Supplementary Information

Induction of a quorum sensing pathway by environmental signals enhances group A streptococcal resistance to lysozyme.

Jennifer C. Chang, Juan Cristobal Jimenez, and Michael J. Federle

Figure S1. Metal depletion induces Rgg-SHP quorum sensing. Luciferase activity of wild-type NZ131 and isogenic P_{shp3} -luxAB reporter strains grown in metal-deplete or replete conditions. Cells were grown to mid-log in CDM+1% glucose, washed three times with CxCDM containing 100 μ M dipyridyl, then diluted into CxCDM supplemented with 50 μ M CaCl₂and 1000 μ M MgSO₄ (deplete) or 50 μ M CaCl₂, 1000 μ M MgSO₄, 20 μ M FeSO₄, and 30 μ M MnSO₄ (replete). Data are representative of experiments performed at least three times.

Figure S2. Mannose-dependent induction of P_{shp3} -luxAB requires rgg2 and shps. (A) Growth or (B) luciferase activity from P_{shp3} -lux of WT, $\Delta rgg2$, $\Delta rgg3$, and shp_{GGG} strains grown in CDM with 1% mannose (man) or 1% glucose (gluc). Data shown are representative of experiments performed at least three times.

Figure S3. Low concentrations of mannose are sufficient to induce QS when the primary carbon source is not glucose. P_{shp3} reporter expression of a strain grown in CDM containing 1% sucrose (medium gray), 1% fructose (light gray) or 1% lactose (dark gray) with mannose supplementation as indicated.

Figure S4. The mannose response requires *ptsABCD* and is repressed by the carbon catabolite response. (A) Luciferase expression from a P_{ptsA} -luxAB reporter strain grown in 1% mannose and decreasing concentrations of glucose. (B) P_{shp3} -luxAB expression in a *ptsC* complementation strain during growth in 1% glucose (gluc) or 1% mannose (man).

Figure S5. Effect of artificially-slowed growth on lysozyme resistance. Wild-type NZ131 grown in sub-inhibitory concentrations of the bacteriostatic antibiotics spectinomycin (8 μ g mL⁻¹) or chloramphenicol (0.4 μ g mL⁻¹) exhibits reduced growth rates similar to SHP-induced (C8) cultures (top panel) but does not exhibit increased survival after lysozyme challenge (bottom panel). Cells were grown with antibiotics or peptides for two hours before back-dilution into 2 mg mL⁻¹ lysozyme. At each time point, an aliquot was removed, diluted and plated to enumerate CFUs.

Figure S6. **Effect of high concentrations of CsA on resistance of NZ131 to 2 mg mL**⁻¹ **Iysozyme**. Cells were pre-treated with the drug for one hour at the concentrations indicated before lysozyme challenge.

Figure S7. Reporter induction in wild-type GAS strains in response to synthetic peptide. Maximum P_{shp3} -lux reporter induction from different GAS serotypes exposed to 100, 10, or 1 nM synthetic SHP3-C8 or 100 nM reverse peptide.

Figure S8. Reporter activity and lysozyme resistance of wild-type GAS grown in metal-deplete vs. replete CxCDM. Wild-type GAS strains were grown in deplete or replete CxCDM, and growth (top panels) and luciferase activity of a multi-copy P_{shp3} -lux reporter (pJC229; middle panels) were monitored. After pregrowth in these conditions, cells were back-diluted into 10 (MGAS5005), 20 (MGAS10394 and HSC5), or 50 (MGAS315) mg mL⁻¹lysozyme. At each time point, an aliquot was removed, diluted and plated to enumerate CFUs (bottom panels).

Figure S9. Reporter activity and lysozyme resistance of wild-type GAS grown in mannose or glucose. Wild-type GAS strains were grown in CDM containing 1% glucose or 1% mannose, and growth (top panels) and luciferase activity of a multi-copy P_{shp3}-lux reporter (pJC229; middle panels) were monitored. After pre-growth in these conditions, cells were back-diluted into 10 (MGAS5005), 20 (MGAS10394 and HSC5), or 50 (MGAS315) mg mL⁻¹ lysozyme. At each time point, an aliquot was removed, diluted and plated to enumerate CFUs (bottom panels).

	+C8	+reverse	
streptonigrin (μM)			
WT	5	5	
∆rgg3	5	5	
∆mtsR	1.25	1.25	
cycloserine (mg/mL)			
WT	0.5	0.25	
∆rgg2	0.25	0.25	
∆rgg3	0.5	0.5	
shp _{GGG}	0.5	0.25	
erythromycin (μg/mL)			
WT	0.031	0.063	
∆rgg2	0.063	0.063	
∆rgg3	0.031	0.031	
shp _{GGG}	0.031	0.063	
kanamycin (μg/mL)			
WT	15.63	250	
∆ rgg2	125	125	
∆rgg3	<7.81	31.25	
shp _{GGG}	15.63	250	
paraquat (mM)			
WT	50	>100	
∆rgg2	>100	>100	
∆rgg3	50	100	
shp _{GGG}	100	>100	
spectinomycin (µg/mL)			
WT	31.25	125	
∆ rgg2	125	125	
∆rgg3	31.25	62.5	
shp _{GGG}	31.25	125	
streptomycin (μg/mL)			
WT	15.63	250	
∆rgg2	125	250	
∆rgg3	7.81	15.63	
shp _{GGG}	15.63	250	

Table S1. Effect of SHP3-C8 treatment on MICs of some antibiotics

Table S2. GAS growth on different carbon sources

		P _{shp-luxAB}
Carbon source	Growth ^a	induction ^b
Carbohydrates		
N-Acetyl-D-Glucosamine	++	-
D-Fructose	++	-
α-D-Glucose	++	+/-
D-Glucosamine	++	-
Maltose	++	-
Maltotriose	++	_
Sucrose	++	_
D-Trehalose	++	_
N-Acetyl-B-D-Mannosamine	+	_
	+	_
	+	_
D Manneso		_
2 0 8 D Calasta pyranaavi D Arabinaaa	+	тт
D Chases & Description	+/-	-
	+/-	-
u-D-Laciose	+/-	-
	+/-	-
β-Methyl-D-Glucoside	+/-	-
Amino acids and Amines		
Phenylethyl- amine	++	-
D-Alanine	+	-
L-Alanine	+	-
L-Glutamic Acid	+	-
L-Serine	+	-
L-Threonine	+	-
L-Asparagine	+/-	-
L-Aspartic Acid	+/-	-
L-Glutamine	+/-	-
Glycyl-L-Aspartic Acid	+/-	-
Glycyl-L-Proline	+/-	-
L-Proline	+/-	-
D-Threonine	+/-	-
Tyramine	+/-	-
5		
Nucleic Bases		
Adenosine	+	-
Inosine	+	_
2-Deoxy Adenosine	+/-	_
Uridine	+/-	_
Organic Acids and Alcohols		
2-Aminoethanol	+	_
Dulcitol	+	-
Formic Acid	r +	-
Formic Acid y Lastana	+	-
	+	-
	+	-
a-Hydroxy Butyric Acid	+	-
α-Hydroxy Glutaric Acid-γ-Lactone	+	-
L-Lactic Acid	+	-

Mana Mathul Cuasinata		
Mono Methyl Succinate	+	-
D-Malic Acid	+	-
L-Malic Acid	+	-
Mucic Acid	+	-
Propionic Acid	+	-
Acetic Acid	+/-	-
Adonitol	+/-	-
D-Galactonic Acid-y-Lactone	+/-	-
Glycerol	+/-	-
D,L-α-Glycerol-Phosphate	+/-	-
D,L-Malic Acid	+/-	-
D-Mannitol	+/-	-
m-Hydroxy Phenyl Acetic Acid	+/-	-
p-Hydroxy Phenyl Acetic Acid	+/-	-
Succinic Acid	+/-	-
m-Tartaric Acid	+/-	-
Tricarballylic Acid	+/-	-

^aSymbols: ++ Growth of more than ten fold over initial level; + Growth of more than six fold and lower than ten fold over initial level; +/- Growth of over four fold and lower than six fold over initial level.

^bSymbols: ++ Promoter induction of over 200-fold; + Promoter induction of over 50-fold times and lower than 200-fold; +/-Promoter induction of over 20-fold times and lower than 50-fold.

<u>Strain/plasmid</u>	Description	<u>Reference</u>
S. pyogenes strains		
NZ131	Wild-type M49 isolate	(Simon & Ferretti, 1991, McShan <i>et al.</i> , 2008)
∆rgg2	NZ131 ∆ <i>rgg2</i> ; unmarked	(Chang et al., 2011)
∆rgg3	NZ131 <i>∆rgg3</i> ∷ <i>cat</i> ; Cm ^R	(Chang et al., 2011)
shp _{GGG}	NZ131 <i>shp2_{GGG}shp3_{GGG}</i> ; unmarked	(Cook et al., 2013)
$\Delta m ts R$	NZ131∆ <i>mtsR∷aphA3</i> ; Kan ^R	(Bates et al., 2005)
∆mtsR∆rgg2	NZ131∆ <i>mtsR∷aphA3 ∆rgg2</i> ; Kan ^R	This study, (Chang et al., 2011)
∆mtsR∆rgg3	NZ131∆ <i>mtsR∷aphA3 ∆rgg3∷cat</i> ; Cm ^R Kan ^R	This study, (Chang et al., 2011)
manM	NZ131 <i>spy49_1355</i> ::pJJ216; Kan ^R	This study
ptsC	NZ131 <i>spy49_0835</i> ::pJJ217; Kan ^R	This study
agaW	NZ131 <i>spy49_0526c</i> ::pJJ215; Kan ^R	This study
HSC5	Wild-type M14 isolate	(Port et al., 2013)
MGAS5005	Wild-type M1 isolate with natural <i>covS</i> mutation	(Hoe et al., 1999, Sumby et al., 2006)
MGAS315	Wild-type M3 isolate	(Beres et al., 2002)
MGAS10394	Wild-type M6 isolate; Erm ^R	(Banks et al., 2004)
P. aeruginosa PA14	Human clinical isolate	(Rahme et al., 1995)

Table S3. Strains and plasmids used in this study

Plasmids

p7INT	Shuttle-suicide vector that integrates at streptococcal bacteriophage T12 <i>attB</i> site; Erm ^R	(McShan et al., 1998)
pJC188	524 bp DNA fragment containing the <i>rgg3</i> promoter fused to <i>luxAB</i> and cloned into p7INT; Erm ^R	This study
pJC190	1046 bp DNA fragment containing the <i>rgg2</i> promoter fused to <i>luxAB</i> and cloned into p7INT; Erm ^R	This study
pJC219	384 bp DNA fragment containing the <i>shp3</i> promoter fused to <i>luxAB</i> and cloned into p7INT; Erm ^R	(LaSarre et al., 2013b)

pJC229	384 bp DNA fragment containing the <i>shp3</i> promoter fused to <i>luxAB</i> and cloned into pLZ12-Sp; Spec ^R	This study
pJC303	125 bp DNA fragment containing the <i>recA</i> promoter cloned into pLZ12-Sp; Spec ^R	This study
pJJ180	Promoterless <i>luxAB</i> genes cloned into p7INT, Erm ^R	This study
pJJ215	482 bp internal fragment of <i>agaW</i> gene cloned into pUC-Km for insertional disruption, Kan ^R	This study
pJJ216	517 bp internal fragment of <i>manM</i> gene cloned into pUC-Km for insertional disruption, Kan ^R	This study
pJJ217	430 bp internal fragment of <i>ptsC</i> gene cloned into pUC-Kan for insertional disruption, Kan ^R	This study
pJJ244	345 bp DNA fragment containing the <i>ptsA</i> promoter cloned into pJJ180 upstream of <i>luxAB</i> , Erm ^R	This study
pJJ252	460 bp DNA fragment containing the <i>manL</i> promoter cloned into pJJ180 upstream of <i>luxAB</i> , Erm ^R	This study
pJJ251	$\it ptsABCD$ operon cloned into pJC303 downstream of the $\rm P_{recA}$ promoter, $\rm Spec^{R}$	This study
pLZ12-Sp	Shuttle vector encoding spectinomycin resistance; pWV01 origin, Spec ^R	(Husmann et al., 1995)
pUC-Km	Vector with Gram-negative pMB1 origin containing the <i>aphA3</i> cassette, Kan ^R	(Menard et al., 1993)

Table S4. Primers used in this study

<u>Primer</u>	Nucleotide sequence (5' to 3')	<u>Description</u>
JC148	CATGgaattcGTTATCTCTGCTACTCTGTC	Sense primer to clone <i>rgg3</i> promoter region; EcoRI site
JC149	CATGgaattcATGTAGTTGTTGTTAGTTTAGCC	Sense primer to clone <i>rgg2</i> promoter region; EcoRI site
JC159	CAAATATTTCCAAACTTCATATTTTCCCACTTTCCCAACA	Antisense primer to fuse <i>rgg3</i> promoter region to <i>luxAB</i>
JC161	CAAATATTTCCAAACTTCATTTTTCCCACTTTCACAACAA	Antisense primer to fuse <i>rgg2</i> promoter region to <i>luxAB</i>
JC415	CATGgaattcAAAGAGGAGAAAGTATTGGC	Sense primer to clone <i>recA</i> promoter; EcoRI site
JC417	CATGgcggccgcCCCTTACCAAAATCTTTTTCAATAT	Antisense primer to clone <i>recA</i> promoter; NotI site
JJ222	CATGgtcgacGCAACAACCTTTACCATTAT	Sense primer to clone internal fragment of <i>ptsC</i> gene into pUC-Kan; Sall site
JJ223	CATGgaattcCTGGTAATTTCAAATAAGCTG	Antisense primer to clone internal fragment of <i>ptsC</i> gene into pUC-Km; EcoRI site
JJ224	CATGgtcgacGTCATCCTTGGTGGTACA	Sense primer to clone internal fragment of <i>manM</i> gene into pUC-Km; Sall site
JJ225	CATGgaattcATAGCTGCAAGAGCAAAAC	Antisense primer to clone internal fragment of <i>manM</i> gene into pUC-Km; EcoRI site
JJ226	CATGgtcgacAGCTATCTCCGAATTAGCTT	Sense primer internal fragment of <i>agaW</i> gene into pUC-Km; Sall site
JJ227	CATGgaattcCCAATCAGTACAAAAGGAAT	Antisense primer to internal fragment of <i>agaW</i> gene into pUC-Km; EcoRI site
JJ276	CATGgtcgacTGGAACTGGTTATGCTATGA	Sense primer to clone <i>manL</i> promoter; Sall site
JJ257	CATGgcggccgcCTCCTTTAAAATATTTTTCGTTG	Antisense primer to clone <i>manL</i> promoter; Notl site
JJ254	CATGgtcgacTTATCGTGATGGCTATGG	Sense primer to clone <i>ptsA</i> promoter; Sall site
JJ255	CATGgcggccgcCTATTAACAAAAACCGCTGA	Antisense primer to <i>ptsA</i> promoter; NotI site
JJ273	CATGgcggccgcATGAAACGAAAATTTCTCATT	Sense primer to clone <i>ptsABCD</i> ORFs into pJC303; NotI site
JJ274	CATGagatctCTTACCTTTATTGCTAGGAGAT	Antisense primer to clone <i>ptsABCD</i> ORFs into pJC303; BgIII site