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Supplementary Figure 1: Characterization of Trim33” macrophages

a) Genomic PCR detection of Trim33 in B lymphocytes from WT and Trim33” mice
(left panel) and in myeloid populations from Trim33” mice (right panel) (MDP:
Monocyte-Macrophage dendritic cells progenitors and MOP: common Monocyte

progenitors).



b) Kinetics of Ifnb1 mMRNA levels after poly(l:C) activation of WT and Trim33” BMDM
(left panel) or PM (right panel). Mean £ SEM, n=3. * p<0.05 and ** p<0.01, Mann &
Whitney test

c) Relative mRNA levels of 1sg20 and Rsad2 in WT and Trim33" BMDM treated for
the indicated times with IFN-B (100 U/ml). Data are expressed as fold change of
Isg20 and Rsad2 mRNA levels in Trim33" versus WT BMDM. Mean + SEM, n=3.

d) Relative mRNA levels of Isg20 and Rsad2 in WT BMDM treated with LPS
(0.1ng/ml) and with IFN-B (100 U/ml) added 4 hours after the LPS activation. Data
are expressed as fold change of Isg20 and Rsad2 mRNA levels over their mRNA
levels in BMDM treated only with LPS (0.1 ng/ml) at the indicated times after addition
of LPS. Mean = SEM, n=3.

e) Western blot analysis of TRIM33 expression in NIH3T3 cells not transduced or
transduced with lentiviral vectors encoding shcontrol or shTrim33. p-actin was used
as loading control.

f) (Left panel) Genomic PCR detection of Trim33 in WT and Trim33” iM. (Right
panel) Western blot analysis of TRIM33 in WT and Trim33” iM at indicated time
points after LPS stimulation.

g) Western blot analysis of TRIM33 in Trim33™ iM transduced with lentiviral vectors
encoding GFP (iM Trim33™ + GFP), full-length flag-TRIM33 (iM Trim33™ + WT), or

the indicated TRIM33 mutants. B-actin is shown as loading control.
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Supplementary Figure 2: Deletion of ICE with the CRISPR/Cas9 system

a) Western blot analysis of TRIM33 and PU.1 expression in NIH3T3 PU.1" cells as
compared to parental NIH3T3 cells. B-actin was used as a loading control.

b) Kinetics of Ifnbl mMRNA levels in RAW 264.7 cells activated with LPS. Mean *
SEM, n=3.



c) Schema illustrating CRISPR/CAS9-mediated deletion at the mouse ICE in the
Ifnbl locus using two guides RNA (gRNA 5A2, blue and gRNA 3A, green).
Sequences of WT and deleted alleles are shown; gRNA target sites are in blue and
green, and protospacer adjacent motif (PAM) in red. Deletion junction was verified by
sequencing.

d) (Top) Table showing frequency of ICE deletions in RAW 264.7 cells using lentiviral
delivery of Cas9 and indicated gRNA. (Bottom) Genomic PCR of clones isolated from
RAW 264.7 and NIH3T3 cells transduced with the gRNA 5A2 and 3A along with the
CAS9 nuclease. WT cells and cells with a monoallelic deletion of ICE (ICE*") are
shown.

e and f) Kinetics of Ifnb1 mRNA levels in WT and ICE"" RAW 264.7 cells activated
with LPS (E) or in WT and ICE"" NIH3T3 activated with poly(I:C) (F). Mean + SEM,
n=3. * p<0.05, Mann & Whitney test

g) (Top) CRISPR/CAS9-mediated deletion of the PU.1/TRIM33 site in ICE using one
guide RNA (gRNA PU.1 site, red). Sequences of WT and of two clones carrying a
homozygous deletion of the PU.1/TRIM33 site in ICE are shown. gRNA target
sequence is in red, PAM in italic and the consensus PU.1 site in bold.

(Bottom) Genomic PCR of individual clones for WT and ICE” RAW 264.7 showing

the two homozygous deletions (clone #15 and clone #34).
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Supplementary Figure 3: Chromatin structure of ICE in hematopoietic cells
a) (Left panel) Vista plot showing conservation profile between mouse and human
Ifnbl locus. Alignment of sequence corresponding to ICE (in yellow) and conserved



transcription factor binding sites are indicated. (Right panel) UCSC genome browser
images showing the binding of the indicated transcription factor at the Ifnbl locus in
resting or LPS-activated BMDM (3 hours). Ifnb1l gene and ICE are indicated. (Data
sets from 1234

b) H3K4me3, H3K27ac and H3K4mel histone modification marks at the Ifnb1l locus
in different hematopoietic populations. Ifnb1l gene and ICE are indicated. Data sets
from °. LT-HSC, long term hematopoietic stem cells; ST-HSC, short term
hematopoietic stem cells; MPP, multipotent progenitor;, CMP, common myeloid
progenitor; GMP, granulocyte monocyte progenitor; GR, granulocytes; mono,
monocyte; macro, macrophage; MEP, megakaryocyte erythroid progenitor; eryA,
erythrocytes A; eryB, erythrocytes B; CLP, common lymphoid progenitor; B, B cells;
T CD4, T CD4+ cells; NK, natural killer cells.

c) ChIP-gPCR data for H3K4mel on ICE in WT and Trim33” BMDM treated with

LPS. Mean = SEM, n=3.
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Supplementary Figure 4: Role of H3 acetylation in TRIM33 function
a) Kinetics of Serpinel and I112 mRNA levels in LPS-activated WT BMDM in

presence or absence of TSA at the indicated time of LPS treatment. Mean = SEM,

n=3. ** p<0.01, Student’s t test

b) ChIP-gPCR data for Pol Il on Ifnbl promoter in LPS-activated WT and Trim33"

BMDM, in presence (dotted columns) or absence (continuous columns) of C646, at

the indicated time of LPS treatment.

¢) Uncropped film corresponding to the western blot shown in Figure 4f
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