

Supplementary Figure 1. Similar *E. coli* load in WT and *Rag2^{-/-}* mice during the
evolution experiments

a) *Escherichia coli* colonization of the gut of $Rag2^{-/-}$ mice. Bacterial loads per gram of feces (±2 s.e.m) during 24 days of adaptation of *E. coli* to the mouse gut (populations R1.1 to R1.15). **b)** Average bacterial loads (±2 s.e.m) over time in WT (white circles) or $Rag2^{-/-}$ (black circles) populations. The host genotype does not influence the temporal dynamics of bacterial loads over time (interaction host genotype and time, ANOVA χ^2_{17} =18.64, p = 0.35) nor the bacterial loads (host genotype, ANOVA χ^2_1 =3.35, p =10 0.07).

14 Supplementary Figure 2. Dynamics of the *gat*-negative phenotype

Emergence and expansion of beneficial mutations in the *gat* operon in $Rag2^{-/-}$ (upper panels) and WT (lower panels) mice, which cause the increase in frequency of a *gat*negative phenotype. Each plot displays a group of 5 $Rag2^{-/-}$ (upper panels) or WT (lower panels) mice, corresponding to 3 independent experimental blocks.

19

Supplementary Figure 3. Cellular content of ribosomes (cy3 intensity per cell) inferred by whole-cell hybridization

E. coli MG1655 strain DM09-CFP (ancestral) was grown in M9 minimal medium
supplemented with (from left to right): ribose 0.4%, sorbitol 0.4%, xylose 0.4%,
fructose 0.4%, maltose 0.4%, arabinose 0.4%, gluconate 0.5% and gluconate 1%.
Circles represent the average of two hybridization measurements and four growth rates
estimates (±2 s.e.m.)

29

32 Supplementary Figure 4. Higher growth rate of *E. coli* in GF mice

The doubling time of *E. coli* colonizing the gut of WT or $Rag2^{-/-}$ is estimated by the amount of rRNA (see Fig. S3). Each symbol corresponds to an average of 2 independent quantifications made for each mouse (n=6) during day 1 and 3 of colonization. The growth rate is significantly higher in GF compared to microbiotaharboring animals (WT vs WT GF, Mann-Whitney U test with Benjamini and Hochberg correction, W= 144, $P<10^{-3}$ and $Rag2^{-/-}$ vs $Rag2^{-/-}$ GF, Mann-Whitney U test with Benjamini and Hochberg correction, W=120, $P<10^{-3}$).

40

41

42 Supplementary Figure 5. Microbiota composition of naïve (unmanipulated) WT
43 and *Rag2^{-/-}* mice.

a) Alpha diversity estimates of microbiota community phylogenetic diversity in WT and $Rag2^{-/-}$ animals. Phylogenetic diversity was increased in the WT mice (Mann-Whitney U test, *W*=23.5, *P*=0.03). **P* < 0.05.

b) Principal coordinates analysis (PCoA) of the unweighted UniFrac distance matrices
of faecal microbiota of WT and *Rag2^{-/-}* mice. The first two coordinates are shown.
Ellipses centered on the averages of the metric distances with a 90% confidence interval

- 50 for the first two coordinates were drawn on the associated PCoA.
- 51 c) Microbiota composition at the genus level of 5 WT and 5 $Rag2^{-/-}$ mice before 52 streptomycin treatment and *E. coli* colonization. Genera with a relative abundance

larger than 1% are displayed. The colored segments represent the relative abundance ofeach genus.

Alpha diversity estimates of microbiota community richness (d) and OTU-based diversity (e). Both parameters were similar in $Rag2^{-/-}$ and WT animals (Mann–Whitney

57 U test, W=17, P=0.4 and W=21, P=0.1, respectively). Ns (not significant,) P > 0.05.

Principal coordinates analysis (PCoA) of the weighted UniFrac (**f**) or Bray Curtis (**g**) distance matrices of faecal microbiota of WT and $Rag2^{-/-}$ mice. The first two coordinates are shown. Ellipses centered on the averages of the metric distances with a 90% confidence interval for the first two coordinates were drawn on the associated PCoA.

63

centered on the averages of the metric distances with a 90% confidence interval for thefirst two coordinates were drawn on the associated PCoA.

76 SUPPLEMENTARY TABLES

77

78 Supplementary Table 1. In vivo competitions between a gatZ mutant and the

Mice		Time (hours)				_
		0	24	48	72	S
	1	-0.23	2.32	2.87	4.28	0.066
	2	-0.23	1.49	2.32	3.47	0.053
	3	-0.07	1.23	2.23	3.19	0.047
	4	-0.07	1.31	3.04	3.63	0.056
WT	5	-0.62	1.89	2.58	4.63	0.073
W I	6	-0.62	2.17	3.30	3.70	0.070
	7	-0.62	1.66	2.72	4.37	0.071
	8	-1.02	1.61	3.26	3.97	0.078
	9	-1.02	0.22	3.96	4.93	0.087
	10	-1.02	2.28	3.79	4.05	0.084
	1	-0.23	0.83	2.26	3.67	0.053
	2	-0.23	1.96	2.58	2.43	0.047
	3	-0.07	1.55	3.02	2.80	0.049
	4	-0.07	-0.97	-0.90	-0.80	-0.014
D ~ ~ 2-/-	5	-0.62	1.23	2.13	2.66	0.051
Kag2	6	-0.62	-0.53	-0.76	0.08	0.006
	7	-0.62	1.34	1.48	1.59	0.038
	8	-1.02	-0.31	0.09	0.28	0.020
	9	-1.02	-0.49	0.76	0.99	0.030
	10	-1.02	-0.26	-0.52	-0.55	0.009

79 ancestral strain in WT and $Rag2^{-/-}$ mice.

80

Table displaying the change in $\ln(gatZ/anc)$, i.e., the natural logarithm of the ratio between the frequencies of the gatZ mutant and the ancestral strain, over 3 days (72 hours) of competition in WT and $Rag2^{-/-}$ mice (see also Fig. 2c). *s* represents the selective advantage of gatZ along the three days of competition, inferred from the slope of the linear regression of $\ln(gatZ/anc)$.

86

88 Supplementary Table 2. In vivo competitions between a gatZ mutant and the

Mice			Time (h	ours)		
		0	24	48	72	S
	1	-0.05	0.50	0.81	2.06	0.026
	2	-0.05	0.79	2.04	1.06	0.025
	3	-0.60	1.29	2.87	3.73	0.065
	4	-0.60	0.87	3.37	4.26	0.071
WT	5	-0.60	0.77	1.97	2.82	0.050
co-	6	-0.60	0.69	2.31	3.73	0.060
housed	7	-0.60	1.20	3.82	0.86	0.045
	8	-0.65	1.02	2.37	3.17	0.057
	9	-0.54	1.75	3.16	3.65	0.066
	10	-0.45	1.24	1.78	2.75	0.047
	11	-0.52	1.57	4.40	4.14	0.077
	1	-0.05	0.84	2.00	2.45	0.037
	2	-0.05	0.73	1.78	0.67	0.020
	3	-0.60	1.46	2.45	2.90	0.056
	4	-0.60	0.84	2.81	1.01	0.039
Rag2-/-	5	-0.60	-0.13	1.38	2.39	0.040
co-	6	-0.60	1.02	2.45	2.93	0.054
housed	7	-0.60	0.94	2.21	3.38	0.057
	8	-0.65	1.79	3.55	4.20	0.076
	9	-0.54	2.03	2.83	3.35	0.062
	10	-0.45	1.74	3.49	1.21	0.045
	11	-0.52	2.14	2.79	3.41	0.063

89 ancestral strain in WT and $Rag2^{-/-}$ co-housed mice.

90

Table displaying the change in $\ln(gatZ/anc)$, i.e., the natural logarithm of the ratio between the frequencies of the gatZ mutant and the ancestral strain, over 3 days (72 hours) of competition in WT and $Rag2^{-/-}$ co-housed mice (see also Fig. 3a). *s* represents the selective advantage of gatZ along the three days of competition, inferred from the slope of the linear regression of $\ln(gatZ/anc)$.

96

98 Supplementary Table 3. In vivo competitions between a gatZ mutant and the

м	•		Time (h	ours)		_
WT germ-free	lce	0	24	48	72	S
	1	-0.61	0.46	0.92	1.27	0.029
	2	-0.61	0.43	1.17	1.76	0.035
	3	-0.20	0.71	1.32	1.79	0.030
WT germ-free	4	-0.20	0.56	0.87	1.92	0.028
germ-nee	5	-0.54	0.24	0.41	0.83	0.020
	6	-0.54	0.43	0.99	1.25	0.028
	7	-0.54	0.19	0.51	0.88	0.021
	1	-0.77	0.55	1.08	1.28	0.033
	2	-0.77	0.52	1.00	1.18	0.032
D 0-/-	3	-0.77	0.20	0.95	1.25	0.031
Rag2'	4	-0.54	0.06	0.76	1.48	0.028
germ-free	5	-0.54	-0.11	0.56	1.19	0.023
	6	-0.54	-0.27	0.53	1.13	0.022
	7	-0.54	-0.09	0.49	0.83	0.020

99 ancestral strain in WT and $Rag2^{-/-}$ germ-free mice.

100

Table displaying the change in $\ln(gatZ/anc)$, i.e., the natural logarithm of the ratio between the frequencies of the gatZ mutant and the ancestral strain, over 3 days (72 hours) of competition in WT and $Rag2^{-/-}$ germ-free mice (see also Fig. 3b). *s* represents the selective advantage of gatZ along the three days of competition, inferred from the slope of the linear regression of $\ln(gatZ/anc)$.

106

м	•		Time ((hours)		~
Mice		0	24	48	72	S
	1	-0.64	-0.54	-0.51	0.25	0.009
	2	-0.64	-0.87	-0.24	-0.21	0.006
	3	-0.64	0.69	0.45	0.42	0.020
WT	4	-0.64	-0.11	0.08	0.71	0.018
VV I	5	-0.64	0.12	-0.32	0.14	0.011
	6	-0.70	0.30	0.20	0.41	0.018
	7	-0.70	-0.48	0.05	0.06	0.012
	8	-0.70	-0.15	0.34	0.37	0.017
	1	-0.64	-0.71	-0.77	-1.50	-0.009
	2	-0.64	-0.54	-1.09	0.01	0.003
	3	-0.64	-2.71	-4.42	-6.42	-0.080
Pag 2-/-	4	-0.64	-0.45	-1.69	-2.88	-0.026
Kug2	5	-0.64	-1.13	-1.36	-1.52	-0.014
	6	-0.70	-0.07	-0.32	-2.48	-0.012
	7	-0.70	0.08	-2.15	-3.90	-0.035
	8	-0.70	-1.37	-1.55	-3.45	-0.032

109 *gatC*) in WT and $Rag2^{-/-}$ mice.

Table displaying the change in $\ln(gatZ/gatC)$, i.e., the natural logarithm of the ratio between the frequencies of the gatZ and gatC mutants, over 3 days (72 hours) of competition in WT and $Rag2^{-/-}$ mice (see also Fig. 4a). *s* represents the selective advantage of gatZ along the three days of competition, inferred from the slope of the linear regression of $\ln(gatZ/anc)$.

116

118 Supplementary Table 5. In vivo competitions between two gat mutants (gatZ and

Mice			Time (l	hours)		_
		0	24	48	72	S
	1	-0.35	-0.17	1.36	0.97	0.023
	2	-0.35	-0.10	2.04	1.96	0.038
	3	-0.35	-0.37	0.18	0.90	0.018
	4	-0.35	0.11	0.84	0.71	0.016
WT	5	-0.35	-0.21	0.51	0.58	0.015
co- housed	6	-0.08	0.10	0.25	0.31	0.006
nouseu	7	-0.08	-0.30	0.48	0.50	0.011
	8	-0.40	0.61	0.54	0.67	0.013
	9	-0.72	0.55	0.95	0.83	0.021
	10	-0.59	0.43	0.53	0.44	0.013
	1	-0.35	-0.06	0.21	0.71	0.014
	2	-0.35	-0.20	0.04	-1.51	-0.008
	3	-0.35	0.06	0.57	0.32	0.013
Rag2-/-	4	-0.35	0.50	1.00	0.70	0.020
co-	5	-0.08	1.49	2.69	2.95	0.048
housed	6	-0.08	-0.42	0.34	0.64	0.008
	7	-0.40	0.37	1.35	-0.01	0.016
	8	-0.72	0.39	0.26	-1.08	0.006
	9	-0.59	0.42	1.23	1.48	0.032

119 *gatC*) in WT and $Rag2^{-/-}$ co-housed mice.

120

Table displaying the change in $\ln(gatZ/gatC)$, i.e., the natural logarithm of the ratio between the frequencies of the gatZ and gatC mutants, over 3 days (72 hours) of competition in WT and $Rag2^{-/-}$ co-housed mice (see also Fig. 4b). *s* represents the selective advantage of gatZ along the three days of competition, inferred from the slope of the linear regression of $\ln(gatZ/anc)$.

126

127

129 Supplementary Table 6. The number and nature of adaptive events across

- 130 independently evolved populations of *E. coli* after 24 days of adaptation in WT
- 131 **mice**

Population	Genome position	Gene	Mutation	Frequency	
	4346885	dcuB / dcuR	IS5 +4 bp	77%	
	2173581	gatZ	IS1 +9 bp	77%	
	2173490	gatZ	IS1 +8 bp	36%	
	3527427	hslR	del/dupl 56 bp	6%	*
1.1	4035239	ileT / ileT/alaT	del/dupl 11 bp	5%	*
	1269768	ldrC / chaA	G→T	7%	
	3873556	yidX	T→G	8%	
	4601137	yjjP / yjjQ	IS5	5%	¤
	3214187	yqjH	del/dupl 82 bp	6%	*
	921810	cspD	C→T	6%	
	4346885	dcuB / dcuR	IS5 +4 bp	48%	
	2172866	gatA	IS5 +4 bp	5%	
	2175295	gatY/fbaB	IS1 +9 bp	60%	
12	2173751	gatZ	IS1 +9 bp	30%	
1.4	2173522	gatZ	IS1 +9 bp	7%	
	968583	lpxK/ycaQ / ycaQ	del/dupl 42 bp	6%	*
	3996061	uvrD	del/dupl 39 bp	5%	*
	2180108	yegW	IS3	24%	¤
	4601256	yjjP / yjjQ	IS5 +4 bp	28%	
	4346885	dcuB / dcuR	IS5 +4 bp	28%	
	2172866	gatA	IS5 +4 bp	7%	
	2175234	gatY/fbaB	IS1 +9 bp	13%	
	2175282	gatY/fbaB	IS5 +4 bp	5%	
	2173544	gatZ	IS1	27%	
1.3	2173511	gatZ	IS1	6%	¤
	2173225	gatZ	IS1 +9 bp	7%	
	1847931	sppA	C→T	8%	
	2711851	srmB	del/dupl 79 bp	7%	*
	4601140	yjjP / yjjQ	IS5 +12 bp	25%	
	4601120	yjjP / yjjQ	IS2 +5 bp	10%	
	4346885	dcuB / dcuR	IS5 +4 bp	12%	
	2172869	gatA	IS5	10%	¤
	2175284	gatY / fbaB	IS1 +9 bp	24%	
	2175250	gatY/fbaB	IS1 +9 bp	22%	
	2175266	gatY/fbaB	IS1	8%	¤
1.4	2173522	gatZ	IS1 +9 bp	16%	
	2174014	gatZ	IS1 +9 bp	7%	
	2827379	srlR	IS1	7%	¤
	285098	yagG	del/dupl 22 bp	5%	*
	2143874	yegE / yehD/yehE	del/dupl 46 kb	5%	*
	3214187	yqjH	del/dupl 82 bp	5%	*
1.5	446451	cyoE	del/dupl 39 bp	6%	*

	4346885	dcuB / dcuR	IS5 +4 bp	31%	
	2172866	gatA	IS5 +4 bp	44%	
	2174422	gatY	IS1 +9 bp	45%	
	695730	glnV	Δ112 bp	6%	
	1907559	kdgR	G→A	8%	
	2827493	srlR	G→C	39%	
	4601137	vijP / vijQ	IS5	5%	¤
	4346885	dcuB / dcuR	IS5 +4 bp	60%	
	3379861	degQ	del/dupl 30 bp	6%	*
	2566222	eutH / eutG	$\Delta 100 \text{ bp}$	6%	
	2172784	gatA	IS1 +9 bp	14%	
	2172866	gatA	IS5 +4 bp	7%	
1.6	2172489	gatB	IS1 +9 bp	8%	
	2172260	gatC	$\Delta 1 \text{ bp}$	27%	
	2175282	gatY/fbaB	IS1	5%	¤
	2173533	gatZ	IS5 +4 bp	6%	
	2174345	gatZ/gatY	IS1 +8 bp	27%	
	1510987	vdcT	del/dupl 65 bp	5%	*
	953901	focA / vcaO	IS5 +4 bp	68%	
	3269213	garK	C→T	12%	
	2172535	gatB	IS1	10%	¤
	2172265	gatC	IS1 + 9 bp	7%	
1.7	2175290	gatY / fbaB	IS1 +9 bp	66%	
	1907949	kdgR	IS5 +4 bp	8%	
	1908116	kdgR	IS5 + 4 bp	6%	
	1902230	manZ / kdgR	Δ 5452 bp	72%	*
	1573764	vddB	IS5	7%	¤
	2172866	gatA	IS5 +4 bp	6%	1
	2172221	gatC	IS5 +4 bp	49%	
	2172265	gatC	IS1 +9 bp	15%	
	2173970	gatZ	IS1	10%	¤
1.8	2174027	gatZ	IS1 +8 bp	7%	
	2440543	mnmC	del/dupl 103 bp	7%	*
	2827492	srlR	G→A	28%	
	3634862	vhiN	del/dupl 14 bp	7%	*
	2880256	casB	del/dupl 18 bp	6%	*
	3379861	degO	del/dupl 30 bp	8%	*
	2172633	gatA	IS5 + 4 bp	29%	
	2172265	gatC	IS1 +9 bp	9%	
	2175296	gatY / fbaB	IS1 +9 bp	11%	
	2173104	gatZ	IS1 +9 bp	25%	
	1434252	ompN	del/dupl 16 bp	5%	*
1.9	2827073	srlR	A→T	24%	
	1877853	veaR	Δ1 :: IS186 +6 bp :: Δ1	10%	
	2763434	vfiL / vfiM	$\Delta 8 \text{ bp}$	8%	
	4601117	viiP / viiO	IS5 + 4 bp	27%	
	4601148	viiP / viiO	IS5 +4 bp	16%	
	4601266	viiP / viiO	IS5 + 4 bn	6%	
	4601006	vjiP / viiO	IS2	9%	¤
	3379861	degO	del/dupl 30 bp	6%	*
1.10	953892	focA / ycaO	IS5 +13 bp	66%	
			1		

	2171086	gatC	IS1 +8 bp	47%	
	2172265	gatC	IS1 +9 bp	15%	
	2174223	gatZ	$\Delta 2 \text{ bp}$	33%	
	4601134	yjjP / yjjQ	IS5 +4 bp	5%	
	2172866	gatA	IS5 +4 bp	83%	
	2174150	gatZ/gatY/fbaB	Δ1111 bp	14%	*
	2827172	srlR	С→А	16%	
1.11	1691840	uidB	del/dupl 20 bp	5%	*
	4601110	yjjP / yjjQ	IS5 +4 bp	72%	
	4601256	yjjP / yjjQ	IS5 +4 bp	7%	
	953901	focA / ycaO	IS5 +4 bp	20%	
	2172079	gatC	.→C	97%	
1.12	2827234	srlR	G→A	36%	
	2827117	srlR	C→T	6%	
	12154	yaaI / dnaK	IS4	47%	¤
	4637714	arcA	G→T	87%	
1 12	2171150	gatC	IS5 +4 bp	93%	
1.15	3265169	tdcA / tdcR	IS5 +4 bp	11%	
	572125	ybcN	IS2 +5 bp	6%	
	4346885	dcuB / dcuR	IS5 +4 bp	70%	
	953892	focA / ycaO	IS5 +4 bp	58%	
	2172912	gatA	IS5 +4 bp	15%	
1.14	2175256	gatY/fbaB	IS1 +9 bp	81%	
	2827117	srlR	C→T	13%	
	1877853	yeaR	IS186 +6 bp	66%	
	4601151	yjjP / yjjQ	IS5	7%	¤

133 Mutations found in E. coli populations after adaptation to the gut of WT mice. For 134 intergenic mutations the two flanking genes are listed, otherwise the mutation occurred 135 in the gene coding region. SNPs are represented by an arrow between the ancestral and 136 the evolved nucleotide. The symbol Δ means a deletion event and a + symbol represents 137 an insertion of the nucleotide that follows the symbol. The initials IS denote the 138 abbreviation of insertion sequence element at the indicated position. del/dup indicates 139 that either a deletion or a duplication of the indicated size occurred but it is not possible 140 to distinguish between the two. * indicates that the mutation corresponds to a supported 141 unassigned new junction whereas ¤ denotes a IS insertion where only one new junction 142 was identified.

143

Supplementary Table 7. The number and nature of adaptive events across independently evolved populations of *E. coli* after 24 days of adaptation in *Rag2^{-/-}*

mice

Population	Genome position	Gene	Mutation	Frequency	
	3925453	asnA	inv 15 bp	6%	1
	953892	focA / ycaO	IS5 +4 bp	56%	
	2172791	gatA	IS1 +9 bp	8%	
	2172073	gatC	IS1 +9 bp	80%	
D1 1	2827355	srlR	T→C	59%	
K1.1	2827528	srlR	G→A	13%	
	2827712	srlR	+CCCCAA	9%	
	2827388	srlR	$\Delta 1$ bp	5%	
	3634862	yhiN	del/dupl 14 bp	5%	*
	4601143	yjjP / yjjQ	IS5	5%	¤
	3925441	asnA	del/dupl 39 b	7%	*
D1 2	2172008	gatC	Δ 7508 bp	90%	
N1. 2	2827081	srlR	C→T	83%	
	3214187	yqjH	del/dupl 82 bp	8%	*
	3350864	arcB	+AAA	37%	
	3925441	asnA	del/dupl 39 b	5%	*
	3502248	frlR	IS5 +4 bp	29%	
	3502642	frlR	$\Delta 1$ bp	7%	
	2172835	gatA	IS1 +9 bp	29%	
R1.3	2175289	gatY/fbaB	IS1	62%	
	2173225	gatZ	IS1 +9 bp	8%	
	156651	yadN	IS5 +4 bp	10%	
	4592986	ујјМ	IS1 +9 bp	7%	
	4601157	yjjP / yjjQ	IS1 +8 bp	5%	
	2039432	zinT	IS5 +4 bp	14%	
D1 /	2173491	gatZ	IS5 +4 bp	94%	
K1.4	2827492	srlR	G→A	87%	
	2172972	gatA	IS1 +9 bp	84%	
P15	2752245	ratB	del/dupl 23 bp	5%	*
K1.5	2827793	srlR	T→G	85%	
	3634862	yhiN	del/dupl 14 bp	6%	*
	2172774	gatA	IS1	6%	¤
	2173014	gatA	IS5	5%	¤
R1.6	2175284	gatY/fbaB	IS1 +9 bp	81%	
	4035239	ileT / ileT/alaT	del/dupl 21 bp	7%	*
	932176	lrp	G→T	8%	
	3925441	asnA	del/dupl 39 b	5%	*
	3496103	cysG	del/dupl 5 bp	5%	*
R17	251816	dinB	del/dupl 48 bp	5%	*
N1 ,/	2172211	gatC	IS1 Δ4 bp	22%	
	2175244	gatY/fbaB	IS1 +9 bp	71%	
	2827492	srlR	G→A	43%	

	2891617	ygcN/gcvP	del/dupl 153 kb	63%	*
	3925441	asnA	del/dupl 39 b	5%	*
	953892	focA / ycaO	IS5 +4 bp	63%	
	3502032	frlD / frlR	IS4 +12 bp	7%	
	2172866	gatA	IS5 +4 bp	51%	
	2175266	gatY/fbaB	IS1 +9 bp	16%	
D1 0	2173571	gatZ	IS1 +9 bp	9%	
K1.8	1125212	rimJ	IS5 +4 bp	15%	
	761046	sucB	del/dupl 67 bp	7%	*
	931615	trxB / lrp	IS5 +4 bp	5%	
	3240783	uxaA	del/dupl 26 bp	5%	*
	3856228	yidJ	del/dupl 23 bp	5%	*
	3152375	yqhC	del/dupl 13 bp	6%	*
	4359175	cadC	A→T	8%	
	2173093	gatA	IS1 +8 bp	5%	
	2173093	gatZ	IS1 +9 bp	38%	
R1.9	2174199	gatZ	G→A	37%	
	1907809	kdgR	$\Delta 2 \text{ bp}$	26%	
	2827627	srlR	G→A	26%	
	1221585	ymgD	$C \rightarrow T$	25%	
	3379861	degQ	del/dupl 30 bp	5%	*
	628178	entA	del/dupl 97 bp	6%	*
	2172912	gatA	IS5 +4 bp	45%	
	2172866	gatA	IS5 +4 bp	13%	
	2175244	gatY/fbaB	IS1 +9 bp	35%	
D1 10	1907971	kdgR	IS1	12%	¤
K1.10	4197319	nfi	del/dupl 40 bp	5%	*
	298917	paoC	del/dupl 53 bp	7%	*
	3878678	recF	del/dupl 62 bp	7%	*
	1125212	rimJ	IS5 +4 bp	12%	
	2827490	srlR	$C \rightarrow T$	21%	
	2030708	yedJ	del/dupl 50 bp	6%	*
	2173028	gatA	IS1 +9 bp	76%	
	2172073	gatC	IS1 +9 bp	6%	
	2173584	gatZ	IS1	6%	¤
R1.11	2173160	gatZ	IS1 +9 bp	6%	
	3325215	rlmE	del/dupl 37 bp	5%	*
	2827712	srlR	G→A	50%	
	2827492	srlR	G→A	13%	
	953901	focA / ycaO	IS5 (+) +4 bp	85%	
P1 12	1985465	ftnB / yecJ	del/dupl 9 bp	5%	*
N1.12	2172866	gatA	IS5 (+) +4 bp	97%	
	2827184	srlR	A→G	36%	
	3350023	arcB	T→C	33%	
	953919	focA / ycaO	IS1	7%	¤
	2172153	gatC	IS1 +9 bp	5%	
P1 13	2173559	gatZ	IS1 +9 bp	47%	
N1.13	3353621	gltB	del/dupl 52 bp	5%	*
	1482153	hrpA	del/dupl 35 bp	6%	*
	4035239	ileT / ileT/alaT	del/dupl 21 bp	6%	*
	2373853	menC	IS186	7%	¤

	2317269	rcsC	del/dupl 17 bp	5%	*
	2066430	yoeH	del/dupl 5 bp	5%	*
	953901	focA / ycaO	IS5 +4 bp	87%	
	2172650	gatA	IS1 +8 bp	83%	
R1.14	2171899	gatC	IS1	8%	¤
	1632600	tfaQ	del/dupl 72 bp	6%	*
	4368228	yjeH	del/dupl 111 bp	7%	*
	3925441	asnA	del/dupl 39 b	9%	*
	953901	focA / ycaO	IS5 +4 bp	75%	
	2172889	gatA	IS1 +8 bp	30%	
	2173012	gatA	IS1 +9 bp	10%	
R1.15	2171613	gatC	IS1 +9 bp	26%	
	3527427	hslR	del/dupl 56 bp	8%	*
	2620189	purM	G→T	30%	
	4470157	pyr B	del/dupl 49 bp	5%	*
	4383948	yjeO	$\Delta 1$ bp	5%	

149 Mutations found in *E. coli* populations after adaptation to the gut of *Rag2^{-/-}* mice. See

150 Supplementary Table 1 legend for further details.