		pH 7.3				pH 4.0					
	Sequence	$\mathrm{Th}\mathrm{T}^1$	CD^2	FTIR^3	$\mathrm{E}\mathrm{M}^4$		ThT	ĊĎ	FTIR	$\mathbf{E}\mathbf{M}$	X-ray ⁵
1	Ac-YVDVDVDV-CONH2	1	_	_			89	β^{++}	1625	+	
2	Ac-YV S V D V D V-CONH ₂	24	_	1624			322	β^{++}	1624	+	$cross-\beta$
3	Ac-YVDVSVDV-CONH2	2	_	_			120	β^{++}	1623	+	,
4	Ac-YV D V D V S V-CONH ₂	3	_	-			160	β^{++}	1618	+	
5	Ac-YVSVSVDV-CONH2	322	β^+	1619			322	β^{++}	1618	+	
6	Ac-YVSVDVSV-CONH2	309	β^+	1618			322	β^{++}	1622	+	
7	$Ac-YVDVSVSV-CONH_2$	208	—	—			128	β^{++}	1619	+	
8	$Ac-YVHVHVHV-CONH_2$	126	β^+	1627	+		1	_	_	_	$cross-\beta$
9	Ac-YVSVHVHV-CONH2	82	β^{++}	1624	+		1	—	—		
10	$Ac-YVHVSVHV-CONH_2$	29	β^+	1623	+		1	_	_		
11	Ac-YV H V H V S V-CONH ₂	18	β^{++}	1624	+		1	—	—		
12	$Ac-YVSVSVHV-CONH_2$	183	β^{++}	1623			5	?	1621	+	$cross-\beta$
13	$Ac-YVSVHVSV-CONH_2$	0	β^+	1622	+		11	β^{++}	1621		
14	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{S}\texttt{V}\textbf{S}\texttt{V}-\texttt{CONH}_2$	322	β^+	1624	+		2	β^+	1623		$\operatorname{cross-}\beta$
15	$\texttt{Ac-YV}\textbf{D}\texttt{V}\textbf{H}\texttt{V}\textbf{S}\texttt{V}\texttt{-}\texttt{CONH}_2$	114	β^+	1623	+		13	β^+	1622	+	
16	$\texttt{Ac-YV}\textbf{D}\texttt{V}\textbf{S}\texttt{V}\textbf{H}\texttt{V}\texttt{-}\texttt{CONH}_2$	177	β^{++}	1618	+		7	β^{++}	1619	+	
17	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\textbf{S}\texttt{V}\texttt{-}\texttt{CONH}_2$	163	β^+	1622	+		5	β^{++}	1622		
18	Ac-YV S V D V H V-CONH ₂	31	β^{++}	1622	+		1	β^{++}	1622		
19	$\texttt{Ac-YV}\textbf{S}\texttt{V}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	142	β^{++}	1624	+		9	β^{++}	1624		
20	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{S}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	98	β^+	_	+		23	β^{++}	1622	+	
21	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	133	β^+	1626	+		1	?	—	+	
22	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\textbf{H}\texttt{V}\text{-}\texttt{CONH}_2$	44	β^+	1624	+		1	?	_	+	
23	$\texttt{Ac-YV}\textbf{D} \texttt{V}\textbf{H} \texttt{V}\textbf{H} \texttt{V} - \texttt{CONH}_2$	21	β^+	1624	+		1	—	1626	+	
24	Ac-YV D V D V H V-CONH ₂	2	—	_	+		1	β^{++}	1626	+	
25	$\texttt{Ac-YV}\textbf{D}\texttt{V}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	2	—	—			9	β^{++}	1623	+	
26	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\textbf{D}\texttt{V}-\texttt{CONH}_2$	5	—	_			5	β^{++}	1624	+	
27	$Ac-YVAVHVHV-CONH_2$	129	β^+	1625	+		1	—	—		$\operatorname{cross-}\beta$
28	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{A}\texttt{V}\textbf{H}\texttt{V}\text{-}\texttt{CONH}_2$	114	β^+	1624	+		1	_	—		
29	$\texttt{Ac-YV}\textbf{D}\texttt{V}\textbf{H}\texttt{V}\textbf{A}\texttt{V}\texttt{-}\texttt{CONH}_2$	183	β^+	1622	+		25	?	1618		
30	$\texttt{Ac-YV} \textbf{AV} \textbf{D} \texttt{V} \textbf{H} \texttt{V} - \texttt{CONH}_2$	42		1623	+	_	10	β^{++}	1624		
31	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{D}\texttt{V}\textbf{A}\texttt{V}\texttt{-}\texttt{CONH}_2$	259	β^+	1622			32	β^{++}	1621	+	
32	$\texttt{Ac-YV}\textbf{H}\texttt{V}\textbf{A}\texttt{V}\textbf{D}\texttt{V}\texttt{-}\texttt{CONH}_2$	322	β^+	1621		_	111	β^{++}	1621	+	
33	$\texttt{Ac-YV} \textbf{AV} \textbf{H} \texttt{V} \textbf{D} \texttt{V} \text{-} \texttt{CONH}_2$	67	β^+	1624			2	β^{++}	1623	+	

Table A and associated data: Biophysical characterization of library peptides.

1. Fold increase in ThT fluorescence over background.

2. CD spectra classified as follows: (β^+) has minimum near 217 nm, (β^{++}) has minimum near 217 nm and a maximum near 197 nm, (-) signal too weak to interpret, (?) spectra not typical of any secondary structure.

3. The peak position in amide I region is given in cm⁻¹. (-) indicates that no peak was observed within the typical range of stretching frequencies for β -structure (between dashed lines at 1638 cm⁻¹ and 1615 cm⁻¹)[1].

4. (+) fibrils present or (-) absent in EM micrographs.

5. Diffraction images recorded for the aligned fibrils of 5 different peptides (see materials and methods).

<u>0.2</u> µm

<u>0.5 μ</u>m

FTIR

TEM

TEM

0.5 µm

	Gro	wth $=$	Measure	$ment^1$
	$\mathrm{Divalent}^2$	pH^3	T (°C)	Additive
1	-	7.3	20	-
2	$ZnCl_2$	7.3	20	-
3	$MgCl_2$	7.3	20	-
4	$CoCl_2$	7.3	20	-
5	$CuCl_2$	7.3	20	-
6	$NiCl_2$	7.3	20	-
7	EDTA	7.3	20	-
8	-	4.0	20	-
9	$ZnCl_2$	4.0	20	-
10	-	2.2	20	-
11	-	7.3	4	-
12	$ZnCl_2$	7.3	4	-
13	-	7.3	20	$75\%~i{\rm PrOH}$
14	-	7.3	20	64% CH ₃ CN
15	-	7.3	20	50% EtOH
16	-	7.3	20	$90\%~{ m EtOH}$
17	$ZnCl_2$	7.3	20	$75\%~i{\rm PrOH}$
18	$ZnCl_2$	7.3	20	64% CH ₃ CN
19	$ZnCl_2$	7.3	20	50% EtOH
20	$ZnCl_2$	7.3	20	90% EtOH
21	-	7.3	20	$0.5\mathrm{M}$ NaCl
22	-	7.3	20	$4.75\mathrm{M}$ NaCl
23	-	7.3	20	$0.2\mathrm{M~MgCl}_2$
24	-	7.3	20	$2 \mathrm{M} \mathrm{MgCl}_2$
25	$ZnCl_2$	7.3	20	$0.5\mathrm{M}$ NaCl
26	$ZnCl_2$	7.3	20	$4.75\mathrm{M}$ NaCl
27	ZnCl_2	7.3	20	$0.2\mathrm{M~MgCl}_2$
$\overline{28}$	$ZnCl_2$	7.3	20	$2 \mathrm{M} \mathrm{MgCl}_2$
29	-	7.3	20	$1\mathrm{M}~\mathrm{Na_2SO_4}$
30	ZnCl_2	7.3	20	$1\mathrm{M}~\mathrm{Na_2SO_4}$
31	-	4.0	20	$2 \mathrm{M} (\mathrm{NH}_4)_2 \mathrm{SO}_4$
32	-	2.2	20	$2 \mathrm{M} (\mathrm{NH}_4)_2 \mathrm{SO}_4$

Table B:	Amyloid	growth	and	measurement	conditions.
----------	---------	--------	-----	-------------	-------------

	$Growth \neq Measurement^1$						
	Divalent	$_{\rm pH}$	T ($^{\circ}C$)	Additive			
33	ZnCl_2	7.3	95	-			
34	-	7.3	20	$0.5\mathrm{M}$ NaCl			
35	-	7.3	20	$4.75\mathrm{M}$ NaCl			
36	-	7.3	20	$0.2\mathrm{M~MgCl}_2$			
37	-	7.3	20	$2\mathrm{M}\mathrm{MgCl}_2$			
38	ZnCl_2	7.3	20	$0.5\mathrm{M}$ NaCl			
39	ZnCl_2	7.3	20	$4.75\mathrm{M}$ NaCl			
40	ZnCl_2	7.3	20	$0.2\mathrm{M~MgCl}_2$			
41	ZnCl_2	7.3	20	$2\mathrm{M}\mathrm{MgCl}_2$			
42	ZnCl_2	7.3	20	$75\%~i{\rm PrOH}$			
43	ZnCl_2	7.3	20	64% CH ₃ CN			
44	ZnCl_2	7.3	20	50% EtOH			
45	ZnCl_2	7.3	20	90% EtOH			
46	$\mathrm{Zn}\mathrm{Cl}_2$	7.3	20	50% DMSO			

1. The conditions for fibrillization and 4NPA assay are the same for 1-32 except that the 4NPA assay was always at $30 \,^{\circ}\text{C}$ and the divalent concentration was one-fourth as high. For condition 33, the sample was heated to $95 \,^{\circ}\text{C}$ for 1 hour prior to the 4NPA assay and for 34-46 the samples were fibrillized in condition 1 or 2 and then transferred to the new conditions with additive just for the 4NPA assay.

2. Divalent concentration is $1\,\mathrm{mM}$ for growth and $250\,\mu\mathrm{M}$ for 4NPA assay.

3. Grown and measured in 50 mM buffer: HEPES at pH 7.3, NaOAc at pH 4.0, or phthalate at pH 2.2.

Figure A: Binary peptide mixtures.

A line connecting the two peptides represents each of the 61 combinations.

Figure B:

Appearance of β -structure for (**35**) at neutral pH. A 200 μ M stock of **35** in 10 mM HCl was diluted to a final concentration of 50 μ M into 10 mM HEPES pH 7.3 with 0.5 mM ZnCl₂ and the CD spectrum was measured every 5 min. The selected spectra (plotted in rainbow colors) show that the degree of β structure increases over the first hour of aggregation. The spectrum of 50 μ M **35** in 10 mM HCl (dotted line) is time-stable and appears to be mostly random coil.

Figure C:

X-ray diffraction images from aligned fibrils. The peptides 8 and 12 were fibrillized at pH7.3, washed once in water, and then aligned by drying them between the ends of two glass rods. The peptide 2 in a and the co-aggregate of 12 and 21 (Ac-YVHVHVDV-CONH₂) in d were fibrillized at pH4 and then washed once in 10 mM NaOAc pH4 before being aligned by drying.

Figure D:

X-ray diffraction images from aligned fibrils with the plot of angular intensity. The fibrils were aligned similarly as in Figure C in S1 File. The diffraction pattern for fibrils of **14** and **27** at pH 7.3 were less clearly cross- β , possibly due to poor alignment. However, the cross- β pattern was present and is more easily visualized in the angular intensity distribution for the two major spacings.

References

 Tatulian, S. A. (2013). Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. Methods in Molecular Biology (Clifton, N.J.), 974(Chapter 9), 177218. http://doi.org/10.1007/978-1-62703-275-9_9