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1 Convergence proof for Sloppy Algorithm

Notation and assumptions

Our goals in these appendices are:

1. Prove that the Sloppy Algorithm converges monotonically everywhere when
φ is normally distributed and fpLq “ L.

2. We will adapt the proof to the case where fpLq is sigmoidal and φ is
lognormal.

3. We will show how the magic number is derived when φ is normal and
fpLq “ L.

4. We show what it means to have a useful magic number.

Notation: (1) Strictly monotonically increasing, SMI. (2) Monotone conver-
gence theorem, MCT. (3) N pµ, sq is the normal distribution with mean µ and
standard deviation s. (4) LN pm, sq is the lognormal distribution with median
m and shape factor s.

Assumptions 1 and 2 hold throughout these appendices.

Assumption 1: Let fpLq be strictly monotonically increasing (SMI) on L “
r0, 1s and let it be bounded by 0 ď fpLq ď 1.

Assumption 2: Let φpx, sq be a probability distribution function (pdf) and
let QpL, sq be

QpL, sq “

ż

ΓpLq

φpt, sq dt (S1)

“
1

2
r1` qpL, sqs . (S2)

The following rules define the Sloppy Algorithm.
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1. Choose s0 arbitrarily.

2. Compute QpL, s0q “ f1.

3. For any i ě 1

choose si such that Qpλi, siq “ fi where λi solves fpλiq “ fi. (S3)

4. Compute the next fi`1 using

QpL, siq “ fi`1. (S4)

Remarks. Monotonicity of fpLq is needed for the inverse function f´1pxq to
exist. QpL, sq is monotonic in L because Q is the integral of a pdf, which is
everywhere non-negative.

General lemmas

Lemma 1 (Dominance). If fi ă fpLq then fi`1 ą fi.

Proof: The proof hinges on the monotonicity of fpLq and QpL, sq. The mono-
tonicity of fpLq tells us that

If fi ” fpλiq ă fpLq then λi “ f´1
pfiq ă L. (S5)

From (S3) we get fi “ Qpλi, siq and from (S4) we get fi`1 “ QpL, siq. Suppose
to the contrary that fi`1 ď fi then fi “ Qpλi, siq ě QpL, siq “ fi`1. BecauseQ
is monotonic in L if follows that λi ě L. However, because of the monotonicity
of fpLq it follows [statement (S5)] that fpλiq “ fi ě fpLq, which contradicts
our assumption. Therefore, fi`1 ą fi as claimed.

˝

Lemma 11. If fi ą fpLq then fi`1 ă fi.

Proof is similar to Lemma 1.

Lemma 2 (Uniqueness). fpLq is the unique accumulation point.
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Proof: Suppose there is fpL̃q which is the limit of the sequence of the Sloppy
Algorithm and we assume without loss of generality that fpL̃q ă fpLq. From
(S4) we have

lim
iÑ8

QpL, siq “ lim fi`1 “ fpL̃q.

And from (S3) we have

lim
iÑ8

Q
`

f´1
pfiq, si

˘

“ lim fi “ fpL̃q.

Equating these two expressions give

QpL, sq “ Q
´

f´1
pfpL̃qq, s

¯

.

But if fpL̃q ă fpLq then by statement S5 if follows that

f´1
pfpL̃qq “ L̃ ă f´1

pfpLqq “ L.

But becauseQ is monotonic in L thenQpL, sq ą Q
´

f´1pfpL̃q, s
¯

contradicting

the equality. Therefore, fpL̃q ě fpLq.

We can argue similarly that fpL̃q ď fpLq therefore, fpL̃q “ fpLq and thus
proving uniqueness.

˝

Remark: We proved Lemmas 1 and 2 without specifying f or φ so they hold
generally.

Convergence of the Sloppy Algorithm when φ “ N and fpLq “ L

The Sloppy Algorithm will not, in general, converge monotonically for any pair
`

fpLq, φ
˘

. In the case where fpLq “ L and φ is the normal distribution, the
Sloppy Algorithm converges monotonically everywhere. The proof given below
can be adapted to study convergence of the Sloppy Algorithm for any

`

fpLq, φ
˘

pair.

Theorem 1 (Convergence Theorem). Let fpLq “ L on L P r0, 1s. Let φ be
the normal distribution N pL, 0, sq with mean of zero and standard deviation
s. QpL, sq is defined by (S2) where Γ is the range from 1{2 ´ L to 8. Then
tfiu defined by recursion rules (S3) and (S4) converges monotonically to fpLq
everywhere.
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Note that in this case fi “ λi.

Proof: The key to the proof and understanding whether the sequence tfiu
converges monotonically depends on the shape of the s˚pLq curve. s˚pLq solves
the fixed point problem

fpLq “ QpL, s˚pLqq. (S6)

For the pair
`

fpLq, φ
˘

“
`

L,N pL, sq
˘

, QpL, sq is

QpL, sq “
1

s
?

2π

ż 8

1{2´L

e´z
2{2s2dz (S7)

“
1

2

„

1` erf

ˆ

?
2p2L´ 1q

4s

˙

. (S8)

s˚pLq is found by solving (S6) with fpLq “ L,

s˚pLq “

?
2p2L´ 1q

4 erf´1
p2L´ 1q

, (S9)

which is shown in Figure A. Note that as LÑ 1{2, erf´1
p2L´1q Ñ

?
π

2 p2L´1q
so s˚p1{2q “ 1{

?
2π « 0.4. We now have the pieces needed to complete the

proof.
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Figure A: Optimal standard deviation s when φ is normally distributed and fpLq “ L.

Case 1A: Suppose λi and L lie on the same side of 1/2, say, λi ă L ă 1{2
(Figure A). From Lemma 1 we know that λi`1 ą λi but we do not yet know
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whether λi`1 is greater than or less than L. Define z as

zpsq “

?
2p2L´ 1q

4s
. (S10)

Recall that λi`1 “ QpL, siq “ Qpziq (step (S4) in the Sloppy Algorithm).
Because si ă s˚pLq (see Figure A) and because L ă 1{2 (which makes the
numerator ă 0) it follows that zi ă z˚pLq. Because Q is SMI in z, it follows
that λi`1 “ Qpziq ă Qpz˚pLqq “ L. Thus tλiu is a SMI sequence bounded
above by L so by the monotone convergence theorem (MCT), the sequence
converges to some λ̃. However, Lemma 2 tells us that λ̃ “ L.

Case 1A1: The cases where L ă λi ă 1{2, 1{2 ă L ă λi, and 1{2 ă λi ă L

can be handled in the same way to show tλiu is a SM increasing (decreasing)
bounded above (below) by L.

Case 1B: Suppose λi ă 1{2 ă L. We want to show that there is some k ą i

for which λk ą 1{2. Suppose no such k exists so for all k ą i, λk ď 1{2.
From Lemma 1 we know that λi`1 ą λi. Therefore tλku is a SMI sequence
bounded by 1/2 so by the MCT λk Ñ λ̃. However, Lemma 2 demands that
λ̃ “ L therefore, contrary to our assumption, there must have been some k
where λk ą 1{2. Beyond this k, the situation is identical to Case 1A or 1A1.

Because i was arbitrary, it follows that any sequence tλiu generated by the
Sloppy Algorithm converges monotonically to L.

˝

Figure B shows the monotonic convergence of the Sloppy Algorithm. Each
colored path represents a different L. Note that for L ą 1{2, λi`1 ą λi while
the opposite is true for L ă 1{2.

The Sloppy Algorithm when φ “ LN and fpLq is sigmoidal

Let
fpLq “

Ln

Kn ` Ln
where 0 ď L ď 1. (S11)

Substituting φ “ LN into (S2) and integrating between 0 and ` gives

Qp`,m, sq “
1

2

„

1` erf

ˆ

lnp`q ´m
?

2s

˙

.
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Figure B: Global monotonic convergence when φ is normal and fpLq “ L. The i` 1-st estimate of
λ is plotted against the i-th estimate. Curved arrows point to λ0 and λ10 for L “ 0.875. Note that when
L ą 1{2, λi`1 ą λi for all i, which indicates monotonic convergence. For L ă 1{2, the opposite holds. In all
cases, the initial value of s was 1.

Qp`,m, sq “ fp`q is satisfied when sp`q is given by

sp`,mq “
lnp`q ´m

?
2erf´1

p2fp`q ´ 1q
. (S12)

Let ¯̀ solve
2fp¯̀q ´ 1 “ 0. (S13)

Then m must be
m “ ln

`

¯̀
˘

. (S14)

The plot of sp`q is shown in Figure C.

Case 2A: λi ă L ă ¯̀. From Lemma 1, fi ă fi`1 but we don’t know if
fi`1 is greater than or less than fpLq. By definition fi`1 “ QpL, siq and
QpL, s˚q “ fpLq. From Figure C we see that si ą s˚pLq. Let

zi “
lnpL{¯̀q
?

2si
.

Because L ă ¯̀, the numerator is ă 0 so zi ą z˚. Therefore, fi ă fpLq ă fi`1

and we do not get monotonic convergence.

Case 2B: ¯̀ă L ă λi. By Lemma 5, fi`1 ă fi but we don’t know whether
fi`1 is greater than or less than fpLq. From Figure C we see that s˚ ă si.
Therefore, z˚ ą zi (now the numerator is ą 0) therefore, fi`1 “ QpL, siq ă
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Figure C: Optimal shape factor s when φ is lognormal and fpLq is sigmoidal. s˚pLq is given by
eqn. (S12)

QpL, s˚q “ fpLq. Thus, fi ą fpLq ą fi`1 and again we do not get monotonic
convergence.

Figure D shows the nonmonotonic convergence for both L ă 1{2 and L ą 1{2.
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Figure D: Nonmonotonic convergence of the Sloppy Algorithm when φ is lognormal and fpLq
is sigmoidal. Plot is similar to Figure B. fpLq is given by eqn. (S11) where K “ 0.3. Although the Sloppy
Algorithm converges, the convergence is nowhere monotonic.

Remarks: Using the same kinds of arguments we can show that for the cubic
function fpLq “ L´pγ{2qL ¨ pL´1{2q ¨ pL´1q (for γ P r0, 4s) and φ P N p0, sq
the Sloppy Algorithm converges monotonically everywhere. However, when
φ P LN plnp1{2q, sq then the Sloppy Algorithm converges monotonically only
for L ą 1{2; convergence is oscillatory for L ă 1{2.
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2 Magic number for φ P N and fpLq “ L

s˚pLq solves the fixed point problem QpL, s˚q “ L. Writing z “ 2L ´ 1 the
fixed point problem becomes

erf

ˆ

?
2z

4s˚

˙

“ z.

Because L P r0, 1s then z P r´1, 1s. We use the approximation erfpxq « x for
x P r´1, 1s. Then the fixed point problem becomes

?
2z

4s˚
« erf

ˆ

?
2z

4s˚

˙

“ z

from which it follows that

s˚ «

?
2

4
” sm.

Because this approximation holds over all L P r0, 1s it follows that sm almost
solves the fixed point problem for all L, that is, QpL, smq “ L.

3 Condition for having a useful magic number

When the benefit BpL, νq is defined as (eqns. (9) and (11) in the main text)

BpL, νq ”
B̃pL, νq

Dm
“ rHpνqν ´Hpν ´ 1qpν ´ 1qsLb1

`
b2

β
p1´ Lνq ´ L|1´ ν|b3 (S15)

or
BpL, νq “

fpLq

L
ν ´

ν2

2
, (S16)

then BpL, νq is maximized when ν “ fpLq{L. s˚pLq solves the fixed point
problem QpL, s˚pLqq “ fpLq so B always is maximized when s˚pLq is used.
For arbitrary s, QpL, sq ‰ fpLq so νpsq “ QpL, sq will not maximize B. We’d
like to replace the continuum s˚pLq with a single magic number sm that almost
maximizes BpL, νq for all L.

Clearly, the closer QpL, smq approximates fpLq for all L P r0, 1s, the closer
BpL, νq will be it to its maximum value. In other words, QpL, smq should “look
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like” fpLq in the sense that QpL, smq is close to fpLq everywhere. The natural
metric for this is the maximum norm,

d
`

QpL, smq, fpLq
˘

“ max
`ˇ

ˇQpL, smq ´ fpLq
ˇ

ˇ for all L P r0, 1s
˘

. (S17)

If d
`

QpL, smq, fpLq
˘

is small then BpL, νpsmqq « BpL, νps˚qq, meaning the
benefit is nearly maximized.

The reason the normal distribution gave such poor performance when fpLq was
sigmoidal and the lognormal distribution gave excellent performance is because
QN pL, smq (the integral in (S2) when φ P N ) does not look sigmoidal whereas
QLN pL, smq (φ P LN ) looks remarkably sigmoidal.

4 Determining the grayscale level using the Sloppy Algorithm

Algorithms that work well in a computer simulation can fail miserably outside
of a simulation. We tested whether the Sloppy Algorithm would work when a
human was part of the iteration loop. The problem was to see if the Sloppy
Algorithm could be used by a person to determine the absolute, as opposed to a
relative, magnitude of a quantity. Examples of this kind of task is determining
the brightness of a variable star by eye (http://www.aavso.org/) or the weight
of an ox [1].

The specific problem task was to determine the gray scale value of an image.
The image, a square displayed on the computer monitor, had a gray scale value
between 0 and 255. Next to the test square, a comparison square of equal size
whose gray level was randomly chosen from a normal distribution with a mean
level of 128 and standard deviation si was shown. The person had to decide
whether the test square was brighter or dimmer than the comparison square.
After making N comparisons, λ̄i was calculated from λ̄i “ n{N , where n was
the number of times that a test square was judged brighter than the comparison
square and i is the iteration number. This is step [4] (eqn. (S4)) in the Sloppy
Algorithm. Based on λ̄i a new si that solved eqn. (S3) was determined. Fig. E
shows results from three tests (from 2 subjects). The dashed lines mark the
correct gray level L. The initial s value was set to 1 ˆ ∆ (filled circle) or
0.1ˆ∆ (filled square) where ∆ “ 256 equals the range of possible gray values.
These initial s values were chosen so that the first estimate λ̄1 would be far
from L (the program “knew” the value of L but the person did not) thereby
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allowing us to see how the estimates converged to L. The convergence to the
correct grayscale value is similar to that seen in Figure 2 in the main text except
that the convergence is nonmonotonic. Nonmonotonicity arises from the finite
number of decisions (N) that were made; simulations show that the convergence
becomes monotonic as N Ñ 8. We used N “ 150 to get good estimates of λ̄i
but making such a large number of decisions (150ˆ6 iterations “ 900 decisions)
is tiring. Therefore, we tested whether setting s0 to the magic number would
hasten the convergence. The results (open triangle) in this case show that even
on the first iteration the estimate (71.4) is already close to the correct value
(70).
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Figure E: Evolution of grayscale estimation using Sloppy Algorithm. Dashed lines indicate correct
grayscale values. Subject 1, squares and triangles; subject 2, circles. Convergence is immediate when initial
s equalled the magic number (triangles).

For this example one observer makes N decisions while in the main text each
of the N rulers makes one decision. These two approaches are mathematically
equivalent.
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5 Sloppy Algorithm and sloppy rulers versus dithering

Sloppy rulers when combined with the Sloppy Algorithm can make accurate,
high-resolution measurements even though each sloppy ruler has the lowest
possible resolution. Dithering is a technique that can also improve measurement
resolution [2] and has long been used to reduce quantization errors of analog-
to-digital conversion [3]. Noise is essential in both dithering and sloppy rulers.

However, sloppy rulers and dithering are different mathematically and in their
arenas of application. In dithering the output signal is the average of both
positive and negative excursions over many quantized states (256 states in an
8-bit analog-to-digital converter) centered around the input signal. By contrast,
sloppy rulers average over only two states, zero and one.

This difference in what quantities are averaged is important in determining
what the optimal noise level, s, should be to get accurate measurements. For
dithering any s larger than half of the quantization step size will produce an
accurate output [2]. For sloppy rulers, there is a unique s for each input value L
that produces an accurate output, which the Sloppy Algorithm finds. Choosing
s arbitrarily produces estimates of L shown in Fig. 3A in the main text. The
y-axis is the estimate of L; only by happenstance does the estimate match the
true value of L.

The Sloppy Algorithm and dithering are useful in different systems. Sloppy
rulers represent a wide class of systems that make binary decisions. Such sys-
tems include yes-or-no voting in politics, all-or-none protein expression in cells,
choice of crops to plant. Dithering, on the other hand, is useful when there
are many signal levels as in analog-to-digital converters and in smoothing out
pixelation in images.
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