
Supplementary Figures. 

 

Supplementary Figure 1 | The extended compartment model. Sub-compartment C 

(blue) and 1-C (yellow) represent the fractions of allele carriers and non-carriers in 

the focal patch, respectively, and sub-compartment E (dark grey) and 1-E (light grey) 

represent the fractions of allele carriers and non-carriers in the surrounding 

environment, respectively. Gene transfer (r) converts non-carriers into carriers. 

Positive selection (s) causes a replacement of non-carriers by carriers in the focal 

patch, while the cost (ε) causes a replacement of carriers by non-carriers in the 

external environment. Migration (m) exchanges cells between focal patch and 

external patch. 

 



 

Supplementary Figure 2 | The focal trait is lost in large environments. Final 

fractions of gene carriers in the external environment calculated for different 

relative external patch sizes (p), gene costs (ε), and migration rates (m). The final 

fraction of gene carriers E* is given as a colour from yellow (high E*) to blue (small 

E*) and with very small values (E* < 0.0001) indicated in black. The plots show that 

the amount of external gene carriers becomes vanishingly small for p > 104. For 

lower values of p (p < 104) one observes that E* becomes lower for higher gene costs 

ε and for lower migration rates m. The other parameters are, as in main-text Figure 1 

and Figure 2, N = 108, and C(0) = 1000/N, E(0)=0, r = 10-6 and for each panel s = 2m.  
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Supplementary Figure 3 | Comparison of the simplified model (Fig. 1a) and the 

extended compartment model (Supplementary Fig. 1). Graphs showing the final 

cumulative horizontal gene transfer over a range of positive selection pressures, as 

shown in Figure 2b. Here we show the results of the simplified compartment model 

(assuming E(t) = 0) in black and the results of the extended compartment model as 

red dotted lines for a range of p and ε. There are 3 different outcomes: for low 



values of p and of ε, gene flux is very limited in the extended model (plots 

highlighted in red). For intermediate values of p and ε the gene flux of the extended 

model peaks at a different selection pressure than the simplified model, but with the 

same peak value (non-highlighted plots). For high values of p and of ε the gene flux 

of the two models are almost identical (gene flux of the extended model differs less 

than 1% from the simplified model, plots highlighted in green). The cumulative gene 

transfer is measured at t = 105 and the other parameters are N = 108, and C(0) = 

1000/N.  

 

Supplementary Figure 4 | The Wright-Fisher simulations match the coalescence 

model. Graphs showing the final diversity ratio over a range of positive selection 

pressures calculated using the coalescence model (dotted black lines) and calculated 

using the individual-based model (red and blue lines). Simulation results are 

averaged over 50 simulations, and the standard deviation is given by the transparent 

area. The two different models show the same results. (N = 106, tend = 105, r = 10-4, 

C(0) = 1000/N, and either m = 0 or m = 0.02) 

  



Supplementary Methods. 

Here we present an extended version of the methods presented in the paper.  

 

 

A) Continuous model 

Here we introduce an extended version of the compartment model presented in the 

main text. This extended model captures how a focal gene spreads both inside a 

focal patch where it is under positive selection, and outside this patch. Outside the 

focal patch the cells do not benefit from the focal gene but pay a fitness cost when 

they carry it. For simplicity, we capture the external environment as a single patch 

that is connected to the focal patch by cell migration.  

Our model is analogous to an SIR (Sensitive, Infected, Resistant) model, often known 

as a “compartment model”, which is commonly used to describe the dynamics of an 

epidemic by representing the flow between sub-communities ("compartments"). 

Our model contains two patches, the focal patch and the environment patch, each 

comprising two compartments: carriers ("infected") and non-carriers ("sensitive") of 

the selected trait. In the focal patch there are a constant number of cells (N) and 

varying fractions of beneficial gene carriers (C) and non-carriers (1-C), outside the 

patch there is a p-times larger number of cells (pN) and varying fractions of focal 

gene carriers (E) and non-carriers (1-E). For simplicity, each patch is well-mixed and 

we do not consider spatial effects. We also do not consider stochastic effects in this 

model but our later models do. The dynamics within both patches are determined by 



the following three processes, which are considered to occur continuously in time, 

where one time unit is one cell generation: 

 

1. Selection: A cell's fitness depends on whether it carries the focal gene or not and 

whether it lives in the focal patch or not. The general fitness term of a cell is w = 1 - ε 

+ β, where ε is the cost that all trait-carriers experience and β is the benefit that only 

trait-carriers within the focal patch experience. We assume that the benefit of the 

focal trait in the selective patch is larger than its cost (β > ε) so that the net change in 

fitness is positive (s = β - ε, s > 0). This leads to the following fitnesses: 

Carriers in focal patch: w = 1 + s, non-carriers in focal patch: w = 1 

Carriers in environment patch: w = 1 - ε, non-carriers in environment patch: w = 1 

2. Horizontal gene transfer: We let r be the probability that a carrier transmits the 

focal gene to a non-carrier per cell generation and we assume that horizontal 

transfer occurs according to the mass action principle: the transmission rate is 

proportional to both the fraction of recipients (1-C or 1-E) and the fraction of donors 

(C or E). 

3. Migration: Migration works as an exchange of cells between focal patch and 

environment patch. The migration rate is specified through m, the fraction of the 

cells in the focal patch that is replaced randomly by individuals from the external 

patch landing in the focal patch per unit time. In the external patch cells from the 

focal patch replace a fraction of m/p per unit time. 

 

The evolution of our compartment model can be described using two coupled 

ordinary differential equations (ODEs). We let CN(t) and EN(t) be the number of 



carriers in the focal patch and the environmental patch, respectively, at time t. Due 

to the constant carrying capacities of the patches, the number of non-carriers is 

given through N - CN(t) for the focal patch and through pN - EN(t) for the 

environment patch. We can then describe the dynamics of the whole system by 

considering sub-communities C and E only. The rate of transitions from sub-

compartment 1-C to C via horizontal gene transfer is given by vHGT = rCN(t) (N - 

CN(t))/N. Similarly, in the environment patch the rate of gene transitions is given by 

ωHGT = rEN(t) (pN - EN(t))/(pN). The rate of increase in size of carrier-compartment C 

due to positive selection is given by vselection = s/(1 + sCN(t)/N)CN(t) (N - CN(t))/N. In the 

environment patch the carrier-compartment E is reduced by selection at rate 

ωselection = ε/(1 - εEN(t)/(pN))EN(t) (pN - EN(t))/(pN). Finally, the rate at which 

individuals in C are replaced through migration is given by vmigration = mNCN(t)(pN-

EN(t))/(pN) - mNEN(t)/(pN)(N-CN(t))/N=mN(CN(t)/N-EN(t)/(pN)). In the external patch, 

migration increases the carrier-compartment E at rate ωmigration =mN(CN(t)/N-

EN(t)/(pN)). 

In summary, the system evolves according to the system of ODEs 
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Dividing the first equation of equation system (A2) throughout by N and dividing the 

second equation throughout by pN yields, for the carrier-fractions C(t) = CN(t)/N and 

E(t) = EN(t)/(pN), the coupled equations: 
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For a visualisation of our extended compartment model see Supplementary Figure 

S1. In the external patch, trait carriers are added through migration from the focal 

patch, and the trait spreads through horizontal transfer and is removed due to 

positive selection. Given a very small gene transfer rate, the key parameters that 

determine to what extend the trait is maintained in the external patch are the cost ε 

and p, the size of the external patch relative to size of the focal patch. Because 

microbial genome evolution by gene gain and loss is biased towards loss of 

unnecessary genes1,2, we assume that ε is larger than the gene transfer rate r (ε > r). 

We explore in our model an according range of values for ε (10-5 < ε < 10-1 in 

Supplementary Fig. 2 and 10-5 < ε < 10-3 in Supplementary Fig. 3). The migration 

parameter m determines the amount of cell exchange between the patches, and 

when m is very high it causes the two patches to behave close to a single, well-mixed 

patch. Because we assume that the focal patch and its environment are spatially 

separated, we consider m = 0.02 as a high migration rate and choose this to be the 

upper limit. We plot the fraction of carriers in the external patch at equilibrium (E*) 



for a range of parameters ε and p (see Supplementary Fig. 2). We determine E* by 

solving equations (A3), in MATLAB until equilibrium is reached, with initial conditions 

C(0) = 0.001, E(0) = 0 and for different migration rates m and a selection pressure of 

s = 2m so that the focal trait is fixed in the selective patch.  Supplementary Figure S2 

shows that when the external patch is much larger than the focal patch (p > 104), 

then the focal trait is extremely rare outside the focal patch (E* < 0.0001). We begin 

by studying this case in detail, by setting E(t) = 0: 
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The steady states of this system for r ≈ 0 is given approximately by: 
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with C*= 0 defining an unstable equilibrium and C* = (s - m)/((m + 1)s) a stable 

equilibrium, given s > 0, according to linear stability analysis. Here and throughout, 

we use an asterisk to denote the steady-state value of a variable.  

Table 1 provides a summary of the parameters present in this model. 

 

Horizontal gene flux. To capture the gene flux through genetic transfer in our focal 

community, we define a composite parameter that is the rate of transfer of the 

selected trait in the whole community:  

 



                      .     (A6) 

 

This horizontal gene flux spreads the beneficial gene without removing migrant cells, 

while the vertical gene flux, given through sC(t)(1 - C(t)), spreads the gene with 

removing migrants. The horizontal gene flux is maximized at equal numbers of 

donors and recipients (C = 0.5), and it thus depends on the patch conditions, 

including the initial number of trait carriers. At steady-state of the system, the 

horizontal gene flux then only depends on the selection pressure, the migration rate 

and the rate of gene transfer. In this case the horizontal gene flux is calculated by 

substituting equation (A5) for the steady-state fraction of non-carriers into equation 

(A6), giving 
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Analyzing this expression for the horizontal gene flux at steady-state, we find that 

there is no gene flux in the absence of migration (HGTflux = 0 for m = 0). We also see 

that, for a given migration rate, the gene flux is highest at an intermediate selection 

pressure (s = 2m/(1 - m)). 

 

Cumulative gene flux. Gene transfer events can accumulate over time and may 

ultimately cause sweeps of the focal locus. Because the horizontal gene flux gives 

the rate of gene transfer events, the integral of the flux over a time interval gives the 

expected number of transfer events in this time. To obtain the numerical solutions of 

the cumulative gene flux plotted in Fig. 1 and Fig. 2, we employ the midpoint rule.  



 

Explicitly modelling immigration. We now move to explicitly modelling immigrating 

cells to relax the assumption that migrants never arrive pre-adapted in the focal 

patch and test how this changes our results. For this we return to equations (A3) and 

we use these equations to repeat the calculations of the final cumulative gene flux 

using different values for p and ε, and we compare the new results with our results 

from Figure 2b (Supplementary Fig. 3).  

Very small fractions of external carriers (Supplementary Fig. 2, black areas) then 

mean that the system with external patch (Eq. A3) behaves like the simplified system 

(Eq. A4) and the latter is a good approximation of the former. In our next models, we 

explore the effects of the horizontal gene flux observed when migrants lack the 

adaptive trait (E(t) = 0) which corresponds to the case were the outside environment 

is much larger than the focal patch.  

 

B) Coalescence model 

We use a coalescence approach to model the genomes of our community under 

influence of a selective sweep in combination with genetic transfer and migration. 

We ask how these processes influence the evolution of genetic diversity in the focal 

locus and in the background genome. To answer this question we first simulate the 

fraction of selected gene carriers (C) in the time interval t  [0, tend] using equation 

(A3). With the simulated values of C(t) we can then compute the coalescence 

process for two homologous loci in order to determine the expected diversity in 

their genome site. For the diversity in the background genome, we consider two 

random background loci at time t = tend and for the diversity in the focal locus we 



consider two focal loci at t = tend. We then go backward in time until t = 0, while 

updating the probabilities of the loci being in a given state.  

The loci can take the following states: 

State 11: Both loci are in two distinct individuals that are both carriers 

State 00: Both loci are in two distinct individuals that are both non-carriers 

State 01: Both loci are in two distinct individuals where one is a carrier and the other 

one a non-carrier 

State 1: The two loci are coalesced in one individual that is a carrier  

State 0: The two loci are coalesced in one individual that is a non-carrier 

State m: At least one of the loci is in a migrating individual outside the patch. 

 

We first explain how we apply the coalescence model to the background genome. 

When taking two random loci of the background genome at t = tend, we know that 

these loci can be found in one of the first 3 states: 11 (with probability P11(tend) = 

C(tend)2), 00 (with probability P00(tend)= (1 - C(tend))2), or 01 (with probability P01(tend) = 

2C(tend)(1-C(tend))). The probabilities for the remaining states are zero (P1(tend) = 0, 

P0(tend) = 0, Pm(tend) = 0). We use these probabilities as our initial condition and 

simulate the change of all six probabilities backward in time, until t = 0, by solving 

the following set of coupled ODEs: 
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where we use the following probabilities of the loci to change their state at time t: 
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where fa is the relative fitness of a carrier cell at time t - 1, given by: 
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Here we make the typical assumptions of a coalescence model3 that generations are 

discrete and non-overlapping and that the community size (N) is constant 

throughout time. 

After running the coalescence simulation from t = tend to t = 0, we obtain the 

unconditional probabilities for the two background loci (i) to have coalesced within 

the simulated time interval (P1 + P0), or (ii) to be derived from two distinct cells that 

have either been in the community since t = 0, or that have migrated into the patch 

(P11 + P10 + P00 + Pm). In case (i) the two loci are identical and in case (ii) the two loci 

are different. Only, however, when the two loci descended from 2 distinct cells at t = 

0 that are carriers (with probability P11(0)), we assume that the loci are identical, 

because the genotype that initially carries the beneficial gene comes into the patch 

as a clonal group. We can calculate the probability of the two background loci being 

identical as: 

 

P(2 background loci are identical) = P1(0) + P0(0) + P11(0).  

 

The probability of two randomly chosen gene sites to be identical is the Simpson's 

index of diversity4. Here we use the inverse of the Simpson's index to measure 

diversity, which is the effective number of species in a community (of order 2,5). The 

diversity in the background genome is then given by:  
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Similarly, we can calculate the probability of two focal loci to be identical. Note that 

two randomly sampled focal loci at t = tend are identical when they are in two carrier 

cells (state 11) and different when only one locus is in a carrier cell (state 01). We 

define the diversity of the focal locus as: 
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We measure the power of the horizontal sweep using the ratio of the diversity in the 

background genome over the diversity in the focal locus, and we call this ratio the 

diversity ratio DR, given by: 
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C) Individual-based model 

We develop an individual-based model of our selective patch to confirm our 

coalescence model prediction and to be able to change the ecological scale of the 

patch by subdividing the patch into multiple niches. This model allows us to describe 

an ecologically homogeneous patch where cells live from a single resource, or to 

model an ecologically heterogeneous patch in which different genotypes are 

specialized in eating different resources. Alternatively, the ecological subdivision 

may represent negative frequency-dependent selection of genotypes, for example 

through phage predation6. Our simulated patch contains a fixed number of cells (N), 

where each individual cell is described by a set of three numbers representing the 



focal locus (transferable), the genotype of the remaining background genome (non-

transferable) and the niche/resource association of the genotype. The background 

genotype can take any positive integer, which matches the focal locus for cells at the 

beginning of the simulation and for migrating cells. The focal locus can take the 

adapted state 1 or alternatively any other positive integer for non-adapted cells.  

We start each simulation with a diverse community of cells so that every cell 

carries a different background genotype (and matching focal locus) with randomly 

assigned niche association. The initial community then also contains a small clonal 

group of adapted cells. For our simulations we choose a large community size that is 

possible to simulate in considerable time (N = 106) and we choose an initial number 

of adapted cells so that the frequency process of the adapted type is expected to 

behave deterministically (C(0) > 5/(Ns),7, C(0) = 0.001). We then update the cell 

numbers for each following generation according to a discrete time Wright-Fisher 

process 8. At each generation the fitness of each cell is determined according to their 

adaptive state and their competition within the n ecological niches. We simulate the 

ecological competition similar to the symsim model by Friedman et al.9.  

Each cell obtains resources from its assigned niche, but also from the 

remaining niches. Thus, for a given cell i there is a vector of length n giving the cell's 

ecological fit to each niche. A cell's competitive strength in its niche is denoted by z 

 [0,1], where z = 1 means that a cell only competes in its own niche, and z = 1/n 

means that a cell competes in all niches equally. For example, a cell that is 

specialized in resources of niche 1 with z = 0.8 would compete in each of the n niches 

(here n = 5) according to the vector i = [0.8 0.05 0.05 0.05 0.05]. We then define the 

competitive weight  of a cell i in niche j is as the product of its fitness fi (f = 1 + s for 



carriers and f = 1 for non-carrier cells) times its association with niche j, so that ij = 

fii,1. For example, the cell specialized in niche 1 has in niche 1 a competitive weight 

of 0.8 if does not carry the trait, or 0.8(1 + s) if it does carry the trait. Each of the n 

niches holds a resource share of N/n in each generation, so that a cell obtains 

resources from niche j proportionally to its relative competitive weight in this niche 

according to: 
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where Rij is the amount or resources obtained by cell i from niche j and j is the 

summed competitive weight in niche j given by:  
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The total amount of resources obtained by cell i per generation is then given by: 
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The resources of a cell determine the reproduction of a cell. Because the resource 

share per niche is scaled to N/n, the mean amount of resources per cell per 

generation is 1. Therefore, we can use Ri directly as the mean number of offspring of 

a cell. We update the cell numbers stochastically using a Poisson distribution. Then, 

cells that lack the selected trait have a chance of acquiring the trait with a probability 



C(t)r. We use a rate of gene transfer of r = 10-4, which is higher than conservative 

estimates (10-6 ≤ r ≤ 10-5,10), in order for simulations to run in a reasonable 

computational time. However, the qualitative effects of niche separation that we 

observe should generalize to lower rates of genetic transfer. Moreover, recent 

studies suggest that rates of gene transfer may be orders of magnitude larger than 

these conservative estimates11,12. In simulations with migration, we model this 

process by replacing existing cells at random with new incoming genotypes (and 

matching focal locus). Each new genotype is also assigned to an associated niche at 

random.  

Each simulation (implemented in MATLAB) is run for tend = 105 time steps, 

which is equivalent to about 6 years of microbial evolution given a generation time 

of 30 minutes13. We show that the results of our individual-based model match our 

coalescence model (see Supplementary Fig. 4). We track the background genomes 

and focal loci of all individuals in the community over time and we also measure the 

horizontal gene flux by counting the number of gene transfer events. From there we 

determine the parameters of interest, such as the fraction of carrier cells C, or 

diversities in different parts of the genome. The diversity of a genome is calculated 

as:  
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where n is the number of different locus variants present in the community and pi is 

their respective proportion. This calculation is analogous to the effective number of 

species in a community (of order 2,5). We measure the power of the horizontal 



sweep using the ratio of the diversity in the background genome over the diversity in 

the focal locus, and we call this ratio the diversity ratio DR, given by: 
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where Dbg is the diversity in the background genome and Df is the diversity in the 

focal locus. A diversity ratio of 5, for example, means that effectively 5 different 

background genomes per single focal locus appear in the genomes of the 

community.  

This diversity ratio can also be calculated for compartment C and 

compartment 1-C separately. For the compartment of non-carriers (1-C) the 

background genomes match their focal locus, giving a diversity ratio of 1. For the 

compartment of carriers (C), gene transfer allows for an increase of diversity in the 

background genome against the homogeneous focal locus. Thus, the diversity ratio 

in C is directly linked to the cumulative gene flux. The diversity ratio of the whole 

community lies between the diversity ratios of compartments C and 1-C, depending 

on the size of C. It therefore behaves similarly, but not exactly like the cumulative 

gene flux with respect to a changing selection pressure. 
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