Supporting Information

Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma

Pankaj Attri^{1,2}, Thapanut Sarinont², Minsup Kim³, Takaaki Amano², Kazunori Koga²*, Art E. Cho³*, Eun Ha Choi¹*, Masaharu Shiratani²*

 ¹Plasma Bioscience Research Center / Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Korea.
² Graduate School of Information Science and Electrical Engineering, Kyushu University Fukuoka, Japan
³Department of Bioinformatics, Korea University, Sejong, Korea

Synthesis of Diethylammonium dihydrogen phosphate (DEAP)

The synthesis of ionic liquids was carried out in a 250 ml round-bottomed flask, which was immersed in a water-bath and fitted with a reflux condenser. Phosphoric acid (1 mol) was dropped into the diethylamine (1 mol) at 70 0 C for 1 h. The reaction mixture was heated at 80 0 C with stirring for 2 h to ensure that the reaction had proceeded to completion. The reaction mixture was then dried at 80 0 C until the weight of the residue was constant.

Figure Captions

Figure S1: Physical and chemical parameters changed after the plasma treatment in different gases plasma such as (a) pH; (b) temperature; (c) NO_2^- and (d) NO_3^- .

Figure S2: Fluorescence analysis of OH radicals using TA solution in (a) water; (b) 2 % (w/v) NaCl solution and (c) 2 % (w/v) DEAP IL solution after treatment with DBD plasma using O_2 feeding gas.

Figure S3: ESR spectra of OH radicals in the presence of O_2 plasma for 10 min treatment with or without presence of 2 % NaCl.

Figure S4: ESR spectra of OH and H radicals in the presence of N_2 plasma for 10 min treatment with or without presence of 2 % NaCl.

Figure S5: Fluorescence analysis of Hb after treatment with different gases plasma (a) Hb treatment in water; (b) Hb treatment in the presence of 2% NaCl solution and (c) Hb treatment in the presence of 2% DEAP IL solution after DBD plasma treatment with different feeding gases, such as Air (red), Ar (blue), He (cyan), NO (10%) + N_2 (orange) and N_2 (magenta).

Figure S6: Schematic depiction of the Hydrogen bonding of DEAP and DMPO.

Figure S7: Schematic depiction of (a) dimension of the DBD used in current work and (b) Current & voltage graph of DBD.

Figure S1

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Sample	α-sheet	β-sheet
	(%)	(%)
Hb	69.39	8.3
Hb + Air	68.79	7.6
$Hb + N_2$	68.54	7.42
$Hb + NO(10\%) + N_2$	68.97	7.84
$Hb + O_2$	68.81	7.59
Hb + He	68.89	7.82
Hb + Ar	68.92	7.8
Hb + Air + 2% NaCl	69.03	7.52
$Hb + N_2 + 2\% NaCl$	68.95	7.49
Hb + NO + 2% NaCl	68.79	7.57
$Hb + O_2 + 2\% NaCl$	69.10	7.54
Hb + He+ 2% NaCl	68.95	7.52
Hb + Ar+ 2% NaCl	69.05	7.56
Hb + 2% DEAP	69.00	7.73
Hb + Air + 2% DEAP	68.98	7.56
$Hb + N_2 + 2\% DEAP$	68.95	7.69
$Hb + NO (10\%) + N_2 + 2\%$	69.00	7.67
DEAP		
$Hb + O_2 + 2\% DEAP$	68.96	7.362
Hb + He + 2% DEAP	68.99	7.57
Hb + Ar + 2% DEAP	69.00	7.63

Table S1. Secondary structure composition of Hb, determined from Far UV CD spectra in different solvent condition and with different feeding gases at 20 ^oC determined by K2D3.