g V
m

 



 


 
     

 
q

q

k k q k k  is 

one of them and leads to the electron relaxation time(11). The stringent convergence 

demands the knowledge of both wavefunctions and perturbing potentials on an 

ultra-dense mesh, which only became accessible recently due to a Wannier 

basis-based interpolation scheme(12), allowing us to interpolate between the matrix 


q
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elements from the coarse meshs to produce finer meshes. Fine meshes up to 

100 100 100   have been tested for their convergence (for both electrons and 

phonons). To obtain the electron relaxation time due to the electron-phonon coupling, 

we use the Gaussian smearing method. The convergence with respect to the Gaussian 

broadening parameter has also been checked. A band energy cutoff (measured from 

the band edge) is used to select only electron states near the band edge because states 

far away from the band edge will not contribute to the transport. Besides, the phonon 

relaxation times are also required. They are essentially related to the anharmonic force 

constants(13, 14), which can be obtained from first principles calculations. For 

heavily-doped samples, electron-phonon scattering of phonons also needs to be 

considered for calculating the phonon relaxation time. This is solved following our 

previous paper(7). Knowing all of these quantities, equation (2) in the main text (or 

Eq. (S11)) can be calculated at points on an equal electron and phonon Brillouin zone 

mesh, for which the tetrahedra integration method is implemented(15). To further 

speed up the calculation, based on the knowledge that only phonons that are close to 

the zone center contribute to the phonon drag effect, we define a wave vector cutoff, 

above which phonons will not be considered for equation (1). This cutoff has been 

checked and the change of the result is within 1% of the original value. 

Supplementary Table S2 lists some of the key parameters we used in this calculation. 

 Supplementary figure S1 shows the resulting intrinsic mobility and thermal 

conductivity with respect to temperature as a test to the electron and phonon 

relaxation times we obtain. We note here that previous first principles calculation have 

obtained similar agreement with experiments for the electron mobility(5, 6, 16) and 

the thermal conductivity(13, 14) in silicon. As is seen in supplementary figure S1, 

overall the results agree well with the experimental data. There is some discrepancy 

for the hole mobility in p-type silicon near room temperature. This shows that the 

experimental samples experience more scattering and therefore bear a lower mobility. 

We speculate this to be a result of the split valence bands due to the spin-orbit 

coupling at valence band edge. We cannot confirm this point yet because the 

spin-orbit coupling is not included in this work. However, this discrepancy should not 
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affect the Seebeck coefficient calculation much, because we know from the 

Boltzmann description of the diffusive Seebeck coefficient and equation (1) that both 

of them will not be changed if the electron scattering time is just changed by a single 

constant factor. Therefore the results on p-type silicon can still give guidance in how 

to utilize the phonon drag effect in p-type materials. 

For heavily-doped silicon, impurity scattering needs to be considered. Due to the 

lack of accurate and computationally feasible methods for calculating the impurity 

scattering, the effects from impurities are described using empirical models – the 

Brooks-Herring model for electron-impurity scattering(4, 8) and the Tamura model 

for phonon-impurity scattering(9). It was known that the Brooks-Herring model tends 

to underestimate the electron impurity scattering rate(4). We found from our 

calculation that the electron-impurity scattering has a small influence on the phonon 

drag effect. This small influence lies in the fact that the Seebeck coefficient essentially 

represents the ratio of the temperature-gradient induced current to the electric-field 

driven current. When the electron relaxation time is reduced, both of them are 

weakened and therefore the ratio between them is less affected. The Tamura model(9) 

is used to examine the effect of the ionized impurity scattering on the phonon drag 

effect, where the mass difference ratio /M M  is chosen to be 1 to represent both 

the mass disorder and strain effect. We found from the calculation that 

phonon-ionized impurity scattering also only has small influences on the phonon drag 

effect. Based on the reasons given above, the use of empirical models in our 

calculation can be justified. 
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Supplementary Table S2. Parameters used in determining the electron and phonon 

relaxation times as well as in the calculation of the phonon drag effect. The parameter 

“ a ” in the last column is the lattice constant of silicon. 

Quantities 

required 

Electron 

relaxation 

time 

Phonon-phonon 

relaxation time 

Electron-phonon 

scattering of 

phonons 

Phonon drag 

effect 

k-mesh 

(electron) 
370 ~ 3100   370  370 ~ 3100  

q-mesh  

(phonon) 
380  370 ~ 3100  370  370 ~ 3100  

Integration 

method 

(broadening 

parameter if any) 

Gaussian 

(0.002eV) 

Gaussian  

(1cm
-1

) 
Tetrahedra Tetrahedra 

Energy / 

wavevector ( q ) 

cutoff 

0.5 eV q :
2

(0.2 2)
a


 1.0 eV 

energy: 0.5eV 

q :
2

(0.2 2)
a


 

Nearest neighbor 

considered in the 

force constant 

fitting(13) 

 

2
nd

 force constant 

(harmonic): 7  

3
rd

 force constant 

(anharmonic): 1 
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Supplementary Note 4. Electron mode contribution to phonon drag 

Here we show the mode-specific contributions to the phonon drag Seebeck 

coefficient as well as the electrical conductivity and diffusive Seebeck coefficient 

from the electron side. This provides us the knowledge of what portion of electrons 

contributes to these transport properties and especially the phonon drag effect most 

notably, which will be used when we discuss the usage of nanoclusters to selectively 

scatter phonons. Equation (2) of the main text directly presents the phonon 

mode-specific contribution to the phonon drag (term inside the bracket). For the 

electrons, we can similarly combine all the terms that are labeled with the same 

electron wave vector k and band number   in the summation. The result is given in 

supplementary figure S4 for the lightly-doped n-type silicon with a doping 

concentration of 10
14

 cm
-3

. 

In general, we see that at the same temperature the accumulated contribution curves 

for the three physical quantities (electrical conductivity, diffusive Seebeck coefficient 

and phonon drag Seebeck coefficient) almost overlap. This is because the Fermi-Dirac 

distribution, which modifies the population of the electrons, changes more strongly 

with the electron states compared to other properties such as scattering rates, and 

essentially confines the electron states that are important for transport properties to a 

small region near the band edge. Therefore we see a general monotonically-increasing 

accumulated contribution curve. To be more specific, we see in supplementary figure 

S4a that, when temperature decreases, the curves move towards the band edge. This is 

a result of the temperature characteristics of Fermi-Dirac distribution function, which 

decreases more rapidly with energy as temperature decreases. As a result, the 

electrons that participate in the transport are more confined to the band edge at lower 

temperatures. At 300K, most electron states that are important for the transport 

properties are located within 0.2eV from the band edge. Because electrons are 

confined to the band edge, which is made up of six equivalent electron pockets, and 

the conduction band minimum corresponds to a wavelength of 0.67nm, significant 

contributions to the transport properties should come from electrons with wavelength 
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around 0.67nm. In supplementary figure S4b, indeed we see that most of the 

contributions come from electrons with wavelength between 0.6nm and 0.7nm. At 

lower temperatures, the curve becomes slightly narrower, and the reason is the same 

as before: electrons become more confined to the band edge and the reciprocal space 

they occupy then shrinks. In terms of the electron mean free path, Supplementary 

figure S4c indicates that, electrons at 300K have mean free paths between 20nm and 

80nm. The mean free path increases as temperature decreases, and at 100K the 

majority of electrons have mean free paths around 100nm~300nm. We should note 

that these plots are obtained for a lightly-doped silicon. For the heavily-doped silicon, 

the characteristics of the energy-dependence(5) and wavelength-dependence will 

remain the same, meaning that electrons involved in the transport process are still 

confined within ~0.2eV from the band edge and have wavelengths around 

0.6nm~0.7nm, because the qualitative argument given above does not change. In 

comparison, mean free paths of electrons will decrease due to the impurity scattering, 

and therefore the mean free path accumulated curve will move towards the left. For 

example, it was known that for the n-type silicon with 10
19

 cm
-3

 doping concentration, 

the electrons have mean free paths below 20nm within the temperature range of 

100K~300K(5). 
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Supplementary Note 5. Nanocluster scattering as a phonon frequency filter 

Here we examine the nanocluster scattering to effectively scatter high-frequency 

phonons. Nanoclusters are clusters that have impurity atoms different from the host 

atoms with sizes ranging from sub-nanometer to a few nanometers. One extreme case 

of the nanocluster is a single impurity atom embedded in the host, for which the 

theoretical model developed by Tamura can be used to estimate the phonon-impurity 

scattering(9). For clusters that contain more than one impurity atom, there has been 

development of first principles approach based on Green’s function calculation(17, 

18), which can provide more accurate results. For simplicity, we will not use such a 

rigorous method to describe the nanocluster scattering. Instead, we use an analytical 

formula(17) generalized from the Tamura model for the description of the nanocluster 

scattering effect. In the Born approximation, it can be shown that the 

phonon-nanocluster scattering rate is 

2

1 2 *( , ) ( )
12

imp

M
f D

N M
 


     

  
 

q qq  

(S12) 

 
2

2
* *( ) 6 ( , ) ( , )D S    

 

       

 

 
      

  
 q Δq q q

q

e q e q  

where N  is the total number of unit cells, f  is the volume fraction of the 

nanoclusters, M  is the mass difference of the impurity atom and the host atom, 

M  is the average mass of all the atoms, 
q

 describes the phonon frequency and 

( , ) e q  is the unit vector along the polarization of the atom labeled by   in the 

unit cell. Sq
 is the structure factor with the sum includes all the unit cells occupied 

by one nanocluster. 
*( )D 

q  can be regarded as a generalized phonon density of 

state. It can be shown that when the nanocluster contains only one impurity atom (the 

structure factor is one in this case), 
*( )D 

q  reduces to the normal phonon density 

of state, and as a result, Eq. (S12) is essentially the same as the Tamura model. The 

unit vectors along the polarizations of the atoms as well as the phonon frequencies are 
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obtained from first principle calculations. The mass fraction term 
M

M


 is chosen to 

be 1 to represent both mass disorder and force constant disorder. This is a typical 

number for alloys. For example, if the host is silicon, then the addition of germanium 

atoms act as impurities with a mass fraction of around 1.6. 

 We test nanocluster size up to 1nm (this is the equivalent diameter defined through 

the total volume of the unit cells contained in the nanocluster). For the value of 1nm, 

electron wavelengths are comparable to the nanoclusters size (see supplementary 

figure S4). We can use the geometric limit to estimate the upper bound for the 

electron-nanocluster scattering, which gives a corresponding mean free path of 

4
330nm

3
nanoparticle

r

f
   , where r  is the characteristic radius of the nanoparticle 

and chosen to be 0.5nm for estimation (volume fraction f  here is chosen to be 0.2%, 

which is the maximum value we set). For nanoclusters that are smaller, the geometric 

limit becomes smaller. However, the wavelengths are now large compared to the 

nanocluster sizes and enter into the Rayleigh scattering regime, where the scattering 

rate falls below the geometric limit. Therefore 
nanoparticle  should be on the order of 

300nm or even larger. From previous work on first principles calculation of silicon(5) 

we know that for the doping concentration of 10
19

 cm
-3

 the electron mean free paths 

are less than 20nm. The comparison with 
nanoparticle  indicates that the dominant 

scatterings for electrons still come from the phonons and dopants. Therefore the 

nanocluster scattering for electrons can be neglected and the electrical conductivity is 

barely affected. 
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Supplementary Note 6. A unified picture regarding the carrier concentration 

dependence of phonon drag 

For the theoretical understanding of the phonon drag, there have been two theories: 

one by Herring(1) stating that the phonon drag does not depend on the carrier 

concentration as long as the concentration is small, and the other provided by 

MacDonald(19) showing that the phonon drag magnitude should be inversely 

proportional to the carrier concentration. We think the difference is mainly due to the 

different carrier concentration regions that are examined. In the following, we will 

show that in fact these two arguments are consistent with each other and how our 

results can be put under such a unified picture. 

First we give a brief unified discussion on these two theories. Both theories 

consider the phonon drag as a momentum transfer from phonons to electrons, and 

consider its contribution to the Seebeck coefficient to be proportional to the extra 

momentum gain per electron, or 
p

S
n


 , where p  is the total momentum gain of 

the electron system and n  is the carrier concentration. Based on this picture, the 

carrier concentration not only directly modifies the phonon drag, but also changes the 

phonon drag through affecting the total momentum transfer. It can be further shown 

that p n   , where   is the averaged relaxation time of phonons that contribute 

to phonon drag (similar to Herring’s formula(1) but here we are considering Seebeck 

picture instead of Peltier picture). The momentum transfer depends on the carrier 

concentration mainly because the momentum transfer is limited by the available 

electron states that can couple to phonons. Higher carrier concentration implies a 

Fermi level closer to the conduction band (for n-type material) and therefore more 

electron populations. In fact, both the carrier concentration and the electron 

population depends on the same exponential term exp( / )f BE k T . Therefore we 

expect the momentum transfer to be proportional to n . Besides, the relaxation times 

of the phonons that couple to electrons and contribute to phonon drag are of primary 

importance because longer relaxation times would suggest that phonons can transfer 
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more momentum to the electrons while shorter relaxation times imply that the phonon 

momentum is more frequently destroyed before it can be transferred. Considering all 

these, the carrier concentration dependence of the phonon drag can be simplified to 

( )S n                            (S13) 

In lightly-doped semiconductors,   is mainly determined by intrinsic 

phonon-phonon scattering and therefore the phonon drag Seebeck coefficient does not 

depend on the carrier concentration (shown in Fig. S8). As the concentration becomes 

high,   starts to decrease due to the scattering of phonons by electrons, leading to 

the so-called “saturation” effect. The “saturation” effect in this case means the 

saturation of the total momentum that is transferred from phonons to the electron 

system ( constantp n    ). Because the electron concentration is still increasing, 

the average momentum gain per electron decreases. This leads to the reduction of the 

phonon drag and can be seen in supplementary figure S8. 

MacDonald(19) has used a more phenomenological model to explain the phonon 

drag, where the pressure on the electrons is generated due to the phonon heat flow. He 

proposed that the total momentum transfer should be proportional to the variation of 

the phonon’s energy with respect to the temperature: v

U
p c

T


  


. As a result, the 

phonon drag Seebeck coefficient will be inversely proportional to the carrier 

concentration ( vcp
S

n n


   ). This 1/ n  dependence however inherently has an 

assumption (19): the phonons are solely scattered by electrons, which makes the result 

only applicable to metals with high electron concentration. This can be understood by 

looking at equation (S13). When the carrier concentration is very high, the phonons 

that contribute to phonon drag (those with long wavelengths) are predominantly 

scattered by electrons. It has been shown that for electron-phonon scattering the 

averaged relaxation time of phonons is inversely proportional to the carrier 

concentration(7, 20) (This is true for nondegenerate case but only an approximation 

for dengerately-doped semiconductors). As a result, equation (S13) suggests that in 

the limit of degenerately-doped semiconductors, one has 
1

S
n

  . More 
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specifically, as the carrier concentration increases, the available electrons that can 

couple to phonons increase, while the phonons are more strongly scattered and have 

less momentum to transfer, making the total momentum transfer saturate. Therefore, 

Macdonald’s prediction can be viewed as a limiting case of our more general 

consideration (equation (S13)) when the carrier concentration becomes extremely 

high, and clearly equation (S13) connects the two theories from low and 

moderately-high carrier concentration to extremely high carrier concentration region. 

In supplementary figure S8 we redraw the phonon drag Seebeck coefficient with 

both log scales for Seebeck coefficient and carrier concentration. The carrier 

concentration dependence can be separated into three regions. At low carrier 

concentrations the phonon drag is a constant (represented by the green dashed line). 

As the carrier concentration increases, the phonon drag starts to decrease (“saturation” 

effect). If the carrier concentration further increases beyond 10
21

cm
-3

, we would 

expect the phonon drag starts to follow MacDonald’s prediction (1/ n  dependence, as 

represented by the blue dashed line) and may not benefit the zT enhancement. 

However, the maximum carrier concentration in our calculation is still in the 

transition region and the reduction of the phonon drag is not significant, therefore we 

observe a weaker carrier concentration dependence than the 1/ n  behavior. For the 

carrier concentration range we have examined, the MacDonald’s theory cannot be 

applied and this is also the reason why we can optimize the material for maximizing 

the phonon drag effect. 
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Supplementary Figure Legends 

 

 

 

Supplementary Figure S1. (a) Temperature dependence of the intrinsic mobility in 

n-type and p-type silicon compared with that of sufficiently pure samples(21) as well 

as (b) the thermal conductivity of pure silicon compared with the experiments(22). 

The intrinsic mobility is calculated assuming a carrier concentration of 10
14

 cm
-3

. 
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Supplementary Figure S2. Phonon drag Seebeck coefficient for (a) electrons and (b) 

holes in lightly-doped silicon. The open circles and squares are taken from the 

experiment(23), with the corresponding net doping concentration of  

for electrons and  for holes, respectively. Lines are first principles 

results assuming the same doping concentrations. Dotted lines represent the diffusive 

Seebeck coefficient while dash-and-dot lines represent the phonon drag contribution 

with respect to the temperature on a semilog plot. The phonon drag contribution 

increases dramatically as the temperature decreases and converges to the total 

Seebeck coefficient, shown by the dashed lines. The experimental data(23) with larger 

sample size and lower net doping concentration are chosen as comparison. 
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Supplementary Figure S3. Phonon scattering rates by phonons themselves and by 

electrons. The phonon-phonon scattering rate follows a 21/   trend for 

low-frequency phonons. The phonon-electron scattering only roughly follows a 

1/   because this scaling behavior is valid only for very low frequency phonons 

and does not consider the anisotropy of the energy bands(7). Nonetheless, it is clearly 

seen that below around 1THz, the phonon-electron scattering starts to dominate over 

the intrinsic phonon-phonon scattering. The calculation is carried out for the n-type 

silicon with a 10
19

 cm
-3

 doping concentration at 300K. 
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Supplementary Figure S4. Accumulated contribution to electrical conductivity, 

diffusive Seebeck coefficient and phonon drag Seebeck coefficient, with respect to (a) 

electron energy (measured from the conduction band edge), (b) electron wavelength 

and (c) electron mean free path. Physical quantities are labeled with different colors 

(blue for electrical conductivity, green for diffusive Seebeck coefficient and red for 

phonon drag Seebeck coefficient). In all three plots, solid curves describe results at 

300K, while dashed curves represent 200K and dotted lines 100K. The results are 

calculated assuming a doping concentration of 10
14

 cm
-3

. 
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Supplementary Figure S5. Phonon mode-specific accumulated contributions to the 

phonon drag Seebeck coefficient and the thermal conductivity with respect to the 

phonon wavelength. Solid lines show the contribution at 300K, while dashed lines are 

used at 200K and dotted lines at 100K. Green curves show results for the thermal 

conductivity. Red and blue curves represent results for phonon drag in n-type and 

p-type silicon, respectively. Clearly phonons that are significant in phonon drag 

typically have longer wavelengths. Besides, we can see that the spectral difference 

between the contributions of the phonon modes to the phonon drag Seebeck 

coefficient and to the thermal conductivity becomes larger at lower temperatures. 
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Supplementary Figure S6. (a) The enhancement of the factor 2 /S   as a function 

of doping concentration when phonon modes are selectively scattered and (b) the 

resulting zT enhancement assuming electrical conductivity is not affected at a doping 

concentration of 19 34 10 cm  in n-type silicon. In (a), solid lines represent the results 

where phonon drag is included and preferable phonon modes are chosen, while for the 

dashed lines it is assumed that phonon drag is neglected. The results examined in (a) 

assume that the thermal conductivity is reduced to 4W/(m K)  for all the curves. 

Without the phonon drag effect, the enhancement of 2 /S   is around 10, which 

barely changes from 300K to 200K, because the diffusion contribution to the Seebeck 

coefficient decreases while the thermal conductivity actually increases as the 

temperature decreases, which tend to cancel each other. The situation is different if the 

phonon drag effect is included. First, because the phonon drag magnitude is 

comparable to the diffusion contribution, the inclusion of phonon drag with selective 

phonon modes helps to boost 2 /S  . Furthermore, when the temperature is lowered, 

the phonon drag effect becomes even more pronounced and therefore makes the 

enhancement of 2 /S   even larger. The latter point is more clearly seen in (b), where 

we fix the doping concentration to be 19 34 10 cm  and vary the temperature. The 

enhancement of 2 /S   directly translates to the zT enhancement compared to the 

bulk doped silicon at same temperatures, reaching a value as large as ~70 at 100K. 
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Supplementary Figure S7. The enhancement of the thermoelectric figure of merit zT 

as volume fraction of nanoclusters using phonon frequency selectivity. The 

calculation is done for the n-type silicon with the doping concentration of 10
19

 cm
-3

 at 

200K. Curves labeled with phonon drag include the phonon drag contribution to the 

Seebeck coefficient while others neglect the phonon drag effect. It can be seen that, 

using 1nm size nanoclusters with a volume fraction of 0.2% at 200K, the 

enhancement can reach above 7, and the neglect of the phonon drag effect will reduce 

the Seebeck coefficient and therefore the enhancement as well. At the same volume 

fraction, nanoclusters with larger size scatter phonons more strongly. This fact is 

known for decades (2) and is utilized here to select low-frequency phonons. However, 

nanoclusters that are much larger will also significantly reduce the phonon drag effect. 

Therefore there will be an optimal choice for the size of the nanoclusters and our 

calculations show that this optimal size is around 1nm for silicon at a doping 

concentration of 10
19

 cm
-3
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Supplementary Figure S8. Carrier concentration dependence of phonon drag 

Seebeck coefficient in silicon at 300K in a log-log scale. The squares are taken from 

the experiment(23) while the simulation results are the same with that in Fig. 1. Here 

we add two dashed lines to represent the limiting cases of the carrier concentration 

dependence of the phonon drag: the constant behavior (Herring’s picture for 

semiconductors with low carrier concentration (1)) shown by the dashed green line 

and the 1/ n  behavior (Macdonald’s prediction for metals (19)) shown by the dashed 

blue line. 
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