Simulation of avascular tumor growth by agent-based game model involving phenotype-phenotype interactions: Supplementary

Yong Chen^{1,2}, Hengtong Wang³, Jiangang Zhang⁴, Ke Chen⁵, and Yuming Li^{1,+}

¹Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University, Lanzhou 730000, China ²Center of Soft Matter Physics and its Applications, Beihang University, Beijing 100191, China ³School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China

⁴Institute of Pathology, Lanzhou University, Lanzhou 730000, China

⁵Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

ABSTRACT

Table S1.	Summar	y of input	parameters	for our	model	in	simulations.
-----------	--------	------------	------------	---------	-------	----	--------------

Parameter	Symbol	Value
Spatial size	L_x, L_y	401
Spatial step	h	0.1
Time period of cell cycle	au	1
Time step	Δt	0.01τ
Total simulation time	t_{max}	200τ
Diffusion parameter of nutrient	D	1×10^{-4}
Rate coefficient of nutrient consumption per cell	k	0.02
Degradation of ECM per cell	γ	$5 imes 10^{-4}$
Criteria of nutrient for necrotic cell	ϕ_c	0.02
Shape parameter of proliferative probability	θ_p	0.2
Shape parameter of invasive probability	$\dot{\theta_i}$	0.2
Inhabitation of proliferation from proliferative cell	$lpha_{pp}$	$0\sim-0.95*$
Inhabitation of proliferation from invasive proliferative cell	α_{pi}	-0.02
Enhancement of migration from proliferative cell	$\hat{\beta_{ip}}$	0.02
Enhancement of migration from invasive cell	β_{ii}	$0 \sim 0.95*$
* with interval 0.05.		

1

Supplementary Figures

Figure S1. An example of renormalized proliferative and invasive probabilities for a cell in the spatial grid following by Eqs. (3-4). Here, the living cell count $N_T = 3$, the shape parameters $\theta_p = \theta_i = 0.2$. The phenotypic parameters in Table 1 are $\alpha_{pp} = -0.1$, $\beta_{ii} = 0.1$, $\alpha_{pi} = -0.02$, and $\beta_{ip} = 0.02$. The blue circled line is the proliferative probability and the green one is of invasive cell. The red dashed line denotes the nutrient criterion of necrotic phenotype $\phi_c = 0.02$.

Figure S2. Snapshots of necrotic cells in growing tumor based on our simulation at different times, (a) $t = 50 \tau$, (b) $t = 100 \tau$, (c) $t = 150 \tau$, (d) $t = 200 \tau$. Here, the living cells and ECM have been removed. Parameters are the same as those in Figure 3.

Figure S3. The average radial distance $\langle r \rangle$ again time *t*. $\langle r \rangle$ increases linearly with *t*. It means the tumor grows with constant radial velocity *v*. Note that *v* decreases with increasing the inhibition degree α_{pp} except for $\alpha_{pp} = -0.9$. Here, the parameter $\beta_{ii} = 0.1$ and the others are in Table S1.

Figure S3. The average roughness $\langle R \rangle$ again time *t*. $\langle R \rangle$ increases linearly with *t*. It means the surface roughness grows with constant velocity which increases with the inhibition degree α_{pp} . Here, the parameter $\beta_{ii} = 0.1$ and the others are in Table S1.

Text S1. The numerical scheme for Eqs. (1-2).

In this study, the nutrient diffusion equations Eq. (1) is a nonlinear parabolic partial differential equation in two-dimensional space under the conditions Eqs. (2). In the case of one-dimensional space, the similar general parabolic equation is¹

$$\partial_t u = a \partial_{xx} U + bu, \qquad 0 < x < 1, \quad t > 0. \tag{S.1}$$

The initial and boundary conditions are

$$\begin{array}{rcl} u(x,0) &=& g(x), & 0 \le x \le 1 \\ u(0,t) &=& \psi(t), & t \ge 0 \\ u(1,t) &=& \phi(t), & t \ge 0. \end{array}$$

For this class of numerical problem, the differences of Eq. (S.1) are

$$\partial_t u \Big|_j^n = \frac{u_j^{n+1} - u_j^n}{\tau} + O(\tau)$$

$$\partial_{xx} u \Big|_j^n = \frac{1}{h} \left(\partial_x u \Big|_{j+1/2}^n - \partial_x u \Big|_{j-1/2}^n \right) + O(h^2)$$

$$\partial_x u \Big|_{j-1/2}^n = \partial_x u \Big|_{j-1/2}^{n+1} - \tau \partial_x \partial_t u \Big|_{j-1/2}^{t_n + \theta \tau}, \qquad 0 \le \theta \le 1$$

Here, u_j^n denotes the value of function u at (x_j, t_n) . τ and h represent the time and spatial step size, respectively. Substituting the above equations to Eq. (S.1), we have

$$\frac{u_j^{n+1} - u_j^n}{\tau} = \frac{a}{h} \left(\partial_x u \Big|_{j+1/2}^n - \partial_x u \Big|_{j-1/2}^n \right) + b u_j^n + O(\tau + h^2).$$
(S.2)

Considering the central differences as below

$$\partial_x u \Big|_{j+1/2}^n = \frac{1}{h} \left(u_{j+1}^n - u_j^n \right) + O(h^2),$$

$$\partial_x u \Big|_{j-1/2}^n = \frac{1}{h} \left(u_j^{n+1} - u_{j-1}^{n+1} \right) + O(h^2),$$

a highly efficient quasi-Saul'ev difference scheme for one-dimensional Eq. (S.1) is deduced, ¹⁻⁵

$$\frac{u_j^{n+1} - u_j^n}{\tau} = \frac{a}{h^2} \left(u_{j+1}^n - u_j^n - u_j^{n+1} + u_{j-1}^{n+1} \right) + bu_j^n + O(\tau + h^2).$$
(S.3)

A reduced form of two-dimensional parabolic equation used in our simulation could be described by

$$\partial_t u = a \left(\partial_{xx} + \partial_{yy} \right) u + bu. \tag{S.4}$$

With extending the difference scheme of Eq. (S.3), we deduce the numerical scheme,

$$\frac{u_{j,l}^{n+1} - u_{j,l}^{n}}{\tau} = \frac{a}{h^2} \left(u_{j+1,l}^n - u_{j,l}^n - u_{j,l}^{n+1} + u_{j-1,l}^{n+1} \right) + \frac{a}{h^2} \left(u_{j,l+1}^n - u_{j,l}^n - u_{j,l}^{n+1} + u_{j,l-1}^{n+1} \right) + bu_j^n + O(\tau + h^2).$$
(S.5)

After sorting out the above equation, we obtain the final iterative scheme performed in our simulations,

$$u_{j,l}^{n+1} = \frac{1+b\tau-2\lambda}{1+2\lambda}u_{j,l}^{n} + \frac{\lambda}{1+2\lambda}\left(u_{j+1,l}^{n} + u_{j,l+1}^{n} + u_{j-1,l}^{n+1} + u_{j,l-1}^{n+1}\right),\tag{S.6}$$

where $\lambda = a\tau/h^2$.

References

- 1. Jinpu Lu and Zhi Guan, *Numerical algorithm of partial differential equations* (in Chinese), 2nd edition (Tsinghua press, Beijing, 2003).
- 2. A. A. Medovikov, High order explicit methods for parabolic equations, BIT Numerical Mathematics 38, 372 (1998).
- **3.** V. K. Saul'ev, On a method of numerical integration of the equation of diffusion, *Dokl. Akad. Nauk SSSR (NS)* **185**, 1077 (1957).
- 4. V. K. Saul'ev, A new difference method for the numerical solution of fourth-order parabolic equations, U.S.S.R Comput. Maths. Math. Phys. 26, 147 (1986).
- 5. V. K. Saul'ev, Integration of equations of parabolic type by the method of nets, *International series of monographs in pure and applied mathematics*, Vol. 54, P ergamon Press (Oxford 1964).