# Supplemental material

JCB

Knoops et al., http://www.jcb.org/cgi/content/full/jcb.201506059/DC1



Figure S1. Docking and RING complex proteins as well as Pex11 colocalize in *pex1* and *pex6* cells. (A) Representative FM images of WT, *pex1*, and *pex6* cells grown on glucose producing Pex13-mGFP/Pex10-mCherry, Pex14-mGFP/Pex2-mCherry, Pex14-mGFP/Pex10-mCherry, or Pex14-mGFP/Pex11-mCherry in BY4742. For the FY1679 strain, the Pex14-mGFP/Pex2-mCherry combination was analyzed. Cells were fixed in formaldehyde and embedded in agarose to prevent movement of spots and cells during imaging acquisition at the Deltavision microscope. (B) Example of the colocalization analysis of WT, *pex1*, and *pex6* cells producing Pex14-mGFP and Pex10-mCherry grown on glucose. Bars: (A) 5 µm; (B) 10 nm.



Figure S2. **Peroxisomal ghosts in glucose-grown pex1 cells and in cells of the pex1 atg1 and pex6 pex11 double-deletion strains.** (A) Double immunolabeling experiment using α-HA and α-Pex14 antibodies on glucose-grown pex1 cells producing Pex11-HA. α-Pex14 labeling of oleic acid induced pex1 atg1 (B) or pex6 pex11 cells (C) showing the presence of ghosts labeled with Pex14. Bars, 100 nm.



Figure S3. **Hypothetical model of peroxisome reintroduction in** *pex1* **or** *pex6* **cells. In the absence of Pex1, peroxisomal membrane ghosts are present that contain all PMPs, but lack matrix proteins. A single ghost consists of one continuous membrane and represents a flattened membrane vesicle, which is folded into a spherical structure with a single opening toward the cytosol. In cross sections, the structure is seen as a double-membrane ring, occasionally displaying the opening. Upon reintroduction of Pex1, the space between the two membranes is filled by matrix proteins. Expansion of this space is paralleled with the formation of spherical extensions near the hole of the structure, which develop into peroxisomes, most likely by fission from the original structure.** 

### Table S1. Yeast strains used in this work

| Name                                      | Genotype                                                                                                                                | Reference                 |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| WT                                        | BY4742; Matα; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0                                                                                            | Euroscarf                 |
| pex1                                      | BY4742; Matα; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0; YKL197c::kanMX4                                                                           | Euroscarf                 |
| рехб                                      | BY4742; Matα; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0; YNL329c::kanMX4                                                                           | Euroscarf                 |
| WT Pex14-mGFP                             | BY4741; Mata; his3::PEX14-mGFP; leu2∆0; met15∆0 ura3∆0                                                                                  | Invitrogen                |
| WT Pex13-mGFP                             | BY4741: Mata: his3::PEX13-mGFP: leu2d0; met15d0 ura3d0                                                                                  | Invitrogen                |
| FY1679 WT                                 | FY1679 (S288C isogenic yeast strain): Ματα; his3Δ200; leu2Δ1; ura3-52;<br>trp1-63; GAL2                                                 | Euroscarf                 |
| TIR 1                                     | DF5; Matα; his3Δ200; leu2-3,2-112; lys2-801; trp1-1; ura3::ADH-AtTIR1-9myc                                                              | Morawska and Ulrich, 2013 |
| pex1 Pex14-mGFP Sec63-mRFP                | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; URA3::Sec63-mRFP;<br>YKL197c::kanMX4                                                    | This study                |
| pex6 Pex14-mGFP Sec63-mRFP                | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; URA3::Sec63-mRFP;<br>YNL329c::kanMX4                                                    | This study                |
| pex1 Pex14-mGFP                           | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4                                                              | This study                |
| pex6 Pex14-mGFP                           | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4                                                              | This study                |
| WT Pex10-mCherry Pex14-mGFP               | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0; PEX10-mCHE<br>RRY::ZeocinR                                                      | This study                |
| pex1 Pex10-mCherry Pex14-mGFP             | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4; PEX10-mCHERRY::ZeocinR                                      | This study                |
| pex6 Pex10-mCherry Pex14-mGFP             | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4; PEX10-mCHERRY::ZeocinR                                      | This study                |
| WT Pex10-mCherry Pex13-mGFP               | BY4742; Matα; his3::PEX13-mGFP; leu2Δ0; lys2Δ0; ura3Δ0; PEX10-mCHE<br>RRY::ZeocinR                                                      | This study                |
| pex1 Pex10-mCherry Pex13-mGFP             | BY4742; Matα; his3::PEX13-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4; PEX10-mCHERRY::ZeocinR                                      | This study                |
| pex6 Pex10-mCherry Pex13-mGFP             | BY4742; Matα; his3::PEX13-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4; PEX10-mCHERRY::ZeocinR                                      | This study                |
| WT Pex2-mCherry Pex14-mGFP                | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0; PEX2-mCHE<br>RRY::ZeocinR                                                       | This study                |
| pex1 Pex2-mCherry Pex14-mGFP              | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4; PEX2-mCHERRY::ZeocinR                                       | This study                |
| pex6 Pex2-mCherry Pex14-mGFP              | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4; PEX2-mCHERRY::ZeocinR                                       | This study                |
| pex1.pex6 Pex2-mCherry Pex14-mGFP         | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4; YKL197c::Hygromycin; PEX2-mCHERRY::ZeocinR                  | This study                |
| WT Pex11-mCherry Pex14-mGFP               | BY4742; Mata; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0; PEX11-mCHE<br>RRY::ZeocinR                                                      | This study                |
| pex1 Pex11-mCherry Pex14-mGFP             | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4; PEX11-mCHERRY::ZeocinR                                      | This study                |
| pex6 Pex11-mCherry Pex14-mGFP             | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YNL329c::kanMX4; PEX11-mCHERRY::ZeocinR                                      | This study                |
| <i>pex1 atg1</i> Pex10-mCherry Pex14-mGFP | BY4742; Matα; his3::PEX14-mGFP; leu2Δ0; lys2Δ0; ura3Δ0;<br>YKL197c::kanMX4; YKL180w::NatR; PEX10-mCHERRY::ZeocinR                       | This study                |
| pex1 Pex11-HA                             | BY4742; Matα; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0; YKL197c::kanMX4;<br>PEX11-HA::ZeocinR                                                     | This study                |
| pex1 Pex2-6HA                             | BY4742; Matα; his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0; YKL197c::kanMX4;<br>PEX2-6HA::Hygromycin                                                  | This study                |
| FY1679 pex1                               | FY1679 (S288C isogenic yeast strain): Matα; his3D200; leu2D1; ura3-52;<br>trp1-63; GAL2; YKL197c::kanMX4                                | This study                |
| FY1679 pex6                               | FY1679 (S288C isogenic yeast strain): Matα; his3D200; leu2D1; ura3-52;<br>trp1-63; GAL2; YNL329c::kanMX4                                | This study                |
| FY1679 pex6 Pex14-mGFP Sec63-mRFP         | FY1679 (S288C isogenic yeast strain): Matα; his3::PEX14-mGFP; leu2D1;<br>URA3::Sec63-mRFP; trp1-63; GAL2; YNL329c::kanMX4               | This study                |
| FY1679 WT Pex2-mCherry Pex14-mGFP         | FY1679 (S288C isogenic yeast strain): Matα; his3::PEX14-mGFP; leu2D1;<br>ura3-52; trp1-63; GAL2; PEX2-mCHERRY::ZeocinR                  | This study                |
| FY1679 pex1 Pex2-mCherry Pex14-mGFP       | FY1679 (S288C isogenic yeast strain): Matα; his3::PEX14-mGFP; leu2D1;<br>ura3-52; trp1-63; GAL2; YKL197c::kanMX4; PEX2-mCHERRY::ZeocinR | This study                |
| FY1679 pex6 Pex2-mCherry Pex14-mGFP       | FY1679 (S288C isogenic yeast strain): Mata; his3::PEX14-mGFP; leu2D1;<br>ura3-52; trp1-63; GAL2; YNL329c::kanMX4; PEX2-mCHERRY::ZeocinR | This study                |
| PEX1-AID*-6HA                             | DF5; Mata; his3::PEX14-mGFP; leu2::DsRed-SKL; lys2-801; trp1-1;<br>ura3::ADH-AtTIR1-9myc; Pex1-AID*-6HA::hygromycin                     | This study                |

#### Table S2. Plasmids used in this work

| Name               | Genotype                                                                | Reference                    |
|--------------------|-------------------------------------------------------------------------|------------------------------|
| pAG25              | pFA6, nourseothricin <sup>R</sup> , amp <sup>R</sup>                    | Goldstein and McCusker, 1999 |
| pANL31             | pHIPZ-eGFP fusionator, ampR                                             | Leao-Helder et al., 2003     |
| pCDNA3.1mCherry    | Plasmid containing mCherry, amp <sup>R</sup>                            | Shaner et al., 2004          |
| pHIPX7 GFP-SKL     | pHIPX, TEF1 promotor, kan <sup>®</sup> , LEU2                           | Krikken et al., 2009         |
| pHyg-AID*-6HA      | pSM409 Auxin-inducable degron, amp <sup>R</sup> , hph <sup>R</sup>      | Morawska and Ulrich, 2013    |
| pHyg-Pex1-AID*-6HA | pSM409 Pex1-Auxin-indicable degron, amp <sup>R</sup> , hph <sup>R</sup> | This study                   |
| pHyg-Pex2-6HA      | pSM409 6xHA, amp <sup>R</sup> , hph <sup>R</sup>                        | This study                   |
| pRSA01             | pHIPZ4 mCherry fusinator, amp <sup>R</sup> , zeo <sup>R</sup>           | This study                   |
| pSM1960            | pSM1960 Sec63-mRFP, amp <sup>R</sup> , URA3                             | Metzger et al., 2008         |
| pPtdh3 GFP-SKL     | pHIPX, TDH3 promotor, kan <sup>R</sup> , LEU2                           | This study                   |
| pPtdh3 DsRed-SKL   | pHIPX, TDH3 promotor, kan <sup>R</sup> , LEU2                           | This study                   |

#### Table S3. Primers used in this work

| Name         | Sequence                                                                       |
|--------------|--------------------------------------------------------------------------------|
| рКЕК036      | 5'-ATGAGATCAGTGTCCCTGACTGGCAAAATGGACAGGTCGA-3'                                 |
| pKEK038      | 5'-CCTTGTGCAGACAACACTGTCAACCACAGGAAATTCTGGTCCTGCGGCAAGTGAGCAAGGGCGAGGAGGA-3'   |
| рКЕКОЗ9      | 5'-TATTTCCCCTTCGCGTTTTACTTCTCCTGCTCAGACGTCTGCGTTATTTGTGAATTGTAATACGACTCA-3'    |
| pKEK041      | 5'-GTTCCGGGTAACAATCAG-3'                                                       |
| pKEK123      | 5'-CGGGCACATGGAAATTCACT-3'                                                     |
| pKEK124      | 5'-TATGCTTGCCTGTGGCGTTA-3'                                                     |
| pKEK127      | 5'-CCGAAGCCTTGCTCATCTTG-3'                                                     |
| pKEK128      | 5'-GTTGCCGGCTTAGCTCTGTA-3'                                                     |
| pKEK131      | 5'-CTAAAGGGAACAAAAGCTGG-3'                                                     |
| pKEK136      | 5'-GGTTATCCATACGATGTTCCTGACTATGCTAGCGGTTAGGTCGACTCTAGAGGATC-3'                 |
| pKEK137      | 5'-CCGGTGTTGTCACATCTATCCTTGGTATGCAAGACATGTGGAAAGCTACAGGTTATCCATACGATGTTCC-3'   |
| pKEK138      | 5'-ATAAATTATAAAGAAGGGTCGAATCAAACATAAGCGGAGAATAGCCAAATCTAAAGGGAACAAAAGCTGG-3'   |
| pKEK164      | 5'-CTGGTGGAAAGTGAGGACAAAG-3'                                                   |
| pKEK165      | 5'-GTACTTCGTCTCGTTTCTGCTG-3'                                                   |
| pKEK178      | 5'- CAGCTGAAGCTTGTTAAATATGCGGATTGTGAAACATTGCACG-3'                             |
| pKEK179      | 5'-GCACCGTCGACCATAAGGGAGAGTCGGCTACCAATGTCGA-3'                                 |
| pKEK183      | 5'-AATATGAATATAGTATACACATATATAGAGATACAAGCGAGGGAACGGGGGGGG                      |
| pKEK184      | 5'-CCGGTGTTGTCACATCTATCCTTGGTATGCAAGACATGTGGAAAGCTACAGTGAGCAAGGGCGAGGAGGA-3'   |
| pKEK184      | 5'-AATTATAAAGAAGGGTCGAATCAAACATAAGCGGAGAATAGCCAAATAAAGTGAATTGTAATACGACTCA-3'   |
| pKEK202      | 5'-GGTCGACGGTGCAGGCTGTGTTTATGTGCGCGACGAGG-3'                                   |
| pKEK203      | 5'-GAACATCGTATGGGTATTTCCCGTACACTGGTGAGGCGGTCAGT-3'                             |
| pKEK229      | 5'-ATGTGTTTGCATACCCTCCAAAAGAAAGCGATTATAGTAACATTAATGCATGATGTGACTGTCGCCCG-3'     |
| pKEK230      | 5'-GGGACATATATTTACAAATTTACCTATACGCTCTGAGTTGATATTACTTAC                         |
| pTER208      | 5'-ACCCCATATTTTCAAATCTCTTTTACAACACCAGACGAGAAATTAAGAAACCAGATCTGTTTAGCTTGCCTT-3' |
| pTER209      | 5'-ATAGCAGGTCATTTGTACTTAATAAGAAAACCATATTATGCATCACTTAAATTCGAGCTCGTTTTCGACA-3'   |
| TDH3_NotI.F  | 5'GCATCAGCGGCCGCCACGCTTTTTCAGTTCGAGT-3'                                        |
| TDH3_BamHI.R | 5'-GCGCGCGGATCCTTTGTTTGTTTATGTGTGTTTAT-3'                                      |
| RSA10fw      | 5'-GAAGATCTATGGTGAGCAAGGGCGAGGAG-3'                                            |
| RSAllrev     | 5'-GCGTGTCGACTTACTTGTACAGCTCGTCCATGCC-3'                                       |

## References

Goldstein, A.L., and J.H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in *Saccharomyces cerevisiae*. Yeast. 15:1541–1553. http://dx.doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K

Krikken, A.M., M. Veenhuis, and I.J. van der Klei. 2009. Hansenula polymorpha pex11 cells are affected in peroxisome retention. FEBS J. 276:1429–1439. http://dx .doi.org/10.1111/j.1742-4658.2009.06883.x

Leao-Helder, A.N., A.M. Krikken, I.J. van der Klei, J.A. Kiel, and M. Veenhuis. 2003. Transcriptional down-regulation of peroxisome numbers affects selective peroxisome degradation in *Hansenula polymorpha. J. Biol. Chem.* 278:40749–40756. http://dx.doi.org/10.1074/jbc.M304029200

Metzger, M.B., M.J. Maurer, B.M. Dancy, and S. Michaelis. 2008. Degradation of a cytosolic protein requires endoplasmic reticulum-associated degradation machinery. J. Biol. Chem. 283:32302–32316. http://dx.doi.org/10.1074/jbc.M806424200

Morawska, M., and H.D. Ulrich. 2013. An expanded tool kit for the auxin-inducible degron system in budding yeast. Yeast. 30:341–351. http://dx.doi.org/10.1002/yea .2967

Shaner, N.C., R.E. Campbell, P.A. Steinbach, B.N. Giepmans, A.E. Palmer, and R.Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. *Nat. Biotechnol.* 22:1567–1572. http://dx.doi.org/10.1038/nbt1037