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ABSTRACT

Table S1. Summary of input parameters for our model in simulations.

Parameter Symbol  Value
Spatial size Ly, Ly 401
Spatial step h 0.1
Time period of cell cycle T 1
Time step At 0.017

Total simulation time 200t

Imax
Diffusion parameter of nutrient D 1x107*
Rate coefficient of nutrient consumption per cell k 0.02
Degradation of ECM per cell Y 5x 107
Criteria of nutrient for necrotic cell 0 0.02
Shape parameter of proliferative probability 0, 0.2
Shape parameter of invasive probability 6; 0.2
Inhabitation of proliferation from proliferative cell Opp 0~ —0.95%
Inhabitation of proliferation from invasive proliferative cell — @; —0.02
Enhancement of migration from proliferative cell Bip 0.02
Enhancement of migration from invasive cell Bii 0~ 0.95*%

* with interval 0.05.



Supplementary Figures
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Figure S1. An example of renormalized proliferative and invasive probabilities for a cell in the spatial grid following
by Eqgs. (3-4). Here, the living cell count Ny = 3, the shape parameters 6, = 6; = 0.2. The phenotypic parameters in Table 1
are otpp = —0.1, Bii = 0.1, oty = —0.02, and B;, = 0.02. The blue circled line is the proliferative probability and the green one
is of invasive cell. The red dashed line denotes the nutrient criterion of necrotic phenotype ¢, = 0.02.
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Figure S2. Snapshots of necrotic cells in growing tumor based on our simulation at different times, (a) t = 50 7, (b)

t=1007, (c)t =150 7, (d) r = 200 7. Here, the living cells and ECM have been removed. Parameters are the same as those in
Figure 3.
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Figure S3. The average radial distance (r) again time 7. (r) increases linearly with 7. It means the tumor grows with
constant radial velocity v. Note that v decreases with increasing the inhibition degree ), except for a;,, = —0.9. Here, the
parameter f3; = 0.1 and the others are in Table S1.
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Figure S3. The average roughness (R) again time 7. (R) increases linearly with 7. It means the surface roughness grows with
constant velocity which increases with the inhibition degree «,. Here, the parameter 3; = 0.1 and the others are in Table S1.
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Text S1. The numerical scheme for Egs. (1-2).

In this study, the nutrient diffusion equations Eq. (1) is a nonlinear parabolic partial differential equation in two-dimensional

space under the conditions Egs. (2). In the case of one-dimensional space, the similar general parabolic equation is

o = ady, U + bu, O<x<l1, r>0.

The initial and boundary conditions are

u(x,0) = gx), 0<x<1
u(0,1) = y(r), t>0
u(l,r) = ¢(@), t>0.

For this class of numerical problem, the differences of Eq. (S.1) are
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Here, u’j’ denotes the value of function u at (x;,#,). T and & represent the time and spatial step size, respectively. Substituting

the above equations to Eq. (S.1), we have
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Considering the central differences as below
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a highly efficient quasi-Saul’ev difference scheme for one-dimensional Eq. (S.1) is deduced, '~
l/l’FH —u" a
J J_ +1 +1 2
o) (u’}H —uj —u} +u7,1) +bu} +0(T+h”).
A reduced form of two-dimensional parabolic equation used in our simulation could be described by
Ot = a (O + dyy) u+ bu.
With extending the difference scheme of Eq. (S.3), we deduce the numerical scheme,
Wi =l a4
T h?
After sorting out the above equation, we obtain the final iterative scheme performed in our simulations,
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where A = at/h?.
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