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Supplementary Figure 1. Transcriptional and epigenetic de�nition of primed LBD1-complex 
target genes. (a) Quanti�cation box plot depicting the average expression levels (RPKM) of non-
expressed genes (‘Non-expr.) and 51 archetypical erythroid genes (involved in heme biosynthesis 
and erythrocyte membrane function1) in MEL cells before (‘progenitor’) and after (‘di�erentiated’) 
induction of erythroid maturation. Various characteristics of this gene set during MEL cell 
di�erentiation are outlined in the gray box. (b) LDB1-complex target genes (n=32, as de�ned by 
ChIP-Seq) from the erythroid gene set used in panel a were inspected for RNA Polymerase II 
(RNAPII) enrichment (measured by ChIP-Seq) during MEL cell di�erentiation. Three criteria were 
de�ned that indicate the presence of paused RNAPII at the proximal promoter of these genes. 
Genes scoring a positive response for 2 or 3 criteria were de�ned as ‘paused’. Examples of two of 
the examined archetypical erythroid genes (Slc4a1 and Gypa) are shown, both showing no overt 
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Supplementary Figure 2. Validation of ETO2-V5-Bio functionality in MEL cells. (a) MEL cells 
stably expressing BirA and ETO2-V5-Bio cells were �xed and stained for endogenous ETO2 (in 
green) or for ETO2-V5-Bio (using a V5 antibody, in red). Note the nuclear localization (as compared 
to the DAPI nuclear stain) of ETO2-V5-Bio and co-localization with endogenous ETO2. (b) 
Endogenous co-immunoprecipitation validations of ETO2-V5-Bio interacting proteins in MEL cells 
identi�ed by LC-MS/MS. Species-matched IgG was used to control for non-speci�c binding. Full-
size blot images can be found in Supplementary Fig.10. (c) Bio-ChIP qPCR experiments showing 
recruitment of ETO2-V5-Bio to known endogenous ETO2 genomic binding sites (Gata1 -3.5 HS 
enhancer and the Klf1 upstream enhancer). Regions immediately up- or downstream (+ or – 1kb) 
of the enhancer (enh.) sites were used as negative (neg.) controls. Enrichments were normalized to 
Amylase promoter values.  A representative of two independent experiments is shown. (d) A 
comparison between proteins identi�ed by mass spectrometry using the ETO2-V5-Bio streptavidin 
pulldown and the endogenous ETO2 pulldown. See Methods section for further details on 
methodology and analysis. Full-size images of all Western Blots shown can be found in 
Supplementary Fig.10. WB, Western Blot; IP, immunoprecipitation        
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V5-IRF2BP2 expression constructs were co-transfected into HEK 293T cells. Protein extracts were 
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Supplementary Figure 4. ETO2 and IRF2BP2 ChIP-Seq peak positioning relative to 
transcription start sites. The GREAT analysis tool (see Methods) was used to determine the 
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Supplementary Figure 5. Transcription factor binding pro�les and LDB1 ChIP-qPCR in 
ETO2/IRF2BP2 knockout MEL cell lines. (a) ChIP-Seq data for LDB1, ETO2, IRF2BP2, GFI1B and 
LSD1 (from MEL erythroid progenitor cells) is shown for the α-globin (left), Epb4.2 (middle) and 
Alas2 (right) loci. Note the high degree of co-occupancy of the ETO2-interacting corepressor 
proteins (IRF2BP2, GFI1B and LSD1) on known LDB1/ETO2-complex target genes. (b) ChIP-qPCR 
experiments showing that LDB1 protein binding in MEL cells is maintained at erythroid genes in 
the absence of ETO2 or IRF2BP2. Enrichments are shown as relative values over background signal 
at the amylase gene promoter (n=2-3, error bars denote s.e.m.). (c) ChIP-Seq data for LDB1, ETO2, 
IRF2BP2, and NCOR1 (from MEL erythroid progenitor cells) is shown for the α-globin (left) and β-
globin (right) loci. Note the high degree of co-occupancy of the LDB1 complex (represented here 
by LDB1, ETO2 and IRF2BP2) and NCOR1 at the locus control region (LCR) that regulates globin 
gene expression at these loci.     
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Supplementary Figure 6. NCOR1 knockdown and HDAC3 inhibition in erythroid progenitors 
and histone acetylation dynamics at selected primed erythroid genes during development. 
(a,b) shRNA (panel a) and siRNA (panel b) mediated knockdown of Ncor1 mRNA in MEL cells. qPCR 
gene expression analysis was performed 48-72h after transduction/transfection (normalized 
versus Rnh1 levels). 3-4 di�erent shRNAs/siRNAs were used; shown is a representative experiment. 
(c) UCSC browser screenshot depicting RNA-Seq data from MEL cells for the Ncor1 locus. Note the 
large amount of protein-coding isoforms potentially expressed in MEL cells. (d) MEL cells were 
treated with either vehicle (DMSO) or 100 nM of Apicidin and harvested after 24h for erythroid 
gene expression analysis by qPCR (normalized versus Rnh1 levels). Untreated cells were analyzed 
in parallel as an additional control. Bar graphs depict the average of two independent 
experiments. Error bars denote s.d. (e) ChIP-Seq pro�les for the Slc4a1 and Epb4.9 loci showing 
LDB1, IRF2BP2, ETO2 and NCOR1 co-occupying regulatory elements controlling these two 
archetypical late erythroid genes in MEL cells. Histone acetylation pro�les (H3K9Ac and H4K16Ac, 
taken from Wong et al. 2010 [ref.21]) from primary erythroid progenitors (Ter119-) and maturing 
erythrocytes (Ter119+) are shown below. (f) Ratios of LDB1 over NCOR1 ChIP enrichments (n=2, 
error bars denote s.d.) at selected primed erythroid genes during MEL cell di�erentiation. 



a

b

E11.5
Irf2bp2wt/wt

Irf2bp2trp/trp

%
 o

f c
el

ls

Pro
genito

rs

Pro
-EBs

Baso
.-E

Bs

Matu
re Ery.

0

10

20

30
50

60

70

80

0

10

20

30
60

70

80

90
Gated:
Ter119+

*

*

%
 o

f c
el

ls

Enucle
ated

Early
 enucle

atin
g

Nucle
ated

Irf2bp2trp/trpIrf2bp2wt/wtIrf2bp2wt/wt Irf2bp2trp/trp

Ter119 pos. Ter119 pos.

0

5

10

15

20
50

55

60

65

70

*

%
 o

f c
el

ls

0

20

40

60

80

**

*
Gated:
Ter119+

**%
 o

f c
el

ls

Pro
genito

rs

Pro
-EBs

Baso
.-E

Bs

Matu
re Ery.

Enucle
ated

Early
 enucle

atin
g

Nucle
ated

Irf2bp2trp/trpIrf2bp2wt/wtIrf2bp2wt/wt Irf2bp2trp/trp

E12.5
Irf2bp2wt/wt

Irf2bp2trp/trp

Ter119 pos. Ter119 pos.

Supplementary Figure 7. Flowcytometry analysis of E11.5 and E12.5 fetal liver 
erythropoiesis in IRF2BP2-de�cient mice. Flowcytometry analysis (CD71-Ter119 double 
staining) of fetal livers from E11.5 (a) or E12.5 (b) embryos with the indicated genotypes (n=3-4 
embryos per genotype). Representative �owcytometry plots are shown on top; average values are 
plotted as bar graphs underneath. The right side of the �gure shows Ter119+ FL cells separated 
into three populations based on FSC pro�le (as in Figure 7). Di�erences between wildtype and 
Irf2bp2trp/trp embryos were tested for statistical signi�cance (Mann Whitney U test; *P<0.05, 
**P<0.01). Error bars denote s.d. 
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Supplementary Figure 8. Gene expression analysis on IRF2BP2-de�cient erythroid cell 
populations puri�ed from E11.5 fetal liver. Gene expression comparison between wildtype and 
Irf2bp2trp/trp E11.5 FACS-sorted erythroid populations separated into Ter119- erythroid progenitors 
and Ter119+ maturing erythrocytes. mRNA levels of late erythroid genes (a), the immature marker 
Myb (b) and the three Irf2bp family members (c) were measured using qPCR (normalized versus 
Rnh1 levels). Bar graphs depict the average of at least two independent experiments. Error bars 
denote s.d. 
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Supplementary Figure 9. Gene expression analysis on IRF2BP2-de�cient erythroid cell 
populations puri�ed from E13.5 fetal liver. Gene expression comparison between wildtype and 
Irf2bp2trp/trp E13.5 FACS-sorted erythroid populations separated into CD71-/Ter119- progenitors, 
CD71+/Ter119- pro-erythroblasts (pro-EBs), CD71+/Ter119+ basophilic erythroblasts (Baso.-EBs) 
and CD71-/Ter119+ mature erythrocytes (Mature Ery.). mRNA levels of late erythroid genes (a), the 
immature marker Myb (b) and the three Irf2bp family members (c) were measured using qPCR 
(normalized versus Rnh1 levels). Bar graphs depict the average of at least two independent 
experiments. Error bars denote s.d. 
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Supplementary Fig.2.  
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Supplementary Figure 11. Annotated full image scans of Western blots shown in Fig.2, Fig.5 
and Supplementary Fig.3.  



Supplementary Table 1. Oligonucleotide sequences used in this study. 
 
Expression Primers 
 
Primer name Target mRNA Sequence (5'-3') 
Alas2-78F Alas2 TTAGCCACTTTGCCCAGGAG 
Alas2-78R Alas2 CCGTCTTTGGTTCGTCCTCA 
Cbfa2t3-F ETO2 GTGAACTCAACTCTGACGAT 
Cbfa2t3-R ETO2 GCAGCAGTGGAAGATTAGC 
Epb4.2-F Epb4.2 GCTTTATCTACCTGGGCAC 
Epb4.2-R Epb4.2 TCACTTGCTTGTCCATACTC 
Gypa-F Gypa TGAAGTGTCTGCTGCGTT 
Gypa-R Gypa CCGATAATCCCTGCCATCA 
Irf2bp1-F Irf2bp1 TACCCGGACACAAGTTCTGC 
Irf2bp1-R Irf2bp1 GACAGAGGAACCCACCAGTG 
Irf2bp2-F Irf2bp2 GGCAGGTTGTTGGGTTTC 
Irf2bp2-R Irf2bp2 CAAGGCTGTGTCTCACCA 
Irf2bpL-F Irf2bpl GCGGTTCAAGGGTCTCTCTC 
Irf2bpL-R Irf2bpl TACCTTGGGCCTTCATGCAG 
Myb-1121-1235-F Myb CGACGAAGACCCTGAGAAGG 
Myb-1121-1235-R Myb GCTGCAAGTGTGGTTCTGTG 
Ncor1-F Ncor1 ACTGTGCTGTCTGGTTCC 
Ncor1-R Ncor1 CACCTTCAAATGCTCGGA 
Slc22a4-F Slc22a4 TCACCACCTCCCTGTTCTT 
Slc22a4-R Slc22a4 TTTCTTCCTGCCAAACCTG 
Slc4a1-F1 Slc4a1 GCTCTTCCCACAGAGCAAAC 
Slc4a1-R1 Slc4a1 CTGCCTCCACCCATTGTAGT 
Rnh1-F Rnh1 TGCAGGCACTGAAGCACCA 
Rnh1-R Rnh1 TCCAGTGTGAGCAGCTGAG 
 
ChIP Primers 
 
Primer name Target genomic region Sequence (5'-3') 
Alas2-F Alas2 intron1 GGAACTGGGACATCTTGAC 
Alas2-R Alas2 intron1 ACCATTAGAGTCTGGCTACT 
Amy-F Amylase promoter CTCCTTGTACGGGTTGGT 
Amy-R Amylase promoter AATGATGTGCACAGCTGAA 
Epb4.2-F Epb4.2 promoter TGAGAAGACTTGCTGGCT 
Epb4.2-R Epb4.2 promoter GTTCAGAGTTGGGTTCGGA  
Gata1-enh-F Gata1 -3.5kb enhancer TCAGGGAAGGATCCAAGGAA 
Gata1-enh-R Gata1 -3.5kb enhancer CCGGGTTGAAGCGTCTTCT  
Gata1-neg-F Gata1 upstream region CACTAGCAGCTGGGTGGGTTA 
Gata1-neg-R Gata1 upstream region TGCCGCTTGCCTTTGTAAG 
Gypa-F Gypa intron3 TCCTCTCCTTACACCCTGTCT  
Gypa-R Gypa intron3 CTCTTACCAACAAGCCAGCC 
Klf1-enh-F Klf1 promoter/enhancer CTGGCCCCCCTACCTGAT 
Klf1-enh-R Klf1 promoter/enhancer GGCTCCCTTTCAGGCATTATC 



Klf1-neg-F Klf1 upstream region TGCTCCCCACTATGATAATGGA 
Klf1-neg-R Klf1 upstream region GCCACAACCAAAGAAGACATTTT 
Slc22a4-F Slc22a4 intron1 TCTGTTGACTGCTCTGTAGT  
Slc22a4-R Slc22a4 intron1 TAGGTTCCTCCCAATGAGAT  
 
Mouse Genotyping Primers 
 
Primer name Target genomic region Sequence (5'-3') 
V76-F Gene-trap vector CTTGCAAAATGGCGTTACTTAAGC 
Irf2bp2-F2 Irf2bp2 gene GGGTGGGTGGTAGGGATCC 
Irf2bp2-R2 Irf2bp2 gene GGGCTCTGAGCCTGCACA 
 
Crispr gRNA cloning 
 
Primer name Target genomic region  Sequence (5'-3') 
Eto2-N3-F Cbfa2t3 intron 5 CACCGGACTGGGGCCTCACAAACGA 
Eto2-N3-R Cbfa2t3 intron 5 AAACTCGTTTGTGAGGCCCCAGTCC 
Eto2-C3-F Cbfa2t3 intron 3 CACCGGAACGGTTGCAGGGACAGAG 
Eto2-C3-R Cbfa2t3 intron 3 AAACCTCTGTCCCTGCAACCGTTCC 
IRF2BP2-N3-F Irf2bp2 exon 1 CACCGGGTCAACGGTTCTGCCGCGC 
IRF2BP2-N3-R Irf2bp2 exon 1 AAACGCGCGGCAGAACCGTTGACCC 
IRF2BP2-C2-F Irf2bp2 exon 2 (3'UTR) CACCGGGCTTTCCTGCTGACCAGCC 
IRF2BP2-C2-R Irf2bp2 exon 2 (3'UTR) AAACGGCTGGTCAGCAGGAAAGCCC 
 
(for guide RNA primer sequences, the target genomic sequence is underlined) 
 
Crispr-deleted MEL KO clones genotyping 
 
Primer name Target genomic region Sequence (5'-3') 
Eto2-Del-F1 Cbfa2t3 intron 5 AAAGGGCGAGAGCCACAGCTCA 
Eto2-Del-R Cbfa2t3 intron 3 CAGTCTGGGAGTTTGAACTGGGCAT 
IRF2BP2-Del-F Irf2bp2 exon 2 (3'UTR) TGCAGGCTTCCTCTACCCACACT 
IRF2BP2-Del-R Irf2bp2 exon 1 CGCTCAGGCTATGGAGCGCTA 
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