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Supplementary Figures
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Figure S1. Hydrogen-bond interactions with respect to the binding PMF. Mean number of
hydrogen-bonds between lipid and protein are shown as a function of z are for (A) LPA and
(B) LPIVa, in both the MD-2¢ (black) and MD-20 (red) conformational states. Mean and
standard deviations are shown for the final 5 ns of the corresponding PMF windows.
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Figure S2. Solvent accessible area of single lipid molecule as a function of PMF z. Data are
shown for (A) LPA bound to MD-2¢ (black) and MD-2o0 (red), (B) LPIVa bound to MD-2¢
(black) and MD-20 (red), and (C) LPA bound to membrane. Means and standard deviations
are shown for the final 5 ns of the corresponding PMF windows.



Figure S3. The pathway associated with lipid potentials of mean force binding to MD-2.
Snapshots are shown for lipid centred at different positions along z with respect to its
equilibrium bound position (z.,), as in Fig 2A, for (A) MD-20 + LPA, (B) MD-2c + LPIVa,
and (C) MD-20 + LPIVa. The lipid molecule is shown in thick wireframe CPK format. Key
side chains are labelled and shown in thin wireframe format, with the MD-2 fold rendered as
transparent cartoons.
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Figure S4. Alternative potential of mean force curves for different lipid molecules calculated
as a function of z. PMF curves are shown for ligand binding to protein-restrained MD-2c¢
(black lines) and MD-20 (red lines) for (A) LPA agonist, and (B) LPIVa antagonist. The
PMF in (C) represents lipid A binding to a symmetric LPA bilayer in the presence of Na"
counterions. The centre of the protein or lipid bilayer is at z = 0 nm. The PMFs have been
normalized so that the minimum lies at 0 kJ mol™.
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Figure S5. Eritoran PMF. (A) PMF curves calculated as a function of z for Eritoran binding
to MD-2c (black line) and MD-20 (red line). The PMFs have been normalized so that the
minimum lies at 0 kJ mol”. Sample standard deviation was estimated using 200 bootstraps
over converged data. (B) Protein cavity volume and (C) buried surface area between protein
and lipid, both shown as a function of PMFs for Eritoran binding to MD-2c¢ (black line) and
MD-20 (red line). Protein cavity volume was calculated using trj cavity, and mean and
standard deviations are shown for the final 5 ns of the corresponding PMF windows.
Snapshots of Eritoran at different positions along z with respect to its equilibrium bound
position (z.,), are shown for (D) MD-2c¢ and (E) MD-2o0. The lipid molecule is shown in thick
wireframe CPK format. Key side chains are labelled and shown in thin wireframe format,
with the MD-2 fold rendered as transparent cartoons.
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Figure S6. Dependence of lipid and membrane structure/dynamics upon PMF for extraction
of LPA from symmetric LPA bilayer in presence of Mg*". (A) Contour map of lipid partial
density for bilayer cross-section calculated along membrane normal, at equilibrium (left) and
upon extraction of a single LPA molecule (right). (B) Mean area per acyl tail of bilayer,
calculated as a function of PMF z. Mean and standard deviation are calculated over the final 5
ns of each window. (C) Deuterium order parameters, averaged across all acyl chains,
calculated for LPA within a bilayer phase (blue), and for LPA (black) and LPIVa (red) at
their equilibrium bound position z., in MD-2c¢ (thick lines) and MD-2o (thin lines) protein
conformations. In the dissolved state, the mean S¢p across all acyl tail carbons is <0.1 for
both LPA and LPIVa. Order parameters were calculated with respect to the membrane
normal, or in the case of protein, the cavity axis was defined as the reference vector.
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Figure S7. Cumulative number of Mg”" ions within < 1 nm of phosphate oxygens of single
LPA molecule as a function of PMF z in membrane system. Means are calculated from RDFs
over the final 5 ns of each window, with standard deviations estimated by calculating
individual RDFs over five 1 ns windows.
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Figure S8. Convergence of steered MD and PMF calculations. Force versus time curves
during steered MD simulations are shown for (A) MD-2c+LPIVa, and (B) MD-20+LPIVa.
Snapshots corresponding to the point of rupture (maximum pulling force) are shown above
each graph. Data are shown for several independent pulling simulations, using spring
velocities of 5 nm ns™ (black), 1 nm ns™' (red), and 0.5 nm ns™' (green). Example convergence
data are shown for MD-20+LPIVa PMFs in terms of (C) boostrap WHAM profiles, (D)
successive, overlapping 5 ns block profiles with average total free energies shown inset, and

4.0

(E) unbiased umbrella sampling histograms.




Figure S9. Setup of human MD-2 simulation systems. Snapshots are shown for (A) MD-2c
bound to lipid A, obtained from the crystal structure of the active TLR4*MD-2 receptor
complex bound to LPS' (pdb: 3FXI), and (B) the crystal structure of MD-20 bound to lipid
IVa (pdb: 2E59). Snapshots of the corresponding “opposite” MD-2 configurations were
obtained via pair-wise structural alignment and retention of ligand coordinates, as shown for
(C) MD-2c¢ bound to lipid IVa, and (D) MD-20 bound to lipid A.
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