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ABSTRACT

Table S1. Summary of input parameters for our model in simulations.

Parameter Symbol Value
Spatial size Lx, Ly 401
Spatial step h 0.1
Time period of cell cycle τ 1
Time step ∆t 0.01τ

Total simulation time tmax 200τ

Diffusion parameter of nutrient D 1×10−4

Rate coefficient of nutrient consumption per cell k 0.02
Degradation of ECM per cell γ 5×10−4

Criteria of nutrient for necrotic cell φc 0.02
Shape parameter of proliferative probability θp 0.2
Shape parameter of invasive probability θi 0.2
Inhabitation of proliferation from proliferative cell αpp 0∼−0.95*
Inhabitation of proliferation from invasive proliferative cell αpi −0.02
Enhancement of migration from proliferative cell βip 0.02
Enhancement of migration from invasive cell βii 0∼ 0.95*
* with interval 0.05.
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Supplementary Figures
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Figure S1. An example of renormalized proliferative and invasive probabilities for a cell in the spatial grid following
by Eqs. (3-4). Here, the living cell count NT = 3, the shape parameters θp = θi = 0.2. The phenotypic parameters in Table 1
are αpp =−0.1, βii = 0.1, αpi =−0.02, and βip = 0.02. The blue circled line is the proliferative probability and the green one
is of invasive cell. The red dashed line denotes the nutrient criterion of necrotic phenotype φc = 0.02.
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Figure S2. Snapshots of necrotic cells in growing tumor based on our simulation at different times, (a) t = 50 τ , (b)
t = 100 τ , (c) t = 150 τ , (d) t = 200 τ . Here, the living cells and ECM have been removed. Parameters are the same as those in
Figure 3.
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Figure S3. The average radial distance 〈r〉 again time t. 〈r〉 increases linearly with t. It means the tumor grows with
constant radial velocity v. Note that v decreases with increasing the inhibition degree αpp except for αpp =−0.9. Here, the
parameter βii = 0.1 and the others are in Table S1.
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Figure S3. The average roughness 〈R〉 again time t. 〈R〉 increases linearly with t. It means the surface roughness grows with
constant velocity which increases with the inhibition degree αpp. Here, the parameter βii = 0.1 and the others are in Table S1.
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Text S1. The numerical scheme for Eqs. (1-2).

In this study, the nutrient diffusion equations Eq. (1) is a nonlinear parabolic partial differential equation in two-dimensional
space under the conditions Eqs. (2). In the case of one-dimensional space, the similar general parabolic equation is1

∂tu = a∂xxU +bu, 0 < x < 1, t > 0. (S.1)

The initial and boundary conditions are

u(x,0) = g(x), 0≤ x≤ 1
u(0, t) = ψ(t), t ≥ 0
u(1, t) = φ(t), t ≥ 0.

For this class of numerical problem, the differences of Eq. (S.1) are

∂tu
∣∣n

j =
un+1

j −un
j

τ
+O(τ)

∂xxu
∣∣n

j =
1
h

(
∂xu

∣∣∣nj+1/2 −∂xu
∣∣∣nj−1/2

)
+O(h2)

∂xu
∣∣∣nj−1/2 = ∂xu

∣∣∣n+1
j−1/2 − τ∂x∂tu

∣∣∣tn+θτ

j−1/2 , 0≤ θ ≤ 1.

Here, un
j denotes the value of function u at (x j, tn). τ and h represent the time and spatial step size, respectively. Substituting

the above equations to Eq. (S.1), we have

un+1
j −un

j

τ
=

a
h

(
∂xu

∣∣∣nj+1/2 −∂xu
∣∣∣nj−1/2

)
+bun

j +O(τ +h2). (S.2)

Considering the central differences as below

∂xu
∣∣∣nj+1/2 =

1
h

(
un

j+1−un
j
)
+O(h2),

∂xu
∣∣∣nj−1/2 =

1
h

(
un+1

j −un+1
j−1

)
+O(h2),

a highly efficient quasi-Saul’ev difference scheme for one-dimensional Eq. (S.1) is deduced,1–5

un+1
j −un

j

τ
=

a
h2

(
un

j+1−un
j −un+1

j +un+1
j−1

)
+bun

j +O(τ +h2). (S.3)

A reduced form of two-dimensional parabolic equation used in our simulation could be described by

∂tu = a(∂xx +∂yy)u+bu. (S.4)

With extending the difference scheme of Eq. (S.3), we deduce the numerical scheme,

un+1
j,l −un

j,l

τ
=

a
h2

(
un

j+1,l−un
j,l−un+1

j,l +un+1
j−1,l

)
+

a
h2

(
un

j,l+1−un
j,l−un+1

j,l +un+1
j,l−1

)
+bun

j +O(τ +h2). (S.5)

After sorting out the above equation, we obtain the final iterative scheme performed in our simulations,

un+1
j,l =

1+bτ−2λ

1+2λ
un

j,l +
λ

1+2λ

(
un

j+1,l +un
j,l+1 +un+1

j−1,l +un+1
j,l−1

)
, (S.6)

where λ = aτ/h2.
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