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Supplementary Figure 1: Pulse sequences and contour plot of average gate fidelity of single-

qubit gate. The upper panels show the pulse sequences of (θ)0 with (a) rectangular naive, (b)

five-piece SUPCODE, (c) BB1, and (d) BB1inC pulses, where the phase and duration of each

piece of pulse is depicted. The lower panels show the average gate fidelity of (π/2)0 with the

errors δ0 and δ1 when (a) rectangular naive, (b) five-piece SUPCODE, (c) BB1, and (d) BB1inC

pulses are applied. The regions of fidelity larger than 0.9999 are surrounded with black curves for

clarity.
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Supplementary Figure 2: Designed pulse sequence for CNOT and average gate fidelity of the

sequence. (a) Amplitude (left panel) and phase (right panel) of the designed pulse sequence. (b)

Calculated average gate fidelity of the sequence under the errors δ0 and δ1.
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Supplementary Figure 3: Image of the SIL in diamond.
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Supplementary Figure 4: Scattering parameters of the CPW.
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Supplementary Figure 5: Correction of microwave pulse distortions. (a) Schematic correc-

tion diagram showing the main instruments generating, processing, and sampling the microwave

pulses. (b) Extracted phase distortions without (left penal) and with (right penal) the correction.

(c) Calculated average gate fidelity of a BB1inC π/2 gate with sampled waveforms without (left

penal) and with (right penal) the correction. The region of fidelity larger than 0.9999 is labeled.
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(a) (b)

Supplementary Figure 6: Correction of pulse distortions caused by leakage and reflection. (a)

Waveform of a GRAPE pulse without improvement. The distortions are mainly caused by leakage

and reflection of the diplexer. (b) Improved waveform of the pulse sequence. The distortions are

corrected by inserting a 10 dB attenuator between microwave components.
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(a) (b)

Supplementary Figure 7: Correction of the amplitude distortions. (a) Waveform without cor-

rection. (b) Waveform with correction.
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πRF πRF1 πRF readout R2

ρi

ρi

Supplementary Figure 8: Schematic normalization sequences in the two-qubit experiment.

Here ρi denotes the initialized state with laser, ρf denotes the final state after applying control

sequence to ρi. πRF (πRF1) is a radio-frequency π pulse driving the nuclear spin transition between

states |mS = 0,mI = 1〉 and |mS = 0,mI = 0〉 (transition between states |mS = 0,mI = 0〉 and

|mS = 0,mI = −1〉). The measured photoluminescence intensity after each sequence is denoted

by S1, S2, R1, or R2.
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Supplementary Figure 9: Experimental measurement of the polarization of the NV electron

spin. The polarization α is extracted from the ratio of the two nutation amplitudes to be 0.83(2).
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Supplementary Figure 10: Extraction of the practical Hamiltonian. The experimentally mea-

sured P|01〉 is shown as the black circles. The practical Hamiltonian is extracted by fitting the

experimental data. The fitted P|01〉 is shown as the red solid line. Best-fit values of δA and δΩ are

δA = 0.008(1) MHz and δΩ = 0.068(1) MHz. For comparison, the blue dashed line shows the

simulated result with δA = 0 and δΩ = 0.
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Supplementary Table 1: Summarization of the results of single-qubit randomized bench-

marking. Average gate fidelity (Fa) and error per gate (εg) is shown for naive, five-piece SUP-

CODE, BB1, and BB1inC pulses.

Pulse sequence Fa εg

naive 0.99968(6) 3.2(6)×10−4

five-piece SUPCODE 0.99916(8) 8.4(8)×10−4

BB1 0.999945(6) 5.5(6)×10−5

BB1inC 0.999952(6) 4.8(6)×10−5
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Supplementary Note 1: Hamiltonian of the NV system

The NV center includes a substitutional nitrogen atom and a vacancy in the nearest-neighbor lat-

tice position. In our experiment, a static magnetic field, B0 = 513 G, is applied along the NV

symmetry axis ([1 1 1] crystal axis). The Hamiltonian of the NV center can be written as

HNV = 2π(DS2
z + ωSSz + PI2z − ωIIz) +Hhf, (1)

where ωS = −γeB0/2π (ωI = γNB0/2π) is the Zeeman splitting of the electron (14N nuclear) spin,

γe (γN) is the electronic (14N nuclear) gyromagnetic ratio, Sz and Iz are the electron and nitrogen

nuclear spin operators, respectively. The zero field splitting D = 2870 MHz and the nuclear

quadrupolar splitting P = −4.95 MHz. The hyperfine interaction between the NV electron spin

and the 14N nuclear spin is

Hhf = 2π[A⊥(SxIx + SyIy) + ASzIz], (2)

The strength of the hyperfine interaction is about 2 MHz. Because of the strong zero field splitting

and Zeeman splitting terms of the electron spin, the effect of the interaction term SxIx + SyIy is

strongly suppressed and can be neglected. A = −2.16 MHz is determined via CW ESR experi-

ment. In the secular approximation, the Hamiltonian is

HNV = 2π(DS2
z + ωSSz + ASzIz + PI2z − ωIIz), (3)

The electron (nuclear) spin states |mS = 0〉 and |mS = −1〉 (|mI = 0〉 and |mI = +1〉 ) are

encoded as the electron (nuclear) spin qubit.

Microwave (MW) and radio-frequency (RF) pulses are used to manipulate the two-qubit

system. The frequency of MW and RF pulses are fMW and fRF , respectively. When MW pulses

are applied, the total Hamiltonian becomes

H = HNV +HC, (4)

with

HC = 2π
√

2ω1 cos(2πfMWt+ φ)Sx, (5)
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where φ is the phase of the MW pulse, ω1 is the amplitude of the MW pulse.

The Hamiltonian can be transformed into the rotating frame as

Hrot = UtransHU
†
trans − iUtrans

dU †trans

dt
, (6)

with

Utrans = ei2πfMWtS
2
ze−i2πfRFtI

2
z . (7)

With rotating-wave approximation, the Hamiltonian in the rotating frame can be simplified as

Hrot = 2π(ωS(Sz + S2
z )− ωI(Iz − I2z ) + A(S2

z + SzIz)) +HC, rot, (8)

where

HC, rot = 2π[δΩS2
z + ω1/

√
2(cosφHx + sinφHy)], (9)

with

Hx =
1√
2


0 1 0

1 0 1

0 1 0

⊗ I, (10)

Hy =
1√
2


0 −i 0

i 0 i

0 −i 0

⊗ I, (11)

, δΩ = D − ωS − A− fMW, fRF = −P + ωI , and I representing 3× 3 identity matrix.

Supplementary Note 2: Calculation of average gate fidelity

The average gate fidelity between a quantum operation ξ and a target unitary quantum gate U is

defined as

Fa(ξ, U) =

∫
dψ〈ψ|U †ξ(|ψ〉〈ψ|)U |ψ〉, (12)

where the integral is over the uniform measure dψ on state space, normalized so
∫
dψ = 11.

In the single-qubit case, the average gate fidelity can be derived to be2

F (1)
a (ξ, U) =

1

2
+

1

12

∑
j=x,y,z

tr(UσjU
†ξ(σj)), (13)

14



where σx, σy, and σz are Pauli matrices.

Quantum optimal control method 3 is used to design the pulse sequence of CNOT gate. To

calculate the average gate fidelity of this CNOT gate, Eqn. 12 is generalized so that the integral

is on the two-qubit space4. The nuclear spin is much less sensitive to the external magnetic noise

than the electron spin and the GRAPE pulse sequence contains only microwave pulses, so the

decoherence during the operation mainly comes from the static distributions of δ0 and δ1 for the

electron spin qubit. Then the operation can be expressed as

ξ(|ψ〉〈ψ|) =

∫
dδ0

∫
dδ1P0(δ0)P1(δ1)Useq(δ0, δ1)|ψ〉〈ψ|U †seq(δ0, δ1), (14)

where Useq(δ0, δ1) is the calculated two-qubit evolution according to the pulse sequence, with the

errors δ0 and δ1 considered in Hamiltonian. Substituting Eqn. 14 into Eqn. 12 yields the average

gate fidelity between the operation ξ and the target CNOT gate UCNOT,

Fa(ξ, UCNOT) =
1

d(d+ 1)

∫
dδ0

∫
dδ1P0(δ0)P1(δ1)(tr(MM †) + |tr(M)|2), (15)

with d = 4 and

M = U †CNOTUseq(δ0, δ1). (16)

It can be easily obtained from Eqn. 15 that the fidelity of operation ξ without the effect of the noise

(δ0 and δ1) can be written as

Fseq =
1

d(d+ 1)
[tr(MM †) + |tr(M)|2], (17)

where the values of δ0 and δ1 are zero.

Supplementary Note 3: High fidelity single-qubit quantum gates

Considering a single-qubit gate corresponding to a rotation of angle θ around the x axis on the

Bloch sphere, such a gate can be realized by evolution under the effective Hamiltonian Hideal =

2πω1n ·S, where S = (Sx, Sy, Sz) is the spin vector operator of the qubit, n is a three-dimensional

vector, and the strength ω1 is a real parameter. The average gate fidelity is limited by interac-

tion of the qubit with environment and fluctuation of the control field. We consider the model

15



where the Hamiltonian for rotation about the x axis under practical conditions is described as

Hprac = 2πδ0Sz + 2π(ω1 + δ1)[cos δφSx + sin δφSy]. The error δ0 in the Hamiltonian is due to

the interaction of the qubit with environment, the error δ1 is due to fluctuation of the control field

strength and phase error δφ is caused by the imperfect microwave pulse generation. Phase error

can be efficiently eliminated by pulse fixing technique (detailed in Section ) and we take it as of

zero value in this section. We consider the case where both δ0 and δ1 vary in a timescale much

longer than that of quantum gates. In this case δ0 and δ1 are taken as quasi-static random constants.

Supplementary Figure 1a shows the performance of the gate by simply applying a naive

rectangular pulse. Here the gate (π/2)0 (we denote the rotation of an angle θ around the axis in

the equatorial plane with azimuth φ as (θ)φ) is taken as an example. The average gate fidelity of

(π/2)0 is calculated with respect to different values of δ0 and δ1. The naive pulse is vary sensitive

to the errors δ0 and δ1, with leading orders of both errors preserved in the evolution operator

(corresponding to second orders in the average gate fidelity). This corresponds with the small

region of high average gate fidelity shown in the lower panel of Supplementary Figure 1a.

Supplementary Figure 1b shows a type of dynamically corrected gate, five-piece SUPCODE5.

The pulse sequence is depicted as τ1 − (θ/2)0 − τ3 − (θ/2)0 − τ1 for θ ∈ (2π, 3π). Here

τ1 = csc θ(1 − 2 cos θ
2

+ cos θ +
√

4− 8 cos θ
2

+ 4 cos θ + θ sin θ) and τ3 = −2(τ1 cos θ
2

+ sin θ
2
)

are durations when control field is off. Under the five-piece SUPCODE pulse, up to second order

of δ0 can be canceled (corresponding to sixth order preserved in the average gate fidelity). In the

lower panel of Supplementary Figure 1b, the average gate fidelity of (2.5π)0 (equivalent to (π/2)0

in the single-qubit case) is shown as an example. The region of high average gate fidelity is largely

extended in the axis of δ0, compared with that by the naive pulae.

In Supplementary Figure 1c a type of composite pulse, BB16, is shown. The pulse sequence

is (θ/2)0− (π)φ− (2π)3φ− (π)φ− (θ/2)0, with φ = arccos(−θ/4π). Under the BB1 pulse, up to

second order of δ1 is canceled in the evolution operator (corresponding to sixth order preserved in
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the average gate fidelity). The average gate fidelity of (π/2)0 with the BB1 pulse is shown in the

lower panel of Supplementary Figure 1c. It exhibits a larger region of high fidelity in the axis of δ1.

Thus suppressing the δ1 error by applying the BB1 pulse, in combination with a proper selection

of control field strength ω1 to suppress the δ0 error, can contribute to realization of a high fidelity

(e.g. 0.9999).

Supplementary Figure 1d shows a pulse sequence suppressing both the δ0 and δ1 errors si-

multaneously. The sequence is designed by incorporating the BB1 pulse within the CORPSE

pulse, and is named BB1inC here for short. There are similar pulse sequences to suppress the δ0

and δ1 error simultaneously7. The BB1inC sequence is depicted as (θ/2)0 − (π)φ − (2π)3φ −

(π)φ − (θ3)0 − (θ2)π − (θ1)0, where φ = arccos(−θ/4π), θ1 = θ/2 − arcsin(sin(θ/2)/2),

θ2 = 2π − 2 arcsin(sin(θ/2)/2), and θ3 = 2π − arcsin(sin(θ/2)/2). Leading orders of both

the δ0 and δ1 errors are canceled in the evolution operator. The lower panel of Supplementary

Figure 1d shows the average gate fidelity of (π/2)0 with the BB1inC pulse. The region of high

fidelity is much larger, extended in both axes of δ0 and δ1.

Recently the robustness of composite pulse sequences against time-dependent noise is analyzed8.

It is shown that composite pulses may also be successfully employed in the presence of time-

dependent noise. The robustness against static as well as time-dependent noise enables composite

pulse an effective method to improve single-qubit gate fidelity.

Supplementary Note 4: Quantum optimal control method for designing the CNOT gate

GRAPE is a type of quantum optimal control method. It can be utilized to design control sequence

to realize a target gate with high fidelity. The control sequence contains N piece of pulses, with

the amplitude and phase of each piece being different. The total Hamiltonian of the kth pulse in

the rotating frame is (see Eqn. 8 and Eqn. 9)

Hrot,k = 2π(ωS(Sz + S2
z )− ωI(Iz − I2z ) + A(S2

z + SzIz)) +HC, rot,k, (18)

with

HC, rot,k = 2πω1,k/
√

2(cosφkHx + sinφkHy), (19)
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where φk is the phase of the kth pulse, ω1,k is the amplitude of the kth microwave pulse and δΩ = 0.

The evolution operator under the kth pulse is written as

Uk = e−iHrot,ktk , (20)

where tk is the duration of the kth pulse. The total evolution under the entire sequence is

Utot =
1∏

k=N

Uk. (21)

The time duration of each pulse, tk, is set to be equal value τ . The two-qubit evolution operator

can be described as

Useq({ω1,k, φk}) = P
1∏

k=N

e−iHrot,k({ω1,k,φk})τP , (22)

where P is the projection operator on the two-qubit subspace.

The target gate is the CNOT gate,

UCNOT =


0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 . (23)

The performance function of the GRAPE algorithm is the fidelity Fseq, which is a function of

{ω1,k, φk}. The values of {ω1,k, φk} are initialized with random numbers within the experimental

conditions. The performance function are maximized by iteration. Within each iteration, the value

of Fseq({ω1,k, φk}) as well as its derivative to ω1,k and φk is calculated, then the value of ω1,k (φk)

is replaced by the result of its previous value plus the derivative multiplied by a proper coefficient.

This method works well for designing a sequence with high fidelity, if errors due to qubit-

environment interaction and control field fluctuation are not taken into account. However, our aim

is to realize quantum gates, which are not only of high fidelity, but also being robust to the errors.

A method has been presented3 to design pulse sequence which is robust against the inhomogeneity
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of ω1. Herein, we generalize this method to design pulse sequence, which is not only robust against

the inhomogeneity δ1, but also is insensitive to the dephasing noise δ0. The performance function

of the modified GRAPE is defined as Fa(ε, UCNOT) (see Eqn. 15). The new performance function

is maximized by iteration of the GRAPE algorithm. In practical implementation of the modified

algorithm, the integral in Eqn. 15 is replaced by sum of discrete points. We find that three points

of δ0 (δ1) are enough.

Supplementary Figure 2a shows the amplitude and phase of the designed pulse sequence.

The sequence consists of twelve pieces of pulse. The duration of each pulse is 58 ns. Without

considering the errors δ0 and δ1, the sequence produces a two-qubit operation Ucal,

Ucal = e1.5974i


−0.0060 + 0.0032i 0 1− 0.0013i 0

0 0.9996 0 0.0154− 0.0249i

0.9999 + 0.0119i 0 0.0059 + 0.0032i 0

0 −0.0146− 0.0253i 0 0.9991 + 0.0316i

 ,

(24)

The fidelity of Ucal is 0.9995. Supplementary Figure 2b shows the robustness of the sequence

against the errors δ0 and δ1. When the experimental distributions P0(δ0) and P1(δ1) (which are

determined from the experiments) are considered, the sequence provides an average gate fidelity

of 0.9927.

Supplementary Note 5: Alignment of the magnetic field, Creation of a solid immersion lens,

Ultra-broadband coplanar waveguide

We used the fluorescence dependence on the misalignment angle to align the magnetic field. Ac-

cording to the literature9, the fluorescence of NV center is sensitive to misalignment angle of the

NV axis from a magnetic field B0 when the magnitude is approximately 513 G. The difference in

fluorescence counts is still noticeable even when the misalignment angle is only 0.5◦. In our exper-

iment, the fluorescence count was the same (within counting errors) forB0 ≈ 0G andB0 ≈ 513 G.

So we estimate the misalignment angle to be within 0.5◦.
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All measurements in our experiment are based on detection of the NV photoluminescence.

Much of the photoluminescence is lost at the diamond surface due to internal reflection. The

problem can be overcome by creating a solid immersion lens (SIL)10. We created a SIL in the

diamond around an NV center (Supplementary Figure 3). The SIL increases the PL rate to about

400 kcounts s−1.

In the experiment, manipulation of qubits is achieved by microwave (MW) and radio-frequency

(RF) pulses, which are applied through a coplanar waveguide (CPW). The ultra-broadband CPW

is designed and fabricated. Supplementary Figure 4 shows scattering parameters of the CPW. Up

to 15 GHz, the S21 parameter is larger than -3 dB, and the S11 parameter is about or less than -10

dB. Such wide bandwith ensures that there is almost no extra distortion of microwave / RF pulses

with this CPW.

Supplementary Note 6: Correction of microwave pulse distortions

The imperfect devices generate microwave pulses with non-ideal amplitudes and phases. The im-

perfection of microwave pulses sent to the NV centers are carefully corrected with pulse fixing

technique11. Supplementary Figure 5a shows the main instruments for the microwave pulse gen-

eration. The pulses are generated by an arbitrary waveform generator (M8190A, Keysight ), and

amplified with a power amplifier (ZHL-30W-252-S+, Mini Circuits). The imperfections in the in-

struments cause distortions of the microwave pulses, which may dramatically decrease fidelity of

quantum gates. An oscilloscope (DSO-X 92004Q) is used to sample the microwave pulses. The

pulse distortions are then corrected by predistorting the pulses in the right way that the predistor-

tions cancel with the distortions by the imperfections of instruments.

Microwave phase correction. Supplementary Figure 5b shows the distortion of the mi-

crowave pulse phase with / without the correction. It is clear that there is no significant distortion

of the microwave pulse phase with the correction, as shown in the right panel of Supplementary

Figure 5b. In Supplementary Figure 5c, we compare the average gate fidelity theoretically with

the microwave pulse with and without the phase correction. Because of the pulse distortions, the
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BB1inC π/2 gate becomes less error-resilient, without any region of fidelity higher than 0.9999

(see the left panel of Supplementary Figure 5c ). The result in the right panel of Supplementary

Figure 5c shows a region with fidelity higher than 0.9999 with the phase correction.

Microwave amplitude correction. In the two-qubit experiment, microwave and radio-

frequency pulses are combined with a diplexer (Marki DPX-1). We find that the leakage and

reflection of the diplexer ports cause extra distortions of the microwave pulses. Supplementary

Figure 6a shows that there are distortion of the microwave amplitude. After inserting a 10 dB at-

tenuator between the microwave components to suppress the leakage and reflection, the waveform

of the pulse sequence is improved to be close to the ideal case, as shown in Supplementary Figure

6b.

The distortions of amplitude shown in Supplementary Figure 6b can be further corrected

by pulse fixing technique. Similar to that shown in Supplementary Figure 5a, the distortions are

recorded by an oscilloscope, and then fed back to the arbitrary waveform generator so that the

distortions are minimized. Supplementary Figure 7 shows the comparison of the pulse waveforms

without and with amplitude correction.

Supplementary Note 7: Normalization of the experimental data

In the single-qubit experiment, the normalization is carried out by performing a nutation experiment12.

The normalized data corresponds to the population of |0〉 for the final state.

In the two-qubit experiment, the population of |mS = 0,mI = 1〉 (P|01〉) for the final state is

obtained by normalization. According to the Ref. 13, each occupied energy level contributes to the

measured photoluminescence intensity (IPL) with a different PL rate and these different PL rates

are measured and used to determine the population of the levels with several sequences. Herein

we introduce an alternative method for normalization. The pulse sequences for the normalization

21



are shown in Supplementary Figure 8. The measured IPL is

IPL =
∑
|k〉

β|k〉Pρ,|k〉, (25)

where |k〉 denotes the nine energy levels of the NV center (|mS,mI〉 with mS = 0,±1 and mI =

0,±1), Pρ,|k〉 is the population of |k〉 for the state ρ, βk is the photoluminescence intensity if the

state is |k〉.

In Supplementary Figure 8, ρi denotes the initialized state after initializing laser pulse, ρf

denotes the final state after applying control sequence to ρi. The RF (RF1) π pulse exchanges the

population of |mS = 0,mI = 1〉 and |mS = 0,mI = 0〉 (|mS = 0,mI = 0〉 and |mS = 0,mI =

−1〉). The measured IPL after the four sequences (S1, S2, R1, and R2, respectively) satisfy

S1 − S2 = (β|0,1〉 − β|0,−1〉)(P|0,1〉 − P|0,−1〉), (26)

R1 −R2 = (β|0,1〉 − β|0,−1〉)(Pρi,|0,1〉 − Pρi,|0,−1〉), (27)

where P|k〉 (Pρi,|k〉,) is the population of |k〉 for ρf (ρi). After the initializing laser pulse, the electron

spin is polarized with coefficient α, and the nuclear spin is almost completely polarized. Thus we

have Pρi,|0,1〉 = α and Pρi,|0,−1〉 = 0. The state |mS = 0,mI = −1〉 remains idle during the control

sequence, thus P|0,−1〉 = 0. The population of |mS = 0,mI = 1〉 for the final state can be derived

as

P|01〉 = α
S1 − S2

R1 −R2

, (28)

Supplementary Note 8: Measuring the polarization of the NV electron spin

The measurement of the polarization described here is similar to that described before13. Sup-

plementary Figure 9 shows the results and pulse sequences used in the measurement. We first

recorded the nuclear Rabi oscillation by driving the |mS = 0,mI = 1〉 and |mS = 0,mI = 0〉

transition. The nuclear spin is almost completely polarized. The amplitude of this nuclear Rabi

oscillation is proportional to the polarization α of the electron spin, with

A1 = (β|0,1〉 − β|0,0〉)α. (29)
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Secondly, another nuclear Rabi oscillation is recorded after a MW2 π pulse. The MW2 π pulse

exchanges the population of |mS = 0,mI = 1〉 and |mS = −1,mI = 1〉. The amplitude of this

nuclear Rabi oscillation is proportional to the population of |mS = −1,mI = 1〉 for the initialized

state.

A2 = (β|0,1〉 − β|0,0〉)(1− α)/2, (30)

Then the polarization α can be obtained with

α =
1

1 + 2A2

A1

, (31)

With the results shown in Supplementary Figure 9, we estimated the polarization of the NV elec-

tron spin to be α = 0.83(2).

Supplementary Note 9: Measurement of the average gate fidelity

We first describe the method for measuring the average gate fidelity of single-qubit gates. The aver-

age gate fidelity of single-qubit gates are measured with randomized benchmarking (RB) method14.

Unlike that with quantum process tomography, the measured fidelity with RB method is not limit-

ed by errors in state preparation and measurement. The qubit is initialized to |0〉, then a predeter-

mined sequence of randomized computational gates is applied. Each computational gate consists

of a Pauli gate followed by a (non-Pauli) Clifford gate. Pauli gates are randomly chosen to rotate

the qubit about the ±x, ±y, or ±z axes for an angle π on the Bloch sphere, or to be a ±I identity

gate; Clifford gates are randomly chosen to rotate about the ±x or ±y axes for an angle π/2. The

gate sequence is followed by a final Clifford gate chosen to ensure that the final qubit state is |0〉 if

all the gates are ideal. The fidelity of the final state ρf, F = 〈0|ρf|0〉, is measured. The measured

final state fidelity is averaged over different random sequences. The averaged fidelity, F , is fitted

with Eqn. 32

F = 1/2 + 1/2(1− dif)(1− 2εg)
l, (32)

where l is the number of computational gates, εg is the average error per gate, and dif describes

errors in state preparation and measurement. The average gate fidelity is

Fa = 1− εg, (33)
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In the experiment, ±x,±y rotations are realized by proper microwave settings, and ±z rotations

are implemented by a rotation of the logical frame of the qubit for the subsequent pulses15–17.

For the naive pulse, each Clifford gate is performed by a rectangular π/2 pulse and each Pauli

gate by a rectangular π pulse; For the five-piece SUPCODE pulse, each Clifford gate is performed

by a five-piece SUPCODE 2.5π pulse (equivalent to π/2 in the single-qubit case, see Section ) and

each Pauli gate by a pair of five-piece SUPCODE 2.5π pulses; For the BB1 (BB1inC) pulse, each

Clifford gate is performed by a BB1 (BB1inC) π/2 pulse and each Pauli gate by a BB1 (BB1inC)

π pulse (see Section ).

The RB results for naive, five-piece SUPCODE, BB1 and BB1inC pulses are shown in Fig.

2(b) in the main text and summarized in Supplementary Table 1. The measured average gate

fidelities are 0.99968(6), 0.99916(8), 0.999945(6) and 0.999952(6), respectively.

In the following we describe the method for measuring the average gate fidelity of two-qubit

CNOT gate. The average gate fidelity of CNOT can be measured with Eqn. 15. This requires the

full knowledge of the quantum operation ξ, which is usually very difficult to be obtained. Quan-

tum process tomography has been developed to characterize the quantum gates. However, this

procedure requires a number of measurements that scale exponentially with the number of qubits,

and the measured process matrix is sensitive to errors in state preparation and measurement. Ran-

domized bechmarking and related techniques are developed to obtain the average gate fidelities.

However, in the hybrid system composed of electron and nuclear spins, single-qubit gates on the

nuclear spin cost longer time than the electron coherence time. The error of gates on the nuclear

spin will dominate the fidelity decay in randomized benchmarking, and the gate fidelity of CNOT

can not be precisely determined this way.

Herein, we present a method to estimate the average fidelity of CNOT gate. We determine

the fidelity by repeated application of the CNOT gates on the system. A wealth of information can

be obtained by studying the state dynamics under repeated application of quantum gates18. In Ref.
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19, CNOT gates were repeatedly applied on the input state generated byX−π/2⊗I , and the fidelity

Fs of final states were measured. The fidelity Fs decays as the number of the CNOT gate, N , is

increased. The maximum value of N was 12 in that work. By assuming that the decay obeys an

exponential model, the gate fidelity Fg can be extracted.

The pulse sequence used in our experiment is shown in the inset of Fig. 4e in the main

text. The initial state of the two-qubit system is prepared by applying a RF π/2 pulse after the

initial laser pulse. Then N , which is even, times of repeated CNOT gates are applied. Finally,

the population of state |01〉 (P|01〉) after another RF π/2 is measured. Up to 192 CNOT gates are

applied, the dynamics of P|01〉, however, does not obey a simple exponential decay. As shown in

Supplementary Figure 10, the measured P|01〉 oscillates while decaying withN . In our experiment,

the nuclear spin qubit is extremely ‘clean’ due to being insensitive to the external noises. The

CNOT gate designed by quantum optimal control method consists of microwave pulses only. Thus

the decay is due to the static fluctuation of δ0 and δ1, while the oscillation is mainly due to the

deviation of the experimental operation from the ideal CNOT gate.

We simulated the dynamics of P|01〉 based on the Hamiltonian Hrot, the pulse sequence

(shown in Supplementary Figure 2) and the distributions of δ0 and δ1. The simulated dynamics

of P|01〉 is presented as the blue dashed line in Supplementary Figure 10. The deviation between

the experimental result and the simulated result shown in Supplementary Figure 10, is mainly due

to the difference between the Hrot and the practical one Hrot,prac in the experiment. The microwave

frequency does not equal the resonance frequency exactly, so the off-resonance term δΩ is of a

prior unknown nonzero value. The value of hyperfine coupling strength A = −2.16 MHz, which

is used for pulse sequence designing, can also deviate slightly from the practical one Aexp. We

denote this difference as δA = Aexp − A. The practical Hamiltonian Hrot,prac can be extracted

by fitting the experimental data. The fitting procedure is accomplished with Matlab. The best-fit

values of the parameters are δA = 0.008(1) MHz and δΩ = 0.068(4) MHz, with the errors being

the uncertainty within 95% confidence. The extracted values of δA and δΩ are much smaller than

the value of CW spectrum’s linewidth. The fitting result, which agrees with the experimental data
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well, is shown as the red solid line in Supplementary Figure 10. With the values of δA and δΩ , we

can determine the fidelity of CNOT gate according to Eqn. 15. The derived average gate fidelity is

0.9920(1), where the error is due to the uncertainty of δA and δΩ.

Supplementary Note 10: Robust and precise optimal control method on NV-NV system

We have demonstrated a high fidelity CNOT gate at fault-tolerant threshold, taking the NV electron

spin and 14N nuclear spin as qubits. The CNOT gate is designed with modified optimal control

method. This method can also be used to design robust and precise quantum gates on NV-NV

coupled system, a key ingredient for scalable quantum computation using diamond.

The static Hamiltonian of two coupled NV centers can be described as

H0 = HNV,1 +HNV,2 +Hint, (34)

with

HNV,1 = 2πDS2
z1 − γeB0,1 · S1, (35)

HNV,2 = 2πDS2
z2 − γeB0,2 · S2, (36)

Hint = 2πS1 · C · S2, (37)

where S1 and S2 are the spin operators of individual NV centers, NV 1 and NV 2, respectively.

The zero filed splitting is D =2870 MHz. The coupling tensor between NV 1 and NV 2 is denoted

as C. The static magnetic field applied on NV 1 (NV 2) is B0,1 (B0,2).

The system can be controlled by oscillating magnetic fields. The corresponding control

Hamiltonian is

HC, NV-NV(t) = −γe

∑
m

cos[2πfmt+ φm(t)]B1,m(t) · (S1 + S2), (38)

where fm are the carrier frequencies of the control fields, B1,m contain the amplitudes B1,m =

|B1,m| and the polarization um = B1,m/B1,m. The amplitudes B1,m and the phases φm can be

changed in time to steer the system.
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We turn to a rotating frame, in which the Hamiltonian is

H ′(t) = ei(HNV,1+HNV,2)t[Hint +HC, NV-NV(t)]e−i(HNV,1+HNV,2)t, (39)

The evolution operator with a time duration T is

Ue(T ) = T e−i
∫ T
0 dtH′(t), (40)

where T is the time-ordering operator.

Similar to that described in Section , the pulse sequence for a target two-qubit unitary gate U

can be designed by maximizing the performance function

F ′seq =
1

d(d+ 1)
[tr(M ′M ′†) + |tr(M ′)|2], (41)

with d =4 and

M ′ = U †PUe(T )P , (42)

where P is projection operator on the two-qubit subspace.

Considering the quasi-static noises from environment and the control fields, the control

Hamiltonian in Eqn. 38 is replaced by

HC, err, NV-NV(t) = 2πδ0,1Sz1+2πδ0,2Sz2−γe

∑
m

cos[2πfmt+φm(t)](1+δ1,m, rel)B1,m(t)·(S1+S2),

(43)

With HC, NV-NV(t) replaced by HC, err, NV-NV(t), it is straight forward to calculate the evolution op-

erator Ue, err(T ) and gate fidelity F ′seq, err with quasi-static noises described by δ0,1, δ0,2, and δ1,m, rel.

Then the performance function is defined by integrating F ′seq, err over distributions of δ0,1, δ0,2, and

δ1,m, rel. By maximizing the performance function, pulse sequence for target U can be designed to

be robust against the noises.

We take the optimization of pulse sequence for a robust and precise CNOT gate as an exam-

ple. The static magnetic field applied on each NV center is aligned along the NV symmetry axis,
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and the NV centers can be individually addressable by application of gradient magnetic field. The

coupling strength is taken to be 100 kHz, corresponding to a distance of about 8 nm between two

NV centers20. According to Ref. 21, a magnetic-field gradient of 12 G nm−1 is available, cor-

responding to a difference of more than 200 MHz between the NV centers’ resonant frequencies.

The spin states |mS = 0〉 and |mS = −1〉 of NV 1 (NV 2) are encoded as |0〉 and |1〉 of qubit

1 (qubit 2). Microwave pulses with two frequencies, which are resonant frequencies for the two

qubits, are applied to control the system. The amplitude and phase of each microwave pulses can

be modulated to realize the CNOT gate. The CNOT gate is designed so that the state of qubit 2 is

flipped iff qubit 1 is in state |1〉. To make the CNOT gate robust against the noises, we consider the

quasi-static distributions of the noises in the optimization of the pulse sequence. The performance

function is defined as the average gate fidelity

F ′a =

∫
dδ0,1

∫
dδ1,1, rel

∫
dδ0,2

∫
dδ1,2, relP0,1(δ0,1)P1,1, rel(δ1,1, rel)P0,2(δ0,2)P1,2, rel(δ1,2, rel)F

′
seq, err,

(44)

where P0,1(δ0,1) and P1,1, rel(δ1,1, rel) (P0,2(δ0,2) and P1,2, rel(δ1,2, rel)) describe the distributions of

quasi-static dephasing noise and control field fluctuation on NV 1 (NV 2). The distribution

P0,1(δ0,1) (P0,2(δ0,2)) is mainly due to the 13C nuclear spin bath surrounding the NV 1 (NV 2).

Since 13C is naturally abundant, the distribution P0(δ0) in the main text is a typical estimation of

P0,1(δ0,1) (P0,2(δ0,2)). The distributions P1,1, rel(δ1,1, rel) and P1,2, rel(δ1,2, rel), mainly depending on

the microwave generator, are consistent with P1(δ1) which can be obtained from experiment data.

Considering the distributions, a pulse sequence for the CNOT gate can be optimized to achieve an

average gate fidelity F ′a = 0.9926 by our method. The pulse sequence is shown in Supplementary

Figure 11. Thus our method can be applied to realize robust and high fidelity two-qubit gate on

spatially separated NV centers.
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