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A Theoretical background

A.1 Dynamical network marker near critical transition point with small
noise

For a complex dynamical system with multiple variables or network, assume that we measure

the variables at different time points. In this section, we theoretically introduce several generic

properties of such a dynamical network when the system approaches a critical transition point.

Specifically, we derive the conditions to obtain dynamical network marker (DNM) in a general

system or dynamical network biomaker (DNB) in a biological system, which can characterize

the generic properties and predict the critical transition, based on bifurcation theory and center

manifold theory (6, 7).

We consider the following discrete-time dynamical system that represents the dynamical

evolution of a network:

Z(t+ 1) = f(Z(t);P ), (S1)

where Z(t) = (z1(t), ..., zn(t)) is an n-dimensional state vector or variables at time instant t,

while P = (p1, ..., ps) is a parameter vector or driving factors that represent slowly changing

factors. f : Rn ×Rs → Rn are generally nonlinear functions.

Furthermore, we assume that the following conditions hold for Eq.(S1).

1. Z̄ is a fixed point in system (S1) such that Z̄ = f(Z̄;P ).

2. There is a value Pc such that one or a pair of the eigenvalues of the Jacobian matrix

∂f(Z;Pc)
∂Z

∣∣∣
Z=Z̄

is equal to 1 in the modulus.

3. When P 6= Pc, the eigenvalues of (S1) are not always equal to 1 in the modulus.

These three assumptions with other transverse conditions (1) imply that the system under-

goes a phase change at Z̄ or a codimension-one bifurcation when P reaches the threshold Pc.
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From a mathematical perspective, the bifurcation is generic, i.e. almost all of the bifurcations

in a general system satisfy these conditions. It is notable that most of the systems described

by differential equations can be generally discretized and transformed into Eq.(S1), e.g., us-

ing methods such as the Euler scheme and the Poincaré section. Thus, we focus on difference

equations (S1) during our theoretical analysis in this section.

It is known that the dynamics of a nonlinear system is highly complex far before or after

a sudden transition; therefore, the state equations of systems are generally constructed in a

very high-dimensional space using a large number of variables and parameters (1–4, 15, 17).

However, if a system driven by known or unknown parameters approaches a critical point,

which is a very special phase during its dynamical evolution, it is theoretically guaranteed that

the system will eventually be constrained to one- or two-dimensional space (i.e., the center

manifold), which can be expressed in a simple form around a codimension-one bifurcation

point (5,6,15,17). This is generally guaranteed by the bifurcation theory and the center manifold

theory (5–8). Thus, we can detect the signal of any dynamical system only during this special

phase and not during other periods (i.e., neither the before-transition state nor the after-transition

state), which is part of the theoretical foundation of this study (15, 17).

For system (S1) near Z̄ and before P reaches Pc, we assume that the system is at a stable

fixed point Z̄, so all of the eigenvalues are within (0, 1) in the modulus. The parameter value Pc

when the state shift of the system occurs, is known as a bifurcation parameter value or a critical

transition value.

This theoretical result was derived based on consideration of the linearized system or equa-

tions for Eq.(S1) and the small noise perturbations near Z̄. Specifically, by introducing the new

variables Y (t) = (y1(t), ..., yn(t)) and a transformation matrix S, i.e.

Y (t) = S−1(Z(t)− Z̄),
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we have

Y (t+ 1) = ΛY (t) + ζ(t). (S2)

where Λ(P ) is the diagonalized matrix of ∂f(Z;P )
∂Z

∣∣∣
Z=Z̄

. ζ(t) = (ζ1(t), ..., ζn(t)) are small Gaus-

sian noises with zero means. We denote σi as the small standard deviation of ζi for all k. Without

any loss of generality, the diagonalized matrix Λ(P ) = diag(λ1(P ), ..., λn(P )) for each |λi| is

between 0 and 1. In view of the dominant eigenvalue (the largest eigenvalue in modulus), there

are two typical cases during the diagonalization process (15), i.e., the dominant eigenvalue is

real (including multiple real dominant eigenvalues), and the dominant eigenvalues are a pair of

complex conjugate values. When the modulus of the largest eigenvalue or eigenvalue pairs ap-

proaches 1, there are three generic codimension-one bifurcations of the system, corresponding

to these cases.

A.1.1 Dynamical network marker near saddle-node or period-doubling bifurcation point
with small noise

We first illustrate the case of real dominant eigenvalue. Without loss of generality, actually, it

is the diagonal case with real eigenvalues. For such a case, the critical point is the saddle-node

bifurcation if the largest eigenvalue approaches 1, while the critical point is the period-doubling

bifurcation if the largest eigenvalue approaches -1.

Among the eigenvalues of Λ, the largest one (in the modulus), say λ1, approaches 1 in the

modulus when parameter P → Pc. It should be noted that there may be more than one real

dominant eigenvalues (the case of multiple roots), for which the derivation is similar (15). Thus

we just discuss the case with a unique real dominant eigenvalue λ1, i.e., a generic case. The

eigenvalue λ1 characterizes the system’s rate of change around a fixed point and is known as

the dominant eigenvalue. The before-transition state corresponds to a period where |λ1| < 1,

whereas the pre-transition stage corresponds to the period with |λ1| → 1. Without loss of
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generality, we assume that the first variable y1 in Y corresponds to λ1, namely (y1, 0, ..., 0) is

the eigenvector of λ1.

Because Λ is a fully diagonalized matrix, we have the variance

Var(yi) =
κii

1− λ2
i

,

and the covariance

Cov(yi, yj) =
κij

1− λiλj
.

See (15, 17) for the detailed derivation. Hence when |λ1| → 1, Var(y1) → +∞. Note that

0 ≤ |λ1| < 1 before the critical transition. Other λi (i = 2, 3, ..., n) satisfy 0 ≤ |λi| < 1, and

Var(yi) approaches some positive bounded value.

With respect to the original state space, noting zi(k) = si1y1(k) + · · · + sinyn(k) + z̄i, the

variance is

Var(zi) = s2
i1Var(y1) +

n∑
k=2

s2
ikVar(yk) +

n∑
k,m=1,k 6=m

siksimCov(yk, ym)

= s2
i1

κ11

1− λ2
1

+
n∑
k=2

s2
ik

κkk
1− λ2

k

+
n∑

k,m=1,k 6=m

siksim
κkm

1− λkλm
.

When si1 6= 0, lim
|λ1|→1

Var(zi)→ +∞.

When si1 = 0, lim
|λ1|→1

Var(zi)→ Vi, where Vi is a bounded positive value.

As for the covariance and the correlation, we have

Cov(zi, zj)

= E((si1y1 + · · ·+ sinyn)(sj1y1 + · · ·+ sjnyn))

= si1sj1Var(y1) + · · ·+ sinsjnVar(yn) +
n∑

k,m=1,k 6=m

siksjmCov(yk, ym)

= si1sj1
κ11

1− λ2
1

+
n∑
k=2

siksjk
κkk

1− λ2
k

+
n∑

k,m=1,k 6=m

siksjm
κkm

1− λkλm
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When si1 6= 0 and sj1 6= 0, lim
|λ1|→1

Cov(zi, zj)→ +∞.

When si1 = 0 or sj1 = 0, lim
|λ1|→1

Cov(zi, zj)→ Cij , where Ci is a bounded value.

For Pearson’s correlation coefficient (PCC)

PCC(zi, zj) =
Cov(zi, zj)√

Var(zi)Var(zj)

=

si1sj1
κ11

1−λ21
+

n∑
k=2

siksjk
κkk

1−λ2k
+

n∑
k,m=1,k 6=m

siksjm
κkm

1−λkλm√√√√( s2i1κ11
1−λ21

+
n∑
k=2

s2ikκkk
1−λ2k

+
n∑

k,m=1,k 6=m

siksimκkm
1−λkλm

)(
s2j1κ11

1−λ21
+

n∑
k=2

s2jkκkk

1−λ2k
+

n∑
k,m=1,k 6=m

sjksjmκkm
1−λkλm

) .

When si1 6= 0 and sj1 = 0, lim
|λ1|→1

PCC(zi, zj)→ 0.

When si1 = 0 and sj1 = 0, lim
|λ1|→1

PCC(zi, zj)→ Pij , where Pij is a bounded value.

Hence, close to a fixed point, among the original variables Z = (z1, ..., zn) there is a dom-

inant group or a DNM which is composed of variables zi = si1y1(k) + · · · with si1 6= 0. In

other words, each DNM member is directly related to y1. Therefore, for the case of a real dom-

inant eigenvalue, we can prove that there is only one dominant group (i.e., DNM) (see Fig.S1).

For this dominant group, we conclude that there are the following generic properties when the

system approaches a critical transition point or tipping point (15).

Theorem 1 We consider a stochastically perturbed linearized system for Eq.(S1). When P

approaches the saddle-node or period-doubling bifurcation point, there is a dominant group,

and the following results hold (also see Fig.S1).

• If both zi and zj are in the dominant group, then

|PCC(zi, zj)| → 1,

while SD(zi)→∞ and SD(zj)→∞;
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• if zi is in the dominant group but zj is not, then

PCC(zi, zj)→ 0,

while SD(zi)→∞, and SD(zj) approaches a bounded value;

• if neither zi nor zj is in the dominant group, then PCC(zi, zj) approaches a constant,

while both SD(zi) and SD(zj) approach bounded values,

where PCC is the Pearson’s correlation coefficient and SD is the standard deviation.

This dominant group of variables or elements is DNM. This theorem is the part of the

theoretical basis of detecting the pre-transition state for multi-variable systems with small noise.

The three conditions in the theorem are actually the criteria to detect the DNM (15). From the

first criterion, we know that in a DNM group, each variable is strongly fluctuated due to the

DNM nature in dynamics, and each pair of two variables in DNM are strongly correlated from

the second criterion. In other words, DNM is a group of variables with strongly collective

fluctuations, which indicates the emergence of the critical transition.

Actually, for saddle-node or period-doubling bifurcation, we have proved that there is only

one dominant group (i.e., DNM) in the SI of (15) (see Fig.S1). Note that the theorem holds for a

linearized system. The DNM is the subnetwork that makes the first move from one state toward

the other at the critical transition point; therefore, we refer to the DNM as the leading network in

this critical transition (17). For a general discrete-time dynamical system, all codimension-one

bifurcations are transition points, including saddle-node bifurcation (transcritical and pitchfork

bifurcation) if the dominant eigenvalue is equal to 1; period-doubling (or flip) bifurcation if

the dominant eigenvalue is equal to −1; and Neimark-Sacker bifurcation if there is a pair of

complex conjugate eigenvalues with modulus 1.
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Dominant group 

Non-dominant variables

|PCC| = 1

|PCC|<1

Dominant-group variable

Non-dominant variable

No edge PCC = 0

DNM

Non-DNM

Figure S1: | A sketch for the case of one dominant group (one DNM) just before the
critical transition. Under the assumption that the dominant eigenvalue is real, the sketch shows
a network with one dominant group when the system approaches the critical point, where the
orange nodes represent variables inside the dominant groups, while green nodes are outside.
Each edge represents the correlation between two variables. It can be seen that among orange
nodes in the dominant group, the correlations are strong. There is no correlation between a
dominant-group member and a non-dominant-group node. Note that, if the system is not near
the critical point, generally there are edges between nodes of the dominant variables and non-
dominant variables, which are all in one network.

Note that there is only one DNM for any co-dimension-one bifurcation, except Neimark-

Sacker bifurcation which corresponds to two DNMs with one quasi-DNM. For these two DN-

Ms, they are all with strong SDs, but lose correlations between them (except the quasi-DNM).

Actually, for a higher co-dimensional bifurcation, there are multiple DNMs, but we can obtain

the early-warning signals by detecting one of them. In particular, the saddle-node bifurcation

is a typical catastrophic bifurcation, whose prediction is of great importance, in contrast to the

period-doubling bifurcation that is a non-catastrophic bifurcation. Next, we study the properties

S9



of the Neimark-Sacker bifurcation.

A.1.2 Dynamical network marker near Neimark-Sacker bifurcation point with smal-
l noise

We further demonstrate the second case, i.e., the largest eigenvalues are a pair of complex

conjugate eigenvalues (including several pairs with the same modulus). For such a case, the

critical point is the Neimark-Sacker bifurcation point if the modulus of the largest eigenvalue

pair approaches 1. Note that Neimark-Sacker bifurcation is a non-catastrophic bifurcation. We

will show that there exist two dominant groups with one common-dominant group for such a

case.

Suppose that the dominant eigenvalues are a pair of complex conjugate values λ1 = a + ib

and λ2 = a− ib, with a2 + b2 < 1, b 6= 0. The modulus of other eigenvalues are smaller than

a2 + b2. Then for the block corresponding to the dominant eigenvalues, from Eq.(S2) there is[
y1(t+ 1)
y2(t+ 1)

]
=

[
a b
−b a

] [
y1(t)
y2(t)

]
+

[
ξ1(t)
ξ2(t)

]
where ξ1, ξ2 are white noise with mean 0, variance κ11, κ22, and covariance κ12. Then the

variances of y1 and y2 are as follows

Var(y1) = Var(y1(t+ 1)) = E(y2
1(t+ 1))

= E[(ay1(t) + by2(t) + ζ1(t))2]

= a2Var(y1) + b2Var(y2) + 2abE(y1y2) + κ11,

Var(y2) = Var(y2(t+ 1)) = E(y2
2(t+ 1))

= E[(−by1(t) + ay2(t) + ζ1(t))2]

= b2Var(y1) + a2Var(y2)− 2abE(y1y2) + κ22,
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and the covariance is

E(y1y2) = E(y1(t+ 1)y2(t+ 1))

= E((ay1(t) + by2(t) + ζ1(t))(−by1(t) + ay2(t) + ζ1(t)))

= −abVar(y1) + abVar(y2) + (a2 − b2)E(y1y2) + κ12.

By solving the above three equations, we obtain

Var(y1) =
((1− a2 − b2)(1− a2) + 2b2)κ11 + 2ab(1− a2 − b2)κ12 + b2(1 + a2 + b2)κ22

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)

=
2b2κ11 + b2(1 + a2 + b2)κ22

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+

(1− a2)κ11 + 2abκ12

((a− 1)2 + b2)((a+ 1)2 + b2)

Var(y2) =
b2(1 + a2 + b2)κ11 − 2ab(1− a2 − b2)κ12 + ((1− a2 − b2)(1− a2) + 2b2)κ22

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)

=
2b2κ22 + b2(1 + a2 + b2)κ11

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+

(1− a2)κ22 − 2abκ12

((a− 1)2 + b2)((a+ 1)2 + b2)

Cov(y1, y2) = E(y1y2) =
−abκ11 + (1− a2 + b2)κ12 + abκ22

((a− 1)2 + b2)((a+ 1)2 + b2)
.

It is clear that both lim
a2+b2→1

Var(y1) = +∞ and lim
a2+b2→1

Var(y2) = +∞while lim
a2+b2→1

Cov(y1y2)

remain bounded.

For other yi (i = 3, 4, ...), since their corresponding eigenvalues are not dominant ones, i.e.,

smaller than a2 + b2 in the modulus, lim
a2+b2→1

Var(yi) (i = 3, 4, ...) is bounded. There are also

no correlations between them.

Next, we analyze the variances and correlations for the original variables based on the above

results. For the original variables Z, through Z(k)− Z̄ = S Y (k), we have

zi(k) = si1y1(k) + si2y2(k) · · ·+ sinyn(k) + z̄i. (S3)
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Thus

Var(zi) = s2
i1Var(y1) + s2

i2Var(y2) +
n∑
k=3

s2
ikVar(yk)

+
n∑

k,m=1,k 6=m

siksimCov(yk, ym)

=
s2
i1[2b2κ11 + b2(1 + a2 + b2)κ22] + s2

i2[2b2κ22 + b2(1 + a2 + b2)κ11]

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+K ′i

=
2b2(s2

i1 + s2
i2)(κ11 + κ22)

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+Ki

where K ′i =
n∑
k=3

s2
ikVar(yk) +

n∑
k,m=1,k 6=m

siksimCov(yk, ym) and Ki are bounded values as a2 +

b2 → 1.

When si1 6= 0 or si2 6= 0, lim
a2+b2→1

Var(zi)→∞.

When both si1 = 0 and si2 = 0, lim
a2+b2→1

Var(zi)→ Ki, where Ki is a bounded value.
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As for the covariance between two original variables zi and zj

Cov(zi, zj)

= E((si1y1 + · · ·+ sinyn)(sj1y1 + · · ·+ sjnyn))

= si1sj1Var(y1) + si2sj2Var(y2) + si1sj2Cov(y1, y2) + si2sj1Cov(y1, y2)

+
n∑
k=3

siksjkVar(yk) +
n∑

k,m=2,k 6=m

siksjmCov(yk, ym)

= si1sj1

[
2b2κ11 + b2(1 + a2 + b2)κ22

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+

(1− a2)κ11 + 2abκ12

((a− 1)2 + b2)((a+ 1)2 + b2)

]
+ si2sj2

[
2b2κ22 + b2(1 + a2 + b2)κ11

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)
+

(1− a2)κ22 − 2abκ12

((a− 1)2 + b2)((a+ 1)2 + b2)

]
+ (si1sj2 + si2sj1)

−abκ11 + (1− a2 + b2)κ12 + abκ22

((a− 1)2 + b2)((a+ 1)2 + b2)

+
n∑
k=3

siksjkVar(yk) +
n∑

k,m=2,k 6=m

siksjmCov(yk, ym)

=

[
∆

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)

]
+ C ′ij

=

[
2b2(si1sj1 + si2sj2)(κ11 + κ22)

(1− a2 − b2)((a− 1)2 + b2)((a+ 1)2 + b2)

]
+ Cij

where ∆ = (si1sj1κ11 + si2sj2κ22)2b2 + (si1sj1κ22 + si2sj2κ11)b2(1 + a2 + b2), and C ′ij and Cij

are bounded values as a2 + b2 → 1.

As for the Pearson’s Correlation Coefficient (PCC)

PCC(zi, zj) =
Cov(zi, zj)√

Var(zi)Var(zj)

=

(
2b2(si1sj1+si2sj2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)

)
+ Cij√(

2b2(s2i1+s2i2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)
+Ki

)(
2b2(s2j1+s2j2)(κ11+κ22)

(1−a2−b2)((a−1)2+b2)((a+1)2+b2)
+Kj

) .
When si1 = si2 = sj1 = sj2 = 0, lim

a2+b2→1
PCC(zi, zj)→ Pij , where Pi is a bounded value.

When s2
i1 + s2

i2 6= 0 and s2
j1 + s2

j2 = 0, lim
a2+b2→1

PCC(zi, zj)→ 0.

When si1sj2 6= 0, and s2
i2 + s2

j1 = 0, lim
a2+b2→1

PCC(zi, zj)→ 0.
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When s2
i1 + s2

i2 6= 0, and s2
j1 + s2

j2 6= 0,

lim
a2+b2→1

|PCC(zi, zj)| = lim
a2+b2→1

|Cov(zi, zj)|√
Var(zi)Var(zj)

=
|(si1sj1κ11 + si2sj2κ22) + (si1sj1κ22 + si2sj2κ11)|√

((s2
i1κ11 + s2

i2κ22) + (s2
i1κ22 + s2

i2κ11))
(
(s2
j1κ11 + s2

j2κ22) + (s2
j1κ22 + s2

j2κ11)
)

=
|si1sj1 + si2sj2|√

s2
i1s

2
j1 + s2

i2s
2
j2 + s2

i1s
2
j2 + s2

i2s
2
j1

=
|si1sj1 + si2sj2|√

(si1sj1 + si2sj2)2 + (si1sj2 − si2sj1)2

It is seen that lim
a2+b2→1

|PCC(zi, zj)| = 1 only when si1sj2 = si2sj1. There are following

special cases.

• when si2sj2 6= 0 and si1 = sj1 = 0, lim
a2+b2→1

|PCC(zi, zj)| = 1;

• when si1sj1 6= 0 and si2 = sj2 = 0, lim
a2+b2→1

|PCC(zi, zj)| = 1;

More generally,

• when si1sj1 6= 0, s2
i1 >> s2

i2 and s2
j1 >> s2

j2 (i.e., si2
si1
≈ 0 and sj2

sj1
≈ 0),

lim
a2+b2→1

|PCC(zi, zj)| = 1.

It means that when two variables zi, zj are much more related to y1 than to y2, generally

they belong to y1-related dominant group.

• when si2sj2 6= 0, s2
i2 >> s2

i1 and s2
j2 >> s2

j1 (i.e., si1
si2
≈ 0 and sj1

sj2
≈ 0),

lim
a2+b2→1

|PCC(zi, zj)| = 1.

It means that when two variables zi, zj are much more related to y2 than to y1, generally

they belong to y2-related dominant group.

Therefore, there are the following critical results (also see Fig.S2).
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• If si1, sj1 6= 0 and si2, sj2 = 0, i.e., both zi, zj are only related to y1, then |PCC(zi, zj)| →

1 as a2 + b2 → 1.

More generally, if si1, sj1 6= 0, s2
i1 >> s2

i2 and s2
j1 >> s2

j2, then |PCC(zi, zj)| ≈ 1 as

a2 + b2 → 1.

• If si2, sj2 6= 0 and si1, sj1 = 0, i.e., both zi, zj are only related to y2, then |PCC(zi, zj)| →

1 as a2 + b2 → 1.

More generally, if si2, sj2 6= 0, s2
i2 >> s2

i1 and s2
j2 >> s2

j1, then |PCC(zi, zj)| ≈ 1 as

a2 + b2 → 1.

• if si1, sj2 6= 0 and si2, sj1 = 0, i.e., zi is related to y1 and zj is related to y2, then ∆ = 0

and PCC(zi, zj)→ 0, as a2 + b2 → 1;

• if si1, sj1, sj2 6= 0 and si2 = 0, i.e., zi is only related to y1 and zj is related to both y1 and

y2, then PCC(zi, zj)→ a ∈ (−1, 1), as a2 + b2 → 1;

• if si1, sj1, si2, sj2 6= 0, i.e., both zi, zj are related to y1 and y2, PCC(zi, zj)→ b ∈ (−1, 1)

as a2 + b2 → 1.

• if si1 = 0 and si2 = 0, i.e., zi has nothing to do with y1 and y2, then

sj1 6= 0 or sj2 6= 0, i.e., zj is related to y1 or y2, PCC(zi, zj)→ 0, as a2 + b2 → 1;

sj1 = 0 and sj2 = 0, i.e., zj has nothing to do with y1 and y2, and PCC(zi, zj) is a

bounded value in (−1, 1), as a2 + b2 → 1.

Therefore, there are two dominant groups respectively related to y1 and y2 (see Fig.S2). The

PCC between a y1-related member zi and a y2-related member zj is either 1 (if zi or zj is related

to y1 or y2, respectively) or bounded value (if zi and zj are related to y1 and y2 simultaneously).

To summarize and state these results clearly, we make the following definitions.
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• Dominant group 1: contains variables zi where si1 6= 0 and si2 = 0, i.e., variables are

only related to y1.

• Dominant group 2: contains variables zi where both si1 = 0 and si2 6= 0, i.e., variables

are only related to y2.

• Common-dominant group: contains variables zi where si1 6= 0 and si2 6= 0, i.e., variables

related to y1 and y2 simultaneously.

• Non-dominant group: contains variables zi where si1 = 0 and si2 = 0, i.e., variables have

no relation with y1 and y2.

Theorem 2 We consider a stochastically perturbed linearized system for Eq.(S1). When P

approaches the Neimark-Sacker bifurcation point, the following results hold (also see Fig.S2).

• If both zi and zj are in the same dominant group 1 or 2, then

|PCC(zi, zj)| → 1,

while SD(zi)→∞ and SD(zj)→∞;

• if zi is in dominant group 1 and zj in dominant group 2, then

PCC(zi, zj)→ 0,

while SD(zi)→∞, and SD(zj)→∞;

• if zi is in a dominant group (including dominant 1 or 2, common-dominant group) and zj

is in the non-dominant group, then

PCC(zi, zj)→ 0,

while SD(zi)→∞ and SD(zj) approaches a bounded value;
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Dominant group 1 Dominant group 2

Common-dominant group 

Non-dominant variables

DNM-1 DNM-2
Quasi-DNM

Non-DNM

Dominant-group 
variable

|PCC| = 1

|PCC| < 1

Non-dominant 
variable

No edge PCC = 0

Figure S2: | A sketch for the case of two dominant groups (two DNMs) with one common-
dominant group (one quasi-DNM) when the system approaches the critical point. With the
assumption of a pair of conjugate complex eigenvalues, there two dominant groups and one one
common-dominant group in a network just before a critical transition, where the orange nodes
represent variables inside the dominant groups, while green nodes are outside (belong to non-
dominant group). Each edge represents the correlation between two variables. It can be seen
that among orange nodes in a same dominant group 1 or 2, the correlations are strong. How-
ever, between dominant group 1 (or 2) and the common-dominant group, any two nodes show
relatively weak correlation. There is no correlation between dominant group 1 and dominant
group 2, and between a dominant-group member and a non-dominant variable. Note that, if the
system is not near the critical point, generally there are edges between nodes of the dominant
variables and non-dominant variables, which are all in one network.

• if zi is in the common dominant group, and zj is in dominant group k (k = 1, 2) or the

common dominant group, then |PCC(zi, zj)| approaches a constant less than 1, while

SD(zi)→∞, and SD(zj)→∞;

• if neither zi nor zj is in the dominant group, then |PCC(zi, zj)| approaches a constant
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less than 1, while both SD(zi) and SD(zj) approach bounded values;

where PCC is the Pearson’s correlation coefficient and SD is the standard deviation.

Remark 1 When both zi and zj are in the common dominant group, if their relations to y1 are

much more stronger than that to y2, then generally zi and zj are considered in dominant group

1. Contrarily, if the relations of zi and zj to y2 are much more stronger than that to y1, then

generally zi and zj are considered in dominant group 2.

Thus, the members in the common dominant group are related to y1 and y2 in a similar way,

e.g., zi and zj approximately satisfy si1/si2 ≈ sj1/sj2, and then lim
a2+b2→1

|PCC(zi, zj)| ≈ 1.

Note that the theorem holds for a linearized system.

A.1.3 Dynamical network marker for nonlinear systems near critical transition point
with small noise

We presented the critical properties of the linearized system for Eq.(S1). However, for a non-

linear system Eq.(S1) approaching the bifurcation point (the saddle-node or period-doubling

bifurcation point) or tipping point, we can observe directly obtain the properties of DNM based

on Theorem 1 as the following remark.

Remark 2 For nonlinear case Eq.(S1) near a bifurcation point (the saddle-node or period-

doubling bifurcation point), the dynamical behavior has the same tendency as that of the lin-

earized case, that is, when the system is approaching to the bifurcation point, both indices

SD and |PCC| in the DNM increase sharply, while |PCC| between DNM and other non-DNM

molecules decreases rapidly, i.e.,

1. If both zi and zj are in the DNM, then PCC(zi, zj) increases, while SD(zi) and SD(zj)

drastically increase;
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2. if zi is in the DNM but zj is not, then PCC(zi, zj) decreases, while SD(zi) drastically

increases, and there is no significant change for SD(zj);

3. if neither zi nor zj is in the DNM, then there are no significant changes on PCC(zi, zj),

SD(zi) and SD(zj).

For a nonlinear system Eq.(S1) approaching the Neimark-Sacker bifurcation point, we can

obtain the properties of DNMs based on Theorem 2 as the following remark. There are DNM 1,

DNM 2, quasi-DNM and non-DNM respectively corresponding to dominant group 1, dominant

group 2, common-dominant group and non-dominant group.

Remark 3 For nonlinear case Eq.(S1) near a Neimark-Sacker bifurcation point, the dynami-

cal behavior has the same tendency as that of the linearized case, that is, when the system is

approaching to the bifurcation point, both indices SD and |PCC| in DNM k (k = 1, 2) increase

sharply, However, for the three cases, i.e., any two members between DNM 1 and DNM 2, be-

tween DNM k (k = 1, 2) and non-DNM molecules, and between quasi-DNM and non-DNM

molecules, |PCC| decreases rapidly. On the other hand, for the other two cases, i.e., any t-

wo members in quasi-DNM, and between DNM k (k = 1, 2) and quasi-DNM, |PCC| has no

significant change. i.e.,

1. If both zi and zj are in DNM 1 (or DNM 2), then PCC(zi, zj) increases, while SD(zi)

and SD(zj) drastically increase;

2. if zi is in DNM 1 (or DNM 2, or quasi-DNM) but zj belongs to non-DNM, then PCC(zi, zj)

decreases, while SD(zi) drastically increases, and there is no significant change for

SD(zj);

3. if zi is in DNM 1 and zj is in DNM 2, then PCC(zi, zj) decreases, while both SD(zi) and

SD(zj) drastically increase;
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4. if zi is in DNM 1 (or DNM 2) and zj is in quasi-DNM, then there is no significant changes

on PCC(zi, zj), while both SD(zi) and SD(zj) drastically increase;

5. if both zi and zj are in quasi-DNM, then there is no significant changes on PCC(zi, zj),

while SD(zi) and SD(zj) drastically increase;

6. if neither i nor j is in any DNM, then there are no significant changes on PCC(zi, zj),

SD(zi) and SD(zj).

Note that for 5 in Remark 3, the members in the common dominant group are related to

y1 and y2 in a similar way, e.g., zi and zj approximately satisfy si1/si2 ≈ sj1/sj2, and thus

lim
a2+b2→1

|PCC(zi, zj)| ≈ 1. As indicated in the theoretical results, there is only one DNM

for any co-dimension-one bifurcation except Neimark-Sacker bifurcation which corresponds

to two DNMs with one quasi-DNM. For these two DNMs, they are all with strong SDs, but

lose correlations between them (except the quasi-DNM). Actually, for a higher co-dimensional

bifurcation, there are multiple DNMs, but we can obtain the early-warning signals by detecting

one of them. In particular, the saddle-node bifurcation is a typical catastrophic bifurcation,

whose prediction is of great importance, in contrast to the period-doubling bifurcation that is a

non-catastrophic bifurcation.

Based on above results, by using the data of either multiple-samples or time-course high-

throughput data for complex biological processes, we can identify the corresponding DNMs (or

DNBs: dynamical network biomarkers) based on the above conditions, e.g., by the algorithm in

the following section D or the algorithm described for DNB (15, 17). Clearly, this approach is

a model-free method, and DNM can be obtained only based on the data. Note that sample data

without time points can also be used to construct DNM based on the above conditions.

Critical slowing-down (CSD) (16) for single variables has been considered as a leading in-

dicator to predict the critical transitions provided that the system is fluctuated by small noise,
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which assumes the linear restoring force, i.e., small noise. However, CSD mainly character-

izes the dynamics of single-variables, in contrast to DNM which characterizes the dynamics of

multi-variables or a network. Actually, for a single-variable system, DNM is equivalent to the

principle of CSD.

A.2 Three states during a critical transition process

During a state transition, the dynamics of the system can be divided as three stages, as shown in

Fig.S1. Before-transition state corresponds to a stable equilibrium. In bio-medical systems, it

generally corresponds to a “normal state” or a stable period that the disease is under control. Pre-

transition state is the limit of the before-transition state. In bio-medical systems, it represents

a “pre-disease state” just before the critical transition to the disease state. After-transition state

corresponds to another stable equilibrium. In bio-medical systems, it represents a badly ill

stage or “disease state”, and is usually difficult to return to the before-transition state even by

big perturbations.

As shown in Table S1, for one-dimension system, the before-transition state and pre-transition

state are near each other with the similar values, whereas the after-transition state is significant-

ly different from the above two states. On the other hand, the variation (low) of the before-

transition state is significantly different from that (high) of the pre-transition state, but may

be similar to that (low) of the after-transition state. For multi-dimension system, the before-

transition state and pre-transition state are near each other with the similar values, whereas the

after-transition state is significantly different from the above two states. On the other hand,

the score (low) of the dynamical network marker of the before-transition state is significant-

ly different from that (high) of the pre-transition state, but may be similar to that (low) of the

after-transition state.
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a. Deterministic dynamical 
evolution (black line) of system 
state, and three states. In terms 

of state value (or average value), 
there is no significant difference 
between Before-transition state 
and After-transition state. But 

After-transition state is 
significantly different from 

other two states.

b. Stochastic dynamical 
evolution (blue line) of system 
states, and three states. In terms 
of variations of state value, there 

is a significant difference 
between Before-transition state 

and After-transition state.

Bifurcation 

point

Pre-transition state

Unstable 
equilibrium

Figure S3: | Definition of three states in a transition process. Before-transition state is a
stable equilibrium. Pre-transition state is the limit of the Before-transition state. After-transition
state is another stable equilibrium. (a). Deterministic dynamical evolution (black line) of system
state with time or parameter. (b). Stochastic dynamical evolution (blue line) of system states
with time or parameter. In terms of state value (i.e., when it is a deterministic system or we
only consider average value of a stochastic system), there is no significant difference between
before-transition state and pre-transition state. But after-transition state is significantly different
from other two states. In terms of variations of state value (when it is fluctuated by noise or it
is a stochastic system), there is a significant difference between the before-transition state and
the pre-transition state. In a real system, the system is always fluctuated by noise, and thus
the process of a state transition can be characterized by three states. Also see Table S1 for the
features of the three states in a process of state transition. The green circle represents the pre-
transition or critical state, while the red one is the state immediately after the transition. We aim
to detect the pre-transition state or green circle, rather than the red circle.

A.3 Distribution embedding near critical transition point with big noise
by moment expansion

Note that we do not consider the flickering phenomenon in this paper. In other words, we

assume only to have the observed data near the original stable state before the critical transitionS22



Thus, based on the above features, we can distinguish the three states when the system is 
fluctuated with small noise.

One-dimension 
System

Before-transition 
state

Pre- transition
state

After-transition
state

Average of 
state values

Similar level Similar level Different level

Variation of 
state values

Low High Low

Detection methods for 
small noise

SD, Autocorrelation, 
Skewness, etc.

Multi-dimension 
system

Before-transition 
state

Pre- transition
state

After-transition
state

Average of 
variables

Similar level Similar level Different level

Correlations and 
variations of state values 

Low High Low

Detection methods for 
small noise

Dynamical network
marker, cross-

correlation, etc.

Table S1. Features of three states in a process of state transition with small noise

to another state. Thus, the probability distribution from the observed data is the conditional

distribution for the whole system (e.g., in contrast to the stationary probability distribution) due

to no observed data on the after-transition state.

When the system is fluctuated by big noise, the critical point is far earlier than the bifurcation

point, which may make critical slowing-down principle fail. However, we can transform the

stochastic system into moment equations, a set of ordinary differential equations (ODEs) with

moments as variables, that is, the mean, variance, skewness and so on, and thus reduce the level

of the original noise. A set of moments correspond to a probability distribution, and such a

transformation is actually to convert the state dynamics into the distribution dynamics. In the

following, we explain such a procedure based on dynamical systems theory.

Generally, a dynamical system with big noise can be expressed by the following stochastic
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… 

m1(7)=[x(2)+…+x(7)]/6 
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Figure S4: | A sketch for sliding window.

differential equation
dx(t)

dt
= f(x(t)) + ηbig(t), (S4)

where f(x(t)) = (f1(x(t)), ..., fn(x(t))) are nonlinear functions, state variables are x(t) =

(x1(t), ..., xn(t)), and noises are ηbig(t) = (ηbig 1(t), ..., ηbig n(t)) with mean 〈ηbig i(t)〉 = 0

and covariance 〈ηbig i(t), ηbig j(t)〉 = σbig i,j . Here the angle brackets 〈·〉 is the operator for

calculating the average.

Then, we can approximate system (S4) by the following moment evolution equation (11)

with moment expansion to the kth order:

dm(t)

dt
= g(m(t)) + ηsmall(t) (S5)
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where g(m(t)) = (g1(m(t)), ..., gN(m(t))) are nonlinear moment functions derived from f(x(t)),

and moment variables are m(t) = (m1(t), ...,mN(t)). Due to truncation to the k-th order of

moments, the error functions are ηsmall(t) = (ηsmall 1(t), ..., ηsmall N(t)), which can be taken as

noise terms. mi(t) is a moment, and N is the total number of the moments up to the k-th order.

In particular, if expanding the moments to k = 2, then N = n(n + 3)/2, where the moment

variablesm1(t) are means (the first order moment of variable xi, i.e., 〈xi〉) andm2(t) are covari-

ances (the second order central moments of variables xi and xj , i.e., 〈(xi − 〈xi〉)(xj − 〈xj〉)〉)

of x(t). Actually, to approximate the original stochastic dynamics or minimize the error terms

ηsmall(t) by finite order moment equations (S5), many sophisticated schemes to truncate mo-

ments, such as moment closure (12, 13), have been proposed. By this moment-system with

smaller noise, we can directly use DNM to detect the critical transition, where the critical point

is not the bifurcation point of the original system (S4) but the one of (S5). Note that any prob-

ability distribution can be represented or expanded by Gram-Charlier or Edgeworth series (26)

in terms of moments m(t). Hence, a set of moments represent one probability distribution, i.e.,

this moment-system represents the dynamics of the state probability-distribution rather than the

state dynamics of the original system x(t), and thus the critical point of the moment-system (S5)

corresponds to the drastic change of the probability-distribution rather than the drastic change

of the state x(t). In other words, different from the critical state-transition of the deterministic

system in terms of x(t), the transition of the stochastic system (S5) or (S6) in terms of m(t) is

the critical distribution-transition.

For a linear system, (S4) can even be exactly expressed by (S5) with the moment expansion

up to the second order, i.e., k = 2. For this case, there is no error, i.e., the noise is reduced to

zero, ηsmall(t) = {0, ...., 0}. For a nonlinear system, if x follows Gaussian distribution, (S4)

can also be exactly expressed by (S5) with k = 2 and zero error.

For a general nonlinear stochastic system, with moment expansion to an infinite order (11),
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i.e., as k → ∞, the dynamics of system (S4) can be expressed by (S6) in an exact manner,

which becomes a deterministic system with zero error or noise.

dM(t)

dt
= F (M(t)), (S6)

where F (M(t)) = (g1(M(t)), g2(M(t)), ...) are nonlinear moment functions, and moment vari-

ables are M(t) = (m1(t),m2(t), ...). The error functions are reduced to zero, i.e., ηsmall(t) =

(0, 0, ...). Also see the intuitive explanation in Figure 1 in the main text.

In other words, it is expected that, the higher the order of moment expansion is, the more

accurate the resulting dynamics (S5) would be to that of the original system (S4) in terms

of the distribution, and thus the smaller the noises or error terms are. This result gives the

theoretical basis to reduce the noise level by increasing the dimension of the original system. In

particular, the moment system corresponds to the distribution dynamics, i.e., a set of moments

represent one distribution. Thus, (S5) or (S6) can be also viewed as the transformation from

state dynamics with big noise to distribution dynamics with small noise. Note that we can

only observe the data in the original state before the transition, and have no information on the

state after the transition, i.e., no flickering. Thus, the observed probability distribution is the

conditional distribution. Also note that in real situations, we only have observed data, and do

not need the above analytical implementations. Next we will first describe the implication of

the critical transition for the moment-system, and then give the detail procedure to construct the

synthetic data in a higher-dimensional space from the observed original data.

Next, we specifically derive the moment evolution equations by expanding the moments

to the second order, i.e., k = 2. Let the first-order moment (or mean) be u = {u1, ..., un}

with ui = 〈xi〉, and the second-order moment (or covariance) be v = {vij}i,j=1,2,...,n with

vij = 〈(xi − ui)(xj − uj)〉. Then the moment equations are the following deterministic system
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(11)

dui(t)

dt
= gi(u(t), v(t)), i = 1, 2, ..., n, (S7)

dvij(t)

dt
= gij(u(t), v(t)), i, j = 1, 2, ..., n. (S8)

where

gi(u(t), v(t)) = 〈fi(x(t))〉, (S9)

gij(u(t), v(t)) = 〈(xi(t)− ui(t))fj(x(t)) + (xj(t)− uj(t))fi(x(t))〉+ σij. (S10)

Therefore, the original stochastic system (S4) is transformed to a deterministic system (S7)-

(S8).

If the original system is linear, that is, f(x) = Ax + B, where A = (Aij) is an n × n

constant matrix and B = (Bi) is a constant n vector, then obviously we can analytically derive

the moment system (S7)-(S8) directly, due to

gi(u(t), v(t))

= 〈fi(x(t))〉

= 〈
n∑
k=1

Aikxk +Bi〉 =
n∑
k=1

Aik〈xk〉+Bi =
n∑
k=1

Aikuk +Bi,

gij(u(t), v(t))

= 〈(xi(t)− ui(t))fj(x(t)) + (xj(t)− uj(t))fi(x(t))〉+ σij

= 〈(xi(t)− ui(t))(
n∑
k=1

Ajkxk +Bj) + (xj(t)− uj(t))(
n∑
k=1

Aikxk +Bi)〉+ σij

=
n∑
k=1

Ajk(〈xkxi〉 − ukui) +
n∑
k=1

Aik(〈xkxj〉 − ukuj) + σij

=
n∑
k=1

Ajkvki +
n∑
k=1

Aikvkj + σij.
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Thus, the original system can analytically expressed by the first-order moments u and the

second-order moments v.

However, it the original system is nonlinear, the deterministic system (S7)-(S8) is generally

unclosed with the first and second order moments. That is, in the expressions (S9) and (S10)

there are usually involved with high-order moments (with the third or higher order moments).

To circumvent this problem, the approximation methods, such as moment-closure (41), are used

to truncate moments up to the second order, thereby making (S7)-(S8) closed in terms of the

first and second order moments. Due to such an approximation, there are additional error or

noise terms in gi and gij of (S7)-(S8), as described in (S5). Note that we can expand the original

system also by binomial moment series (27) in a similar way.

A.4 Critical state-transition and critical distribution-transition

Note that we do not consider the flickering phenomenon in this paper, i.e., we assume only to

have the observed data near the original stable state before the critical transition to another state,

and based on such observed data, to detect the early-warning signals of the critical transition.

Thus, the probability distribution from the observed data is the conditional distribution for the

whole system due to no observed data on the after-transition state.

By this moment-system (S5) or (S6) with smaller noise, we can directly use DNM to detect

the critical transition, where the critical point is not the bifurcation point of the original system

(S4) but the one of (S5) or (S6). As described in Supplementary Information B, any probability-

distribution can be represented or expanded by Gram-Charlier or Edgeworth series in terms of

moments m(t). Hence, the moment-system represents the dynamics of the state probability-

distribution rather than the state dynamics of the original system, and thus the critical point of

(S5) or (S6) corresponds to the drastic change of the probability-distribution for state x(t) (i.e.,

distribution-transition) rather than the drastic change of the state x(t) (i.e., state-transition). In
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other words, the bifurcation point of the moment-system (S5) m(t) is the critical “distribution-

transition” point (for a stochastic system with noise), whereas the traditional bifurcation point

of the original state-system (S4) x(t) is the “state-transition” point (for a deterministic system

without noise) (see Supplementary Information B and Fig.S11). Thus, the critical transition in

this paper implies the critical distribution-transition, which is the generalization of the tradition-

al state-transition (see Fig.S11).

A.5 Constructing time-course data of moments in a higher-dimensional
space from original data

From the observed original data x(t) of state variables, we can construct the time-course data

of moment variables m(t) in a higher-dimensional space by simply using a sliding-window

scheme, as shown in Fig.S2. In particular, for k = 2 with the window interval τ (an integer),

the time course data for the first order moment of variable xi(t) with i = 1, ..., n can be obtained

by

〈xi(t)〉 =

∑t
k=t−τ+1 xi(k)

τ
,

where there are n first order moments (or means) and t ≥ τ . On the other hand, for the second

central moment of variable xi(t) and xj(t) with i, j = 1, ..., n, we have

〈(xi(t)−〈xi(t)〉)(xj(t)−〈xj(t)〉)〉 =

∑t
k=t−τ+1 xi(k)xj(k)

τ
−
∑t

k=t−τ+1 xi(k)

τ

∑t
k=t−τ+1 xj(k)

τ
,

where there are n(n + 1)/2 second order moments (or covariances) due to their symmetry of

the covariances.

From such a procedure, the original n-dimension time-course data are transformed into

n(n + 3)/2-dimension time-course data. Depending on the observed system, if higher order

moments (k > 2) are required so as to make the noise sufficiently small, we can obtain their

time-course data in a similar way. Thus, instead of the original data with big noise, we can
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use DNM to analyze the transformed higher-dimensional data with the reduced noise level for

detecting the early-warning signals of the critical transition.

B One-dimensional example

In this section, we illustrate the DNM method as well as the critical distribution transition by

using an one-dimensional example.

B.1 Moment-system

An one-dimensional state system x(t) is represented as follows.

dx(t)

dt
= −p+ 3x(t)− x(t)3 + η(t), (S11)

where η is a white noise with zero mean, i.e., 〈η〉 = 0, and the variance (or amplitude) 〈η2〉 = σ.

Figure S5: | The state transition in system of Eq.(S11) without noise The sketch presents the
state transition in the deterministic system (S11). The solid curves represent the stable equilibria
and the dashed curve stands for the unstable equilibria. With the increase of the parameter p,
the transition occurs near p = 2 with small noise.

By analyzing Eq.(S11), we find that when the system is under a small noise (σ = 0.1),

there is a bifurcation point around p = 2 (see Fig.S5). As shown in Fig.2 in the main text, the

traditional CSD-based criteria, i.e., SD and AR can signal the critical transition since the critical
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point is near the bifurcation point. However, when the noise level increases to σ = 1.5, both

SD and AR fail to signal the imminent transition, which occurs much earlier than that of the

original system under small noise. Therefore, we use the moment-expanding scheme to “make

big noise smaller” so that the DNM-based method works again. Actually, when the system is

under big noise, the critical point is far ahead the bifurcation point, comparing with the case

with small noise, where the critical point is close to the bifurcation point (see Fig.2 in the main

text). Generally, the big noise actually makes the critical transition occurring earlier.

Let E(x) represent the expectation value of x. Through the process of moment closure, i.e.,

E(x3) = 3m1m2 +m3
1, (S12)

E(x4) = 3m2
2 + 6m2

1m2 +m4
1, (S13)

we get the 2-dimensional moment equation of Eq.(S11) as follows

dm1(t)

dt
= −p+ 3m1(t)− 3m1(t)m2(t)−m3

1(t) + ξ1(t), (S14)

dm2(t)

dt
= 6m2(t)− 6m1(t)2m2(t)− 6m2(t)2 + σ + ξ2(t), (S15)

where m1 is the mean (the 1st-order moment) and m2 is the variance (the 2nd-order moment),

σ is the amplitude of original white noise η, and ξi is a small noise generated from moment

closure.

For 2-dimensional system (S14, S15), the DNM-based method works again due to the re-

duced noise level. We respectively computed the SDs and ARs for the first-order moment (m1)

and the second-order moment (m2) in system (S14, S15). The prediction results by DNM is

given as Fig.2g-i in the main text.
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B.2 Critical state-transition represented by states, and critical distribution-
transition by moments

Generally, the probability distribution of x(t) can be represented or expanded by Gram-Charlier

or Edgeworth series (26) in terms of moments m(t) or cumulants, i.e., the probability distribu-

tion of x(t) can be expressed as φ(x(t)) = Prob(x(t)) = f(x(t);m(t)). With the finite moments

or cumulants (i.e., the finite terms of Gram-Charlier series), the Gram-Charlier series is the ap-

proximation to the original probability distribution, but a Gaussian distribution can be exactly

represented by the Gram-Charlier series with first and second moments or cumulants. Note

that the probability distribution here is not the stationary distribution in the whole space but the

probability distribution in the basin of the original stable equilibrium. Also it is the approxima-

tion of the real probability distribution because of the finite moments or moment closure. Thus,

the bifurcation for the moment-system with the order-two moments will result in the drastic

change of the partial distribution for the Gaussian part, i.e., will result in the distortion of the

Gaussian partial-distribution.

Thus the critical point or bifurcation point of the moment-system (S14)-(S15) corresponds

to the drastic change of this probability distribution rather than the drastic change of the state

x(t). In other words, different from the critical state-transition of the deterministic system in

terms of x(t), the transition of the stochastic system (S14)-(S15) in terms of m1(t),m2(t) is the

critical distribution-transition. As a result of the distribution-transition, a high probability for

one state is changed to another state.

Next, we show that the earlier transition caused by big noise is actually a “critical distribution-

transition” in a stochastic system, that is, before the real bifurcation value (pc = 2 of the deter-

ministic system in the above example), where the probability distribution of the state drastically

changes from one to the other in the form of the moments. Such a critical distribution-transition

is related to the magnitude of noise and the distance between the parameter p and the bifurca-
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tion value pc, that is, the larger the noise is, the earlier the distribution-transition is; the nearer

with the bifurcation value. Different from the traditional (critical) “state-transition” for a de-

terministic system, the critical “distribution-transition” for a stochastic system results in a new

probability distribution. By such a transition, the probability of the current stable state may been

significantly reduced while the probability of another stable state may be drastically increased.

P=0.6 P=0.8 P=0.85 P=0.9 

P=1.6 P=1.9 P=2.0 P=2.1 

Figure S6: | The changes in distribution of x in Eq.(S11) under a big noise and a small
noise respectively. (a). The distributions of x under a big noise σ = 1.5, where the critical
distribution transition is around p = 0.8. (b). The distributions of x under a small noise σ = 0.1,
where the critical distribution transition is around p = 1.9.

Specifically, based on the above example (with large samples), there is a probability distri-

bution of state between p = −2 and p = 2 (see Fig.S5), during which the system may shift

stochastically from a stable state to the other one. Figure S6 shows the changes of distribution

of x in Eq.(S11) under a big noise σ = 1.5 (Fig.S6a) and a small noise σ = 0.1 (Fig.S6b) re-

spectively. The drastic change of the distribution can be measured by the Kullback-Leibler (KL)

divergence between two distributions, as shown in Fig.S7. It is worth noting that although the

KL divergence can indicate the earlier transition due to the big noise, it requires many samples

to estimate the distribution, which is not satisfied in many realistic cases.

From Fig.S6a, it can be seen that a significant change in the distribution (i.e., critical distri-

bution transition) takes place after p = 0.8, which coincides with the Kullback-Leibler diver-

gence index. (see the red curve in Fig.S7). Actually, under the noise σ = 1.5, the parameter
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Figure S7: | The Kullback-Leibler (KL) divergence curves of distributions respectively
under a big noise and a small noise (a). Let Φ(p) denote the distribution of x when the
parameter is p. The KL divergence KL(Φ(p),Φ(p+ 1)) is calculated and displayed to measure
the critical distribution transition, where the red and blue curves respectively present the KL
divergence of Φ under a big noise σ = 1.5, and under a small noise σ = 0.1. It can be seen
that the red curve reaches the peak after p = 0.8 (the critical distribution-transition point for
σ = 1.5), while the blue curve reaches the peak at p = 1.9 (the critical distribution-transition
point for σ = 0.1), which coincides with the distribution-transition phenomena shown in the
main text.

p = 0.70191 is a bifurcation point of 2-dimensional system (S14, S15) without noise, or the

moment-system. Therefore, the parameter value at which the state of original system (1 dimen-

sional) changes with a high probability, is approximately the bifurcation value of the expanded

moment system (2 dimension) or the distribution-transition point.

B.3 Bifurcation point of the moment system corresponding to the critical
distribution-transition moves earlier with the increase of noise level

Figure S8) shows the vector fields of the 2-dimensional moment system, where the equilibria

merge to result in the bifurcations with the changing parameter for the cases of both big and

small noises. In Fig. S8), the bifurcation point of the moment or distribution system indeed
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Figure S8: | The vector fields of 2-dimensional moment system (S14, S15). When σ = 1.5,
(a). the vector fields when p = 0.6 . (b). the vector fields when p = 0.68. (c). the vector fields
when p = 0.9. When σ = 0.1, (d). the vector fields when p = 1.6. (e). the vector fields when
p = 1.77. (f). the vector fields when p = 2.1. The red points represent the stable equilibria,
and the black point is the unstable equilibrium. It can be seen that there is a bifurcation of the
moment-system (S14, S15) between p = 0.68 and p = 0.9 (actually around p = 0.80) when
σ = 1.5, and there is a bifurcation between p = 1.77 and p = 2.1 (actually around p = 1.94)
when σ = 0.1. Clearly, the moment-system (S14, S15) is approximate to the original system,
and thus its bifurcation point of the parameter (i.e., p = 0.80 for σ = 1.5 or p = 1.94 for
σ = 0.1) is approximate to the critical distribution-transition point or the original stochastic
system (i.e., p = 0.8 for σ = 1.5 or p = 1.9 for σ = 0.1), shown in Figs. S6-S7.

moves earlier with the increase of noise level. Thus, it validates the theoretical results, i.e.,

the critical transition occurs near the bifurcation point of the moment system rather than that

of the original state system, but the bifurcation point of the moment system changes with the

noise level. Thus, it is effective to detect the early-warning signals by the transformed data

corresponding to the moment system.
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C Numerical validation of DNM

C.1 Validation of DNM

Figure S9: | A model of a 18-molecular network. In this sketch of a molecular network,
there are 18 nodes whose dynamical regulatory relationships are given as stochastic system S16.
The edges represent positive or negative regulations among nodes.

In this section, we use a regulatory network with 18 molecules (see Fig. S9) to conduct a

numerical simulation and theoretically demonstrate the effectiveness of DNM for detecting the

pre-transition state. Molecular networks are often used to study various biological processes

such as transcription, translation, diffusion, and translocation processes that affect gene activ-

ities (1, 4, 22–24). The following 18 differential equations represent the gene regulation of 18

genes in a network where gene regulation is represented in a Michaelis-Menten form with the

exception of the degradation rates, which are linearly proportional to the concentrations of the
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corresponding genes.

dx1(t)
dt

= (−5P−1
5

+ 3x1(t)
1+x1(t)

+ x2(t)
1+x2(t)

− 100
(

x1(t)
1+x1(t)

)3

+ η1(t)
dx2(t)

dt
= (8−4P )x3(t)

15(1+x3(t))
− 4

(
1+P
15

)
x2(t) + η2(t)

dx3(t)
dt

= (4−2P )x2(t)
15(1+x1(t))

− 2
(

4+P
15

)
x3(t) + η3(t)

dx4(t)
dt

= 4P−10
15

+ 5−2P
15(1+x2(t))

+ 5−2P
15(1+x3(t))

− x4(t) + η4(t)
dx5(t)

dt
= (6−2P )x2(t)

15(1+x1(t))
+ (6−2P )x3(t)

15(1+x3(t))
− 6

5
x5(t) + η5(t)

dx6(t)
dt

= 4P−14
15

+ (7−2P )
15(1+x2(t))

+ (7−2P )
15(1+x3(t))

− 7
5
x6(t) + η6(t)

dx7(t)
dt

= 4P−16
15

+ 2(4−P )
15(1+x2(t))

+ 2(4−P )
15(1+x3(t))

− 8
5
x7(t) + η7(t)

dx8(t)
dt

= (9−2P )x2(t)
15(1+x2(t))

+ (9−2P )x3(t)
15(1+x3(t))

− 9
5
x8(t) + η8(t)

dx9(t)
dt

= −13
15

+ 2
15(1+x2(t))

+ 2
15(1+x3(t))

+ 2
5(1+x7(t))

+ 2x11(t)
5(1+x11(t))

+ 3x13(t)
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x11(t) + η11(t)
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4(1+x13(t))
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dx13(t)
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5(1+x17(t))
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(S16)

where P is a scalar control parameter ranging from −1 to 1 and ηi(t) (i = 1, 2, ..., 18) are

Gaussian noises with zero means and covariances κij = Cov(ηi, ηj). Here we set the amplitude

κii of ηi as 1. xi (i = 1, ..., 18) represent the concentrations of mRNA-i. There is a stable

equilibrium when the parameter P is smaller than the critical value Pc = 0. When P passes

Pc = 0, there is a state transition of the system (see Fig.3 in the main text). However, it is

hardly to signal the transition based on the traditional method based on CSD due to the big

noise. Therefore we carry out the DNM method by expanding the dimension of the system.

The differential equations Eq.(S16) can be transformed into the difference equations X(k +

1) = f(X(k), P ) using the Euler scheme (25), with a small time interval ∆t = 0.01 when

P ∈ [−1, 1]. Note that X(k) is the vector of X(t) at the time instant k∆t. By using this system,
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we simulated the data and applied the DNM scheme to identify the pre-transition state as shown

in Fig.3 in the main text. The simulations were performed in MATLAB(R2009a) using the

Euler-Maruyama integration method with the Ito calculus (25).

C.2 Comparison with SVD

Figure S10: | The change of the largest singular value. This figure shows the change of
the largest singular value when the system approaches the critical point. Clearly, due to noisy
data and small number of samples, there is no significant signal near the critical point, i.e., the
largest singular value obtained by SVD cannot indicate the imminent critical transition under
big noise.

For the purpose of comparison to DNM, we also employed singular value decomposition

to detect the early-warning signals of this multi-variable system from the observed data, i.e.,

using the largest singular value (Fig.S10), which is the square root of the dominant eigenvalue

of MM∗, where M is the stochastically changing matrix of X in system (S16) and M∗ is the

conjugate transpose of M . As shown in Figure S10, due to noisy data and small number of

samples, there is no significant signal for the largest singular value, which cannot indicate the
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imminent critical transition under big noise.

D Algorithm for calculating DNM

For a given dataset, the calculation of DNM score is based on the following procedure.

Step 1 Dimension expanding.

At each time point, calculate the 1st and 2nd moments of the data for each variable.

Step 2 DNM scheme.

We conduct a new type of data normalization for all the variables obtained in 2.

A =
Dcase −mean(Ncontrol)

SD(Ncontrol)
, (S17)

where A denotes the normalized expression data for each variable in each case sample,

Dcase is the data for each variable in every case sample, while the mean(Ncontrol) and

SD(Ncontrol) are the mean and standard deviation for each variable in all the control

samples, respectively.

At each sampling point (or period), by using the student t-test with significance

level p < 0.05, choose those variables whose expressions show significant changes (in

the sense of mean values) between the case samples and the control samples.

By using the false discovery rate (FDR), correct the multiple comparisons or multi-

ple student t-tests for the variables selected in each period.

The two-fold change method is then adopted to further screen variables that exhibit

relatively significant changes in standard deviation in each period.

Cluster variables at each sampling time point by correlations, i.e., each group (or

the “in” group) is composed of molecules with high correlations, and the “out” group
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contains all the other molecules. According to the theoretical results, if a time period is

in or close to the pre-transition stage, then the clusters obtained in this period are poten-

tial dominant groups, and should satisfy the 3 criteria of DNM. Hence every cluster is a

candidate of the DNM, whereas its corresponding period is a candidate of the transition

point in the pre-transition state.

Step 3 Among all clusters, determine the dominant group or the DNM by significance analysis,

i.e., the 3 criteria of DNM listed in main text are used to determine whether a candidate

group is DNM.

Calculating the DNM score.

I = SD
PCCin

PCCout + ε
, (S18)

where SD is the average standard deviation of all variables in DNM; PCCin is the av-

erage Pearson’s correlation coefficient between variables in DNM in absolute value;

PCCout is the average Pearson’s correlation coefficient between a variable inside DNM

and another one outside in absolute value; and ε is a small positive constant to avoid zero

division. Here, instead of SD, it is also appropriate to use CV (coefficient of variation)

in (S18) when the variables are not normalized.

We then screen clusters using the three criteria of DNM. That is, the SD of each vari-

able in any candidate dominant group should sharply increases. The PCCin (in absolute

value) for each pair of variables among any candidate dominant group should drastical-

ly increases. The PCCout between one variable in any candidate dominant group and

another one outside should drastically be decreased.
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E Application to three real datasets

For the three datasets, that is, gene expression profiling dataset of acute lung injury induced

by phosgene gas and the ecological data of eutrophic lake state, we identified the pre-transition

states by using DNM.

The gene expression profiling dataset of acute lung injury was downloaded from the NCBI

GEO database (access ID: GSE2565, GSE13009, GSE30550) (www.ncbi.nlm.nih.gov/geo). In

these datasets, probe sets without corresponding gene symbols were ignored during our analy-

sis. The expression values of probe sets that are mapped to the same gene were averaged. The

three datasets are described in Table S1. Besides, we described the data processing in details

and conducted the functional analysis results (g:profiler: http://biit.cs.ut.ee/gprofiler/ and NOA:

http://app.aporc.org/NOA/) (29, 30) for some important molecules.

Table S1: Descriptions of the three datasets

Experimental data Description
Genomic data on lung injury due to carbonyl
chloride inhalation exposure (GSE2565) (33)
Sampling points 9 sampling points

0, 0.5, 1, 4, 8, 12, 24, 48, 72 (hours)
Number of observed objects 12,871 genes
Groups control group and case group
Case data 6 subjects
Control data 6 control samples
Data for eutrophic lake (34)
Sampling points 64 sampling points

From 1883 to 2009 (years)
Number of observations 6 indices
Groups case group
Case data 1 subjects
Width of the sliding window 59 years
Data for bankruptcy (35)
Number of observations 2 indices USD and EUR
Sampling points (EUR) trading days from 12/01/1998 to 12/08/2011
Sampling points (USD) trading days from 04/29/1999 to 06/06/2011
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E.1 Dataset 1. Genomic data of the lung injury with carbonyl chloride
inhalation exposure (i.e., acute lung injury)

This dataset was obtained in an experiment on toxic gas-induced lung injury effects, i.e., pul-

monary edema (33), and was downloaded from the NCBI GEO database (ID: GSE2565)

(www.ncbi.nlm.nih.gov/geo). In this data set, there are 22,690 original probe sets. We mapped

them to the corresponding NCBI Entrez gene symbols by using the GEO annotation. Mean-

while, probe sets without corresponding gene symbols were not considered during our analysis.

The expression values of probe sets mapped to the same gene were averaged. There were 12,871

genes left. Furthermore, the expression profiling information was mapped to the integrated net-

works, i.e., genes were linked and correlated by the combined functional couplings among

them from various databases of protein-protein interactions. We downloaded the biomolec-

ular interaction networks and functional linkage information for Mus musculus from various

databases, including BioGrid (www.thebiogrid.org), STRING (http://string-db.org/), and KEG-

G (www.genome.jp/kegg). After removing the redundancy, we obtained 7,950 linkages in 6,683

mouse proteins/genes for acute lung injury. Next, the genes evaluated in these microarray

datasets were mapped individually to these integrated functional linkage networks.

To study acute lung injury, a genomic approach was used to investigate the molecular mech-

anism of phosgene-induced lung injury. The experiments were conducted to determine the

temporal effects of phosgene exposure on lung tissue antioxidant enzyme concentrations and

the gene expression level, and these results were compared with those from air-exposed mice

treated in a similar manner to assess the role of the GSH redox cycle in this oxidative lung

injury model. To produce two groups of data, i.e., the control group data and case group data,

two groups of CD-1 male mice were exposed to air or phosgene, respectively. Lung tissues

were collected from air- or phosgene-exposed mice at 0.5, 1, 4, 8, 12, 24, 48, and 72 hr after

exposure. The details of the experiment are available in the original paper (33). We introduce
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some key background as well as our functional analysis as follows.

Phosgene gas, a nerve gas, is one of the most important and common chemical industry gas-

es (32). Some pathogenic mechanisms of the acute lung injury induced by phosgene have been

identified (33). According to the calculation results by the dynamical network marker (DNM), a

major transition is considered to occur from 4 hr to 8 hr. Also, the pathway enrichment analysis

and GO functional analysis showed that the identified genes in the DNM were closely relat-

ed to the mechanism of disease progression (33, 39). Dysfunctions of glutathione metabolism

and the chemokine signaling pathway related to inflammatory immune response were activated

in vivo, which also implied the protection against the oxidant-like activity of phosgene. Path-

ways affected by the oxidant reaction became disordered, especially for signal transduction via

protein-modified activation, such as the MAPK signaling pathway and Wnt signaling pathway.

The decrease in the PH value induced by the HCl-release reaction affected some pathways that

were sensitive to intracellular conditions and related to communication or transport channels,

e.g., gap junctions. Some signaling pathways may also be relevant to repair, survival, disorders,

and reproduction. The top significantly enriched signaling pathways are as follows: the Glu-

tathione metabolism signaling pathway (with the significant P-value=9.6E-3) where glutathione

is the main detoxifying agent in the body, and Glutathione deficiency contributes to oxidative

stress, which plays a key role in aging and the pathogenesis of many diseases including cystic

fibrosis, sickle cell anemia, etc. (36); the Mitogen-activated protein kinase (MAPK) signaling

pathway (P-value=2.4E-2), and the abnormalities in MAPK signalling play a critical role in

the development and progression of uncontrolled cell growth (37); the ErbB signaling pathway

(P-value=3.8E-2), and the ErbB signaling pathway plays an important role during the growth

and development of a number of organs including the central nervous system, which can be

directly influenced by the nerve gas Phosgene (38); and Cytokine-cytokine receptor interaction

(P-value=5.0E-2). Cytokines are soluble extracellular proteins or glycoproteins that are crucial
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intercellular regulators and mobilizers of cells engaged in innate as well as adaptive inflam-

matory host defenses, cell growth, differentiation, cell death, angiogenesis, and development

and repair processes aimed at the restoration of homeostasis. At the GO function level, some

biological processes were also highly related to acute lung injury. For example, the expres-

sion profiles of some genes were related to abnormal changes in primary metabolic processes.

Specifically, among the DNM members, GCLC, gstA2, PGD, gsr and LOC630729 are involved

in the glutamine-metabolic activities. Genes FOS, DUSP1, Gadd45g, Hspb1, MYC, pla2g4a

and IL1B are related to the MAPK signaling pathway. This indicated the denaturation of lipoid-

s, proteins, and nucleic acids that may have been oxidized by phosgene (33, 39).

Briefly, it was found that the main physiological effects occurred within the first 8 hours

after exposure, resulting in common observations of enhanced BALF protein levels, increased

pulmonary edema, and ultimately decreased survival rates (33). At the concentration delivered,

50%-60% mortality was routinely observed at 12 hours while 60%-70% mortality was observed

at 24 hours (33). The detailed results are also available in the original paper (33). Early warning

signals of lung injury based on the identified DNM are shown in Fig.4a of the main text, which

showed that the pre-transition state may start around 4 hr, while the system may enter the after-

transition state after 12 hr. Our prediction based on the DNM score agreed with the actual

disease development.

To explain our method more clearly, we used acute lung injury as a concrete example to

describe our computational procedure step by step. In GSE2565 data set, there are 22,690

original probe sets. We mapped them to the corresponding NCBI Entrez gene symbols by using

the GEO annotation. Meanwhile, we screened out all probe sets with incorrect corresponding

gene symbols while probe sets that detected the same genes were combined using the averaging

method. After this procedure, there were 12,871 genes left.

Step 1 Choose differential expression genes from the high-throughput gene data for acute lung
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injury. At each sampling point (or period), there are 12,871 genes. Each gene has 6 case

samples and 6 control samples. At the 0 h sampling point, the case samples are identical

to the control samples.

At each sampling point, by using the student t-test with significance level p < 0.05

and the false discovery rate (FDR) (pi(ki) < (ki/controlsize(i)) × 0.05) we screened

out A = [0, 53, 184, 1325, 1327, 738, 980, 1263, 915] differential expression molecules

for 9 periods or time points, respectively.

Based on set A of the selected differential expression molecules, through two-fold

change screening, we obtain B = [0, 29, 72, 195, 269, 163, 173, 188, 176] genes respec-

tively for the 9 sampling time points.

Step 2 We carried out the dimension expanding scheme, by calculating the 1st and 2nd mo-

ments of the data in each 2-sampling-points sliding-window.

We conducted the data normalization for all the variables (the 1st and 2nd moments).

A =
Dcase −mean(Ncontrol)

SD(Ncontrol)
, (S19)

where A denotes the normalized expression data for each variable in each case sample,

Dcase is the data for each variable in every case sample, while the mean(Ncontrol) and

SD(Ncontrol) are the mean and standard deviation for each variable in all the control

samples, respectively.

Cluster variables at each sampling time point by correlations. We got the candidate

groups (the 2nd and 3rd group among all clustering groups).

Step 3 Among all clusters, determine the dominant group or the DNM by significance analysis.

Calculating the DNM score.

I = SD
PCCin

PCCout + ε
. (S20)
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The first cluster which is qualified to show a critical transition is the 3rd group clustered in

the 5th sampling point (8 h), containing 169 genes. The obtained DNM (or DNB: dynamical

network biomarker) is consistent with the real experimental phenomenon, and the DNM index

start increasing sharply from the 4th time period (4 h) and reach peaks in the 5th time period (8

h, i.e., the pre-transition, see Fig.4a in the main text). These indices show that the pre-transition

state starts near the 4th time period (4 h), and the system transitions to another state after the 5th

time period (8 h). Our early-warning signals are coincident with the actual disease development

that the most prominent physiological effects occur within the first 8 h after exposure, resulting

in pulmonary edema and ultimately reducing survival rates (see the original paper (33)). Based

on the dynamical information of the network, we have graphically illustrated the dynamical

changes in the overall mouse PPI network (see Fig.4b-e in the main text), from which it can be

seen that a critical transition occurs around 8 h sampling point (during 4h-12h period).

In order to show the detailed progression of the DNM-related gene group as well as the

whole molecular network along the sampling time series, we presented the dynamics of the

whole mouse network in which the DNM-related genes were clustered in the upper-left corner

(see Fig.S11) to compare the dynamical changes between the members of the DNM-related

genes and other genes. From Fig.S11, it is obvious that the group of the DNM provides signifi-

cant signals as the system approaches the critical point. Clearly, there is a drastic change in the

DNM at 8 h in terms of expression variations and network structure.

We listed all of the 169 identified DNM members in the Supplementary Table ‘Identified

DNM members A’.

E.2 Dataset 2. Ecological data about the eutrophic lake state

The data record the historical changes in the Erhai Lake catchment system in Yunnan, Chi-

na (34). The monitoring data mainly provide historical trends for lake water quality, and several
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Figure S11: | Dynamical changes in the network including the selected DNM during the
progression of acute lung injury. The figures show the dynamical changes of the molecular
interaction network (protein-protein interactions and TF-target regulations) from (a) 0.5 hr, (b)
1 hr, (c) 4 hr, (d) 8 hr, (e) 12 hr, (f) 24 hr, (g) 48 hr to (h) 72 hr with the corresponding DNM,
where the color of nodes represents the fluctuation strength in gene expressions, and each edge
represents the correlations between two nodes. It can be seen that at 8 hr, there is a strong signal
to indicate the pre-transition state (during 4h-12h).

related chemical indices. Microfossil and geochemical records from dated lake sediment cores

were used to reconstruct the trends in the state of lake diatom communities and water quality
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back to the 1880s, and these records seem to reproduce the abrupt change in algal states ob-

served in recent monitored data, between 2001 and 2005. From the combined monitored and

lake sediment data, it seems that a profound transition in the algal community occurred around

2001. From the original data, it is also pointed out that the transition in Erhai Lake in ∼2001

corresponds to the classic development of a bistable system (34), that is, the shift in the state of

the diatom communities and the abrupt changes in other water quality indicators are consistent

with the behaviour of a lake that is shifting from a stable state (i.e., the oligotrophic state) to

an alternative stable state (the eutrophic state). Therefore, the DNM-based method is appli-

cable to predict the imminent transition from one state to another (see Fig.4f in the main text).

The dataset record the historical data for lake-water-quality variables including lake water level,

DCA Axis 1 score and Hill’s diversity N2; the concentrations of the related chemical indices

including calcium (Ca), phosphorus (P), and abundance of nitrogen (N%) and carbon (C%); the

climate indices including mean annual rainfall and temperature.

The identified DNM members of this ecological dataset include variables DCA Axis 1 score,

N%, C%, the correlation between Hill diversity N2 and the concentration of phosphorus (P), the

correlation between the concentrations of calcium (Ca) and the carbon (C%), and etc. Actually,

the abundance of calcium in the sediment rose after 2001, as a result of the biologically induced

precipitation of CaCO3 (calcite), which was linked to high rates of productivity by photosyn-

thetic algae. The total sediment phosphorus abundance had a small rise after 2003, suggesting

partial depletion of sediment phosphorus as a result of anoxic recycling. Sediment total organic

carbon (C%) (the proportion of total sediment mass) and total nitrogen (N%) (the proportion of

total sediment mass) abruptly rose after 2001, indicating rising levels of sedimenting organic

matter as a result of the increased aquatic productivity (34).

We listed all of the 18 identified DNM members in the Supplementary Table ‘Identified

DNM members B’.
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E.3 Dataset 3. Financial data about the bankruptcy of Lehman Brothers

The critical transitions in financial market are often referred to the broken of unstable “financial

bubbles”. In financial markets the participants slowly build up an ever densifying web of mutual

dependencies through investments and transactions to hedge risks, which gradually create the

unstable “bubbles” (42,43). Detecting the onset of critical transitions in these complex dynam-

ical systems is difficult due to the lack of the understanding of underlying mechanism as well

as the insight to create models with predictive power.

Before declaring bankruptcy in 2008, Lehman Brothers was the fourth-largest investment

bank in the United States, doing business in investment banking, equity and fixed-income sales

and trading. On September 15, 2008, the firm filed for Chapter 11 bankruptcy protection fol-

lowing the massive exodus of most of its clients, drastic losses in its stock, and devaluation of

its assets by credit rating agencies. Lehman’s bankruptcy filing is the largest in US history, and

is thought to have played a major role in the unfolding of the late-2000s global financial crisis.

The Financial data about the bankruptcy of Lehman Brothers consist of the daily prices

of interest-rate swaps (IRS) in the USD and EUR currency. The data spans more than twelve

years: the EUR data from 12/01/1998 to 12/08/2011 and the USD data from 04/29/1999 to

06/06/2011 (35). It is found that the CSD-based indices, i.e., SD and AR, “do not show a

distinctive change of behavior around the time of the bankruptcy in both USD and EUR markets

(35)” (also see Fig.S12). However, the DNM-based method provides the obvious signal for the

critical transition (see Fig.4g in the main text). The DNM members of this financial dataset

include the mean of USD (mean(USD)), the standard deviation of USD (SD(USD)), the mean

of EUR (mean(EUR)), the standard deviation of EUR (SD(EUR)), and the correlation between

USD and EUR (Corr(USD, EUR)). In the USD market, a long-term build-up of stress started

in the beginning of 2004 and continued for more than four years, eventually peaking shortly

before the bankruptcy (35). This is coincident with the common sense that markets created
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Figure S12: | A sketch for the financial data. (a) shows the mean of USD currency. (b) shows
the mean of EUR currency.(c) shows the standard deviation curve of USD currency. (d) shows
the standard deviation curve of EUR currency. It can be seen that the CSD-based indicator fails
to signal a distinctive change of behavior around the time of the bankruptcy (time point 0, i.e.,
2008/9/15) in both USD and EUR markets.

‘bubbles (44), which grow slowly along the time and may ‘burst, leading to sudden regime

shifts triggered by a catalyzing event. The EUR market, on the other hand, appears to have

played a more submissive role. The information dissipation length indicator rose distinctly for

about half a year before the Lehman Brothers bankruptcy and diminished in about the same

amount of time (35).

We listed all of the 5 identified DNM members in the Supplementary Table ‘Identified DNM

members C’.
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F State-transition with small noise and distribution-transition
with big noise

Figure S13 illustrates the mathematical meaning of the critical state detected by dynamical

network markers for a system with small or big noise. For a system with small noise, the

critical point is the bifurcation point of the original state system, whereas for a system with

big noise, the critical point is the bifurcation point of the moment-system, which corresponds

to the probability distribution. Note that it is the probability distribution in the basin of the

stable equilibrium rather than the whole space. The moment-system with moment closure is the

approximation of the real probability distribution, or conditional probability distribution. Thus,

for a system with big noise, the critical point is for the probability distribution of the state.

Clearly, the distribution-transition is the generalization of the traditional state-transition. For

instance, the bifurcation for a moment-system with the order-two moments, will result in the

drastic change of the partial distribution for Gaussian part (or distortion of the Gaussian part)

rather than the real distribution.

G Comparison of distribution embedding scheme with sup-
port vector machine

Each individual system has its specific critical transition, and thus detecting early-warning sig-

nals of the critical transition is a system or individual specific problem. Although detecting

early-warning signals of the tipping point is not a typical classification problem, to compare

with the machine learning methods we design such a computational problem for classifying

the before-transition samples and the pre-transition samples. In particular, we compared the

performance of our embedding scheme with a machine learning scheme, i.e., the support vec-

tor machine (SVM). The SVM maps the observed sample space to a higher dimension space
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Small noise:

Bifurcation point of x(t)  =  critical point of x(t)

Thus, the critical point of x(t) is for the state-transition of x(t) 

Big noise: 

Bifurcation point of m(t) = Critical point of distribution p(x(t))

Thus, the critical point of m(t) is for the distribution-transition of x(t)
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Detection by DNM

Figure S13: | Detection of early-warning signals by dynamical network markers for a
system with small or big noise. For a system with small noise shown in the upper figure,
DNM detects the critical state, which is the bifurcation point of the original deterministic system
of x(t). Thus, the critical state detected by DNM for x(t) corresponds to the state-transition of
x(t). In other words, such a transition results in the drastic change of the state x(t). On the other
hand, for a system with big noise shown in the lower figure, there is no effective method to detect
the critical state due to strong fluctuation. In this work, we transform the original system x(t)
with big noise to the moment system m(t) with small noise, which can be detected by DNM for
the critical state. Since the moment system corresponds to the probability distribution (i.e., a set
of moments represent one probability distribution), the bifurcation point of the moment system
is also the critical point of the distribution p(x(t)). Thus, the critical state of the moment system
detected by DNM for m(t) is the critical point of the distribution, or distribution-transition. In
other words, such a transition results in the drastic change of the distribution of x(t). Clearly,
the distribution transition is the generalization of the state-transition, i.e., for small noise, they
are equivalent.

and thus increases the dimensionality of the data, so that the samples can be classified by hy-

perplanes in the high-dimensional space. Thus SVM is a supervised learning scheme which

increases the dimensionality of the data to improve the ability of the classifiers.

Specifically, we applied these two methods to a dataset from the eighteen-nodes network
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Eq.(S16). Under a big noise σi = 〈η2
i 〉 = 2, (i = 1, 2, ..., 18), we randomly chose 100 before-

transition samples (under parameter p = −1), and 100 pre-transition samples (under param-

eter p = −0.05), based on which each scheme was applied to the classification. For SVM,

50 before-transition samples and 50 pre-transition samples are the training group, and the re-

maining samples are for testing. The classification model was constructed by using Gaussian

kernel function. The ROC curves show in Fig.S14 that our distribution embedding scheme

(AUC=0.8124) performs better than SVM (AUC=0.5988).

Figure S14: | Comparison of distribution embedding scheme with a machine learning
scheme. Based on a dataset from the eighteen-nodes network Eq.(S16), the receiver operating
characteristic (ROC) curves respectively show the performance of our distribution embedding
scheme and that of the support vector machine (SVM). It can be seen that under big noise, the
distribution embedding scheme or high-dimensional embedding (AUC=0.8124) works better
than SVM (AUC=0.8124).
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H The signal-to-noise ratio of the three datasets

We have investigated the signal-to-noise rate (SNR) by using the three real datasets at the crit-

ical points in terms of noises and signals. Specifically, we carried out the CSD-based method

on each dataset with the original data (before the moment expansion). Then, we compared the

signals between the CSD-method and our moment-expanding algorithm. The comparison of S-

NR is also presented in Table.S2. The signal-to-noise ratio (SNR) is calculated by the following

formula:

SNR =
µ

σ

where µ is the signal mean and σ is the standard deviation of the noise.

Table S2. The signal-to-noise ratio (SNR) for the three real datasets.

Landscape 𝑆𝑁𝑅 =
𝜇

𝜎

Figure 5

Signal-to-noise ratio (SNR)

Datasets
Genomic data on 

lung injury induced 
by phosgene

Ecological data on 
a eutrophic lake 

Financial data on
the bankruptcy of 
Lehman Brothers

Before moment expanding 4.45 2.59 3.55

After moment expanding 6.50 16.57 9.96

The results indicated that SNRs in the higher dimensional space all increased after the im-

plementation of the moment expansions, compared with those in the original space, which show

the effectiveness of our method.
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DNM members p-value SD
Hsp90ab1 2.38E-10 0.04087
Slc2a1 1.13E-10 0.092623
Pdk2 1.60E-10 0.020142
Ptgs1 1.30E-09 0.069366
Ptpn14 1.08E-11 0.078193
Klf6 4.67E-07 0.074441

Serpina3n 7.99E-10 0.26976
Hes6 3.35E-08 0.029251

Als2cr13 5.66E-12 0.049826
Rnf5 1.14E-08 0.024356
Zfp36 1.28E-10 0.124548
Thbs1 6.32E-11 0.381639
Higd2a 3.42E-11 0.023156
Cxcr7 4.83E-07 0.072613
Klf4 4.60E-10 0.049678
Dhx32 2.01E-09 0.05761
Cyr61 3.71E-08 0.396
Hspd1 1.51E-08 0.178144

Loc100046232 3.96E-09 0.197075
Nmd3 1.33E-10 0.087827
Tob2 2.31E-09 0.047719
Psma5 1.77E-08 0.077423

Srxn1_Blvrb 0.006566 0.38397
Srxn1_Slc2a1 3.40E-11 0.185212
Srxn1_Dhx32 1.46E-09 0.22732
Srxn1_Adamts4 0.012015 0.180437

Esd_Ldlr 0.000162 0.570045
Esd_Cxcl16 1.60E-05 0.237233
Esd_Med8 0.034733 0.235243
Esd_Fos 4.80E-05 0.123527
Gclc_Eif6 1.00E-05 0.232833

Gjb3_Klhdc8a 1.00E-06 0.237048
Gjb3_Ctps 2.70E-05 0.485797
Gjb3_Irs2 2.00E-06 0.206056

Gjb3_Pla2g4a 5.00E-05 0.327429
Gjb3_Sult1a1 0.000119 0.244444
Gjb3_Selm 1.00E-06 0.388827

Gsta2_Dctpp1 1.10E-05 0.356852
Pgd_Med8 0.000688 0.344615
Ppl_Prdx1 1.76E-11 0.245119

Tinagl1_Il1b 5.90E-05 0.257371
Fgfbp1_Igj 0.000172 0.189926

Hsp90ab1_Spcs3 4.50E-05 0.441399
Hsp90ab1_Kti12 0.021878 0.863316

Abcc1_Loc100047896 1.64E-11 0.229009
Blvrb_Slc2a1 0.000132 0.420818
Blvrb_Tiparp 2.00E-06 0.337931
Blvrb_Tlk2 0.002276 0.835746
Blvrb_Dhx32 0.00155 0.43102
Blvrb_Adamts4 0.000101 0.378582
Gsr_Mtch1 0.001403 0.407237

Gch1_Tnfsf12 0.006268 0.320648
Mt2_Plscr2 2.90E-05 0.408598
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Hspb1_Klf6 0.012551 0.181015
Hspb1_Cxcl16 0.000477 0.315647
Hspb1_Thbs1 2.40E-05 0.371511

Hspb1_Loc640441 1.06E-08 0.231753
Hspb1_Klf4 9.35E-09 0.273751
Hspb1_Fos 5.00E-04 0.189043

Slc2a1_Ptpn14 3.55E-09 0.170878
Slc2a1_Rnf5 3.00E-06 0.176245
Mal_Ppa1 2.00E-06 0.310943

Mal_Als2cr13 8.00E-06 0.375288
Pdk2_Loc630729 4.00E-05 0.405232
Pdk2_Tubb2c 2.44E-07 0.1614
Ptgs1_Med8 5.80E-05 0.380394

Lama3_S100a9 0.00011 0.066927
Lama3_Arcn1 8.60E-05 0.458731
Ifrd1_Ccl2 1.00E-06 0.292758

Gadd45g_Psmc1 0.002211 0.227541
Tnfsf12_Hes6 0.005493 0.171264
Hspa9_Cdh2 3.72E-10 0.245311
Fabp4_Kti12 2.70E-05 0.277604
Taldo1_Cyr61 0.000508 0.239241
Prss22_Nupr1 0.00357 0.339711

Afp_Lif 0.00022 0.424778
Ensmusg00000040078_Arcn1 0.000139 0.435126

Ppa1_Ctps 1.00E-05 0.507297
Ppa1_Areg 8.02E-11 0.120162

Ppa1_Cxcl16 0.000717 0.262089
Ldlr_Cxcr7 1.20E-05 0.440076
Ldlr_Nmd3 5.57E-09 0.224004

Eg383901_Timp1 0.006961 0.080515
Nupr1_Areg 8.79E-11 0.190037

Nupr1_Cxcl16 5.00E-06 0.305527
Nupr1_Thbs1 0.00013 0.279737
Nupr1_Ccrn4l 7.89E-08 0.192359
Nupr1_Edn1 2.70E-05 0.193538
Nupr1_Clu 0.000628 0.110055

Loc630729_Hsbp1 0.030719 0.341359
Loc630729_Hs6st1 0.010106 0.269517

Pkp3_Prdx1 4.80E-05 0.318972
Hspb8_Tle6 1.54E-09 0.184779

Klhdc8a_Gp49a 0.000283 0.215621
Klhdc8a_Rhoj 0.00031 0.402665
Enc1_Kti12 0.003057 0.527733

Errfi1_Plscr2 0.001115 0.374796
Errfi1_Arcn1 0.000169 0.350736

Myc_Lif 0.001152 0.63458
Ctps_Hbegf 6.10E-05 0.358457
Ctps_Prkci 0.000242 0.344347

Ctps_Sult1a1 2.90E-05 0.289255
Ctps_Scel 1.80E-05 0.342057

Serpina3n_Arcn1 0.000102 0.369235
Hes6_Eif1a 0.018146 0.055822
Hes6_Notch2 0.000538 0.17319

Loc100047868_Phldb1 5.80E-05 0.258957



Loc100047868_Sri 0.002699 0.164706
Maff_Lif 0.000294 0.585834

Maff_Epb4.1l5 0.005843 0.296004
Pde4b_Arcn1 8.30E-05 0.40299
Areg_Med8 2.60E-05 0.432661
Kctd9_Btg2 0.000569 0.195706

Als2cr13_Tbc1d15 0.000256 0.336779
Als2cr13_Tnpo3 0.019578 0.387089
Als2cr13_Gca 2.00E-06 0.441627
Myo5a_Trib3 0.003186 0.790796
Rnf5_Zfp36 2.00E-06 0.223092

Tmem49_Ogfrl1 0.014663 0.373819
Cxcl16_Med8 0.000157 0.458653
Cxcl16_Hspd1 1.50E-05 0.253252
Cxcl16_Eif6 0.000448 0.26819
Plaa_Ogfrl1 3.10E-05 0.164674
Gp49a_Plscr2 0.000445 0.564678
Gp49a_Tob2 9.30E-05 0.307533
Gtlf3b_Btg2 7.00E-06 0.354595
Zfp36_Taz 2.60E-05 0.425127
Thbs1_Med8 0.001778 0.379517

Thbs1_Dcbld1 0.000411 0.451862
Prdx1_Ccl2 0.00272 0.422894
Prdx1_Ddi2 0.012893 0.534472

Higd2a_Dusp1 8.90E-09 0.052136
Ereg_Btg2 5.78E-10 0.236091

Dnajc5_Tle6 1.00E-06 0.311395
Dnajc5_Btg2 1.26E-07 0.222343
Cxcr7_Rhoj 2.94E-10 0.210224
Rtkn2_Kti12 6.90E-05 0.356634
Litaf_Med8 0.001784 0.302859
Timp1_Med8 2.76E-08 0.237886

Loc640441_Med8 0.000393 0.329043
Loc640441_Dcbld1 3.00E-06 0.322184
Macrod1_Rnasek 6.40E-05 0.169429

Macrod1_Uhrf1bp1l 0.00077 0.220277
Bach2_Socs3 0.00137 0.264381
Bach2_Tuft1 9.83E-11 0.26052
Ccl2_Csf3r 0.000819 0.239654
Ccl2_Usp7 0.000652 0.446793
Ccl2_Psma5 1.25E-11 0.266345
Kti12_Arf3 0.000224 0.533188
Klf4_Med8 4.50E-05 0.381146

Klf4_Dcbld1 2.00E-06 0.319777
Loc672215_Lif 0.001623 0.436325
Ddi2_Usp7 0.009066 0.537159
Ddi2_C4b 5.99E-08 0.192083

Slc25a29_Btg2 1.70E-05 0.230468
Slc25a29_Arcn1 2.30E-05 0.460651
Prr13_Med8 0.002593 0.57498

Ogfrl1_Dctpp1 0.000263 0.440491
C1r_Lif 1.30E-05 0.410423
Usp7_Igj 0.001093 0.191992
Med8_Hspd1 0.00529 0.16984



Med8_Edn1 0.0044 0.350869
Med8_Fos 0.000259 0.421963

Sult1a1_Taz 0.001055 0.58253
Loc100046232_Eif6 7.00E-06 0.305779

Lif_Lace1 0.004105 0.497034
Lif_Plk3 1.70E-05 0.29693
Lif_Ch25h 0.004751 0.413246
Taz_Gtf2f2 1.21E-07 0.280002



DNM members p-value SD
DCA Axis 1 score 1.67E-51 0.002991
N% 1.63E-46 0.018682
C% 1.54E-37 0.012677
Hill diversity N2_P 1.55E-41 0.095036
Hill diversity N2_C% 1.32E-37 0.145464
Hill diversity N2_N% 4.01E-30 0.18449
Ca_C% 1.07E-15 0.024797
P_N% 1.72E-31 0.582127
N%_C% 0.055919 0.009049
P_C% 1.94E-22 0.340956
Hill diversity N2_Ca 1.02E-36 0.104528
DCA Axis 1 score_Ca 9.98E-39 0.036262
Ca_N% 2.05E-15 0.060886
Ca_P 4.23E-33 0.064039
Ca 4.67E-24 0.006915
P 1.13E-27 0.015352
DCA Axis 1 score_Hill diversity N2 6.22E-18 0.065883
DCA Axis 1 score_P 4.12E-38 0.129782

leoray
文本框
B. The eutrophic lake 



DNM members p-value SD
USD 3.44E-25 0.0479

USD_USD 2.72E-09 0.1088
EUR 8.59E-15 0.0072

EUR_EUR 7.24E-24 0.1665
USD_EUR 7.74E-09 0.3085

leoray
文本框
C. The bankruptcy of Lehman Brothers
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