

Supplementary Figure 1. Association of PIAS3 and PIAS4 with endogenous AMPK α , AMPK β , and AMPK γ subunits. (a) (Upper panels) Lysates of HEK293 cells cotransfected with plasmids encoding one of the Flag-tagged PIAS family proteins (PIAS1, PIASx α , PIASx β , PIAS3, or PIAS4) together with plasmids encoding either GST-AMPK α 1 or GST-AMPK α 2 as indicated were analyzed 24h later following purification with glutathione-sepharose (GST pulldown) by Western blotting analysis with Flag or GST antibodies. (Lower panel) Western blotting analysis of total lysates (Input) with the indicated antibodies. (b) Lysates of HEK293 cells transfected with plasmids encoding GST, GST-PIAS3, or GST-PIAS4 were analyzed 24h later directly (Input) or following purification with glutathione-

Supplementary Figure-1 (Makela)

sepharose (Pulldown) by Western blotting analysis with antibodies indicated on the left. (c) Cell lysates from immortalized MEFs with variable *AMPKa* genotypes indicated on the top were analyzed by Western blotting using antibodies indicated on the left. (d) Immortalized MEFs with indicated *AMPKa* genotypes on the top were subjected for immunoprecipitation (IP) with indicated AMPKa1 or AMPKa2 antibody shown on the right and subsequently analyzed by Western blotting using AMPKa1 (ab110036, Abcam) or AMPKa2 (ab3760, Abcam) antibodies indicated on the left.

Supplementary Figure 2. PIAS4 attenuates AMPK inhibition of mTORC1 signaling. (a) Relative mRNA levels of *Pias1*, *Piasxa*, *Piasxβ*, *Pias3* and *Pias4* were analyzed by qRT-PCR from immortalized MEFs transfected with nontargeting siRNA pool (siNT) or siRNA pools against the indicated mouse Pias genes. (b) Relative levels of p-S6K/S6K of immortalized MEFs transfected with indicated siRNAs followed by treatment with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=2) relative to the –AICAR condition in siNT transfected

cells (with representative images in Fig. 1a). Significances of differences by Student's t-test are indicated (*P<0.05, ns>0.05). (c) Immortalized MEFs were transfected with siNT pool or with two independent siRNAs against mouse Pias4 (siPias4-10 and siPias4-11). At 72h post-transfection, cells were treated with vehicle or 2 mM AICAR for 2h and cell lysates were analyzed by Western blotting using the indicated antibodies. For PIAS4 blot, asterisk denotes unspecific signals and bracket denotes specific signals. (d) Immortalized MEFs were transfected with siRNA pools indicated on the top, and 72 hours later treated with the indicated concentrations of AICAR for 2 h following analysis as in (c). For PIAS4 blot, the asterisk denotes unspecific signals and the bracket denotes specific signals.

Supplementary Figure-3 (Makela)

Supplementary Figure 3. PIAS4 depletion does not affect mTORC1 signaling upon phenformin or metformin treatment. Immortalized MEFs transfected with siRNA pools indicated on the top were treated with 2 mM AICAR for 2 hours or 5 mM phenformin for 1 hour or 1 mM metformin for 24 hours, and cell lysates were analyzed by Western blotting using the indicated antibodies.

Supplementary Figure-4 (Makela)

Supplementary Figure 4. PIAS4 modulates mTORC1 signaling via AMPK α1 and TSC2. (a) Relative levels of p-S6K/S6K in immortalized MEFs with variable AMPK α genotypes transfected with siNT or siRNA pool against Pias4 (siPias4) followed by treatment with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=2) relative to the -AICAR conditions (with representative images in Fig. 2a). Significances of differences by Student's t-test are indicated (*P<0.05, ns>0.05). (b) NIH3T3 cells were initially transfected with siNT pool or siRNA pool against mouse Prkab2 (AMPKB2) (siAMPKB2) and 24h later with vector (Flag) or Flag-PIAS4 encoding plasmids. 24h later cells were treated with vehicle (-) or 2 mM AICAR (+) for 2h, and lysed for SDS-PAGE and Western blotting analysis with the indicated antibodies. (c) Relative levels of p-S6K/S6K in immortalized MEFs transfected with siPias4 pool or siRNA pool against mouse Tsc2 (siTsc2) or both as indicated followed by treatment with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=2) relative to the -AICAR conditions (with representative images in Fig. 2b). Significances of differences by Student's t-test are indicated (*P<0.05, ns>0.05). (d) Relative levels of p-S6/S6 in NIH3T3 cells transfected with vector control (Flag) or Flag-PIAS4 plasmids followed by treatment with vehicle, 2 mM AICAR (+AICAR), 50 nM rapamycin (+rapamycin) or both (+AICAR+rapamycin). Data are shown as means+SEM (n=2) relative to the vehicle control conditions (with representative images in Fig. 2c). Significances of differences by Student's t-test are indicated (***<0.001, **<0.01, *P<0.05, ns>0.05).

Supplementary Figure-5 (Makela)

Supplementary Figure 5. PIAS4 inhibits AMPKa1 kinase activity in a SUMO E3 ligase dependent manner. (a) Relative arbitrary units (means + SEM, n=3) of 32P autoradiography intensity (See Methods) of AMPKa1 kinase assay using GST-TSC2 recombinant proteins as substrates (with representative images in Fig. 3a). Significances of differences by Student's t-test are indicated (*P<0.05, NS>0.05). (b) Immortalized $AMPK\alpha 1^{+/-};\alpha 2^{+/+}$ or $AMPK\alpha 1^{-/-};\alpha 2^{-/-}$ MEFs indicated at the bottom of each chart were transfected with siNT pool or siPias4 pool and 72h later cells were treated with vehicle (-) or 2 mM AICAR for 2h. 25µg of cell lysates from each treatment were used for AMPKa1 immunoprecipitation and immunoprecipitates were used to phosphorylate 2.5µg SAMS peptide *in vitro* in the presence of $[\gamma$ -³²P] ATP followed by scintillation counting. Data are means+SEM (n=3). Significances of differences by Student's t-test are indicated (***P<0.001, NS>0.05). (c) Relative levels of p-S6/S6 in NIH3T3 cells transfected with vector control (-), Flag-PIAS4-WT (WT) or Flag-PIAS4-C335F (C335F) plasmids followed by treatment with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=2) relative to the -AICAR condition in Flag transfected cells (with representative images in Fig. 3b). Significances of differences by Student's t-test are indicated (*P<0.05, ns>0.05). (d) Relative arbitrary units (mean+SEM, n=3) of 32P autoradiography intensity (See Methods) of AMPKa1 kinase activity using GST-TSC2 recombinant proteins as substrates (with representative images in Fig. 3c). Significances of differences by Student's t-test are indicated (**P<0.01, *P<0.05). (e) Relative levels of p-4EBP1/4EBP1 in immortalized MEFs transfected with siNT pool or two independent siRNAs against mouse Ubc9 (siUbc9-1 and siUbc9-2) followed by treatment with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=2) relative to the -AICAR condition in siNT transfected cells (with representative images in Fig. 3d). Significances of differences by Student's t-test are indicated (**P<0.01, *P<0.05, ns>0.05).

Supplementary Figure-6 (Makela)

K118R

WT

0.2

0

-

AMPKα1

ΑΜΡΚα1

p-4EBP1

4EBP1

-70

-55

-15

15

Exp_3

Supplementary Figure 6. SUMOylation of AMPKa1 and AMPKa2 by SUMO2 and SUMO3. (a) (Upper panels) Western blotting analysis using anti-AMPKa1 or anti-AMPK α 2 antibodies from His-pulldown prepared from denaturing lysates of HEK293 cells co-transfected with plasmids encoding 6His-SUMO1 or SUMO2 or SUMO3 and either Flag (-) or Flag-PIAS4-WT (WT) or Flag-PIAS4-C335F (C335F). (Lower panels) Western blotting analysis of total lysates (Input) with the indicated antibodies. The asterisks denote unspecific signals. (b) (Upper panels) Western blotting analysis using anti-GST or anti-AMPKa antibodies from His-pulldown prepared from denaturing lysates of HEK293 cells co-transfected with plasmids encoding 6His-SUMO3 and either Flag (-) or Flag-PIAS4 (+) and either GST-AMPK α 1 or GST-AMPK α 2. (Lower panels) Western blotting analysis of total lysates (Input) with the indicated antibodies. (c) (Left panels) Western blotting analysis using anti-AMPKa1 antibody from in vitro SUMOylation assay assembled using recombinant AMPK (α 1, β 1, γ 1) protein and recombinant SUMO E1, E2, SUMO3 in the absence or presence of GST-PIAS4 or ATP. GST-PIAS4 proteins were visualized with Coomassie Blue stain in the lower panel. Increase of AMPKa1 SUMOylation by GST-PIAS4 was noted at high molecular weight denoted by bracket. (Right panels) Western blotting analysis using anti-p53 antibody from in vitro SUMOylation assay assembled as described above using recombinant p53 as substrates in the absence or presence of GST-PIAS4 or ATP. GST-PIAS4 proteins were visualized with Coomassie Blue stain in the lower panel. (d) (Upper panels) Western blotting analysis using anti-GST or anti-His antibodies from His-pulldown prepared from denaturing lysates of HEK293 cells co-transfected with plasmids encoding 6His-SUMO3 and Flag-PIAS4 and either WT or K152R or K280R form of GST-AMPKa1. (Lower panel) Western blotting analysis of total lysates (Input) with the anti-GST antibodies. (e) (Left panels) Relative levels of p-4EBP1/4EBP1 of control vector (-), AMPKa1-WT (WT) or AMPKa1-K118R (K118R) reconstituted $AMPKa1^{-/-};a2^{-/-}$ MEFs treated with vehicle (-AICAR) or 2 mM AICAR (+AICAR). Data are shown as means+SEM (n=3) relative to the -AICAR conditions (with representative images in Fig. 4e). Significances of differences by Student's t-test are indicated (*P<0.05). (Right panels) Western blotting analysis of cell lysates from two additional independent experiments (denoted by Exp_2 and Exp_3) using AMPKa1, p-4EBP1 and 4EBP1 antibodies.

Supplementary Figure-7 (Makela)

Reconstituted AMPKa1^{-,};a2^{-,,} MEFs

Supplementary Figure 7. Effects of SUMOylation on AMPKa1 subcellular localization and localization of SUMOylated AMPKa1 detected by proximity ligation assay (PLA). (a) Anti-GST immunofluorescence staining of immortalized $AMPK\alpha 1^{-/-};\alpha 2^{-/-}$ MEFs transfected with GST-AMPK $\alpha 1$ -WT or GST-AMPK $\alpha 1$ -K118R followed by 2h treatment with 2 mM AICAR. DNA was stained with DAPI. The percentages on the upper-left corner show the quantification of cytoplasmic GST-AMPKa1 expressed as a percentage of total GST-AMPKa1 for each identified transfected cells. The mean of cytoplasmic GST-AMPKa1 for wildtype (WT) (696 cells) and K118R (842 cells) from 3 equally weighed independent experiments were compared with Student's t-test (*P<0.05). (b) Immortalized $AMPK\alpha l^{-/-};\alpha 2^{-/-}$ MEFs transfected with GST (-), GST-AMPKa1-WT (WT) or GST-AMPKa1-K118R (K118R) indicated on the left followed by treatment with 2 mM AICAR for 2 h were subjected for proximity ligase assay (PLA) using rabbit anti-GST and mouse anti-SUMO2/3 specific antibodies. DNA was stained with DAPI. PLA signal was not detected from control (-) MEFs, whereas a strong and predominantly nuclear PLA signal (83.4% nuclear PLA signal vs 16.6% cytoplasmic PLA signal) was detected in AMPKα1-WT cells. Quantification of PLA signal (See Methods) in AMPKα1-K118R showed less PLA positive cells and weaker PLA signal per positive cells, resulting in a decrease in total PLA signal in AMPKa1-K118R to 3% of that in AMPKa1-WT (PLA positive cells: 1.4% in AMPKa1-K118R vs 16.3% in AMPKa1-WT, p<0.0001, Student's t-test; transfection efficiency: 21% GST positive cells in both AMPKa1-WT and AMPKa1-K118R; mean integrated density of PLA per positive cell: 16445 in AMPKa1-K118R vs 54273 in AMPKa1-WT, AMPKa1-K118R is 30% of AMPKa1-WT, p<0.01, Student's t-test). (c) Immortalized AMPK $\alpha 1^{-/-}$; $\alpha 2^{-/-}$ MEFs transfected as in (b) were treated with 2 mM AICAR for 2 h followed by cytoplasmic (Cyt)-nuclear (Nuc) fractionation. The fractions were analyzed following purification with glutathione-sepharose (GST pulldown) or analyzed directly (Input) by Western blotting with antibodies indicated on the left.

Supplementary Figure-8 (Makela)

Supplementary Figure 8. Depletion of PIAS4 in MDA-MB-231 breast cancer cells. The level of *PIAS4* mRNA relative to *GAPDH* was assessed by RT-qPCR from the indicated lentivirus transduced MDA-MB-231 cells following selection with puromycin ($2.5 \mu g/ml$) for 1 week.

Supplementary Figure-9 (Makela)

Supplementary Figure 9. Uncropped blots for Figure 1a

Uncropped blots for Figure 1b 130 -100 -70 -55 PIAS4 35 -250 -130 -100 -70 ΑΜΡΚα1 -55 -130 -100 -70 ΑΜΡΚα2 -55 35 -25 -100 -70 -55 AMPKß1 AMPKß2 -35 -25

Supplementary Figure 10. Uncropped blots for Figure 1b and Figure 1c

Supplementary Figure-10 (Makela)

Supplementary Figure-11 (Makela)

Supplementary Figure 11. Uncropped blots for Figure 2a

Supplementary Figure-12 (Makela)

Supplementary Figure 12. Uncropped blots for Figure 2b and Figure 2c

Supplementary Figure-13 (Makela)

p-4EBP1

4EBP1

Supplementary Figure 13. Uncropped blots for Figure 3a, Figure 3b, Figure 3c, and Figure 3d

25

15

25

15

+

S6

-

35

25

Supplementary Figure-14 (Makela)

Supplementary Figure 14. Uncropped blots for Figure 4e and Figure 5a

Supplementary Table 1: Clones identified in yeast two-hybrid screens using either AMPKa1 or AMPKa2 as baits.

Bait	Library	Gene	Accession No.	Clones
ΑΜΡΚα1	Liver	RILP	NM_031430	4
ΑΜΡΚα1	Liver	TRIP6	NM_003302	5
ΑΜΡΚα1	Liver	DISC1	NM_018662	1
ΑΜΡΚα1	Liver	C3	NM_000064	1
ΑΜΡΚα1	Liver	SF4	NM_172231	1
ΑΜΡΚα1	Liver	SDHB	NM_003000	1
ΑΜΡΚα1	Liver	YLPM1	XM_940570	1
ΑΜΡΚα1	Liver	CASP8AP2	NM_012115	1
ΑΜΡΚα1	Brain	DEAF1	NM_021008	21
ΑΜΡΚα1	Brain	EWSR1	NM_005243	1
ΑΜΡΚα1	Brain	C1orf 165	NM_024603	2
ΑΜΡΚα1	Brain	OS9	NM_006812	1
ΑΜΡΚα2	Liver	PIAS3	NM_006099	5
ΑΜΡΚα2	Liver	PPP1R12C	NM_017607	3
ΑΜΡΚα2	Liver	TRIP6	NM_003302	7
ΑΜΡΚα2	Liver	SMN1	NM_000344	2
ΑΜΡΚα2	Liver	DPYS	NM_001385	1
ΑΜΡΚα2	Liver	PDLIM5	NM_006457	2
ΑΜΡΚα2	Liver	HNRPK	BC014980	1
ΑΜΡΚα2	Liver	CTAGE-5B	AF338234	1
ΑΜΡΚα2	Liver	CFB	BC007990	1

ΑΜΡΚα2	Liver	CPS1	XM_001146466	1
ΑΜΡΚα2	Liver	UBB	NM_018955	1
ΑΜΡΚα2	Liver	PHC2	BC068573	1
ΑΜΡΚα2	Liver	PRKCBP1	HS569M23	1
ΑΜΡΚα2	Liver	AADAT	NM_182662	1
ΑΜΡΚα2	Liver	TACC2	BC015736	1
ΑΜΡΚα2	Brain	ZBED	NM_032367	5
ΑΜΡΚα2	Brain	PPP1R7	NM_002712	1
ΑΜΡΚα2	Brain	KHDRBS1	BC019109	2
ΑΜΡΚα2	Brain	PRKAG1	XM_509039	1
ΑΜΡΚα2	Brain	BRUNOL4	XM_001128998	2
ΑΜΡΚα2	Brain	PHC2	BC068573	3
ΑΜΡΚα2	Brain	HNRPK	BC014980	1
ΑΜΡΚα2	Brain	EIF4A1	NM_001416	1

Supplementary Table 2: Primers used in mutagenesis

Primer name	Sequence
PIAS4_C335F_F	CCGTGCAGAGACCTTCGCACACCTGC
PIAS4_C335F_R	GCAGGTGTGCGAAGGTCTCTGCACGG
AMPKa1_K15R_F	GTCGTGTTTCTGCCTCTCGGCTGTCGCCATC
AMPKa1_K15R_R	GATGGCGACAGCCGAGAGGCAGAAACACGAC
AMPKα1_K17R_F	CCCGTCGTGTCTCTGCTTCTCGGCTGTCGC
AMPKa1_K17R_R	GCGACAGCCGAGAAGCAGAGACACGACGGG
AMPKα1_K23R_F	GACGGGCGGGTGAGGATCGGCCACTAC
AMPKa1_K23R_R	GTAGTGGCCGATCCTCACCCGCCCGTC
AMPKa1_K40R_F	GCCAACCTTCACTCTGCCGAAGGTGCCGA

AMPKa1_K40R_R	TCGGCACCTTCGGCAGAGTGAAGGTTGGC
AMPKa1_K42R_F	CGGCACCTTCGGCAAAGTGAGGGTTGGCAAAC
AMPKa1_K42R_R	GTTTGCCAACCCTCACTTTGCCGAAGGTGCCG
AMPKa1_K45R_F	CCCAGTCAATTCATGTCTGCCAACCTTCACTTTGCC
AMPKa1_K45R_R	GGCAAAGTGAAGGTTGGCAGACATGAATTGACTG
	GG
AMPKa1_K52R_F	CTTCACAGCTACTCTATGCCCAGTCAATTCATGTTT
	GC
AMPKa1_K52R_R	GCAAACATGAATTGACTGGGCATAGAGTAGCTGT
	GAAG
AMPKa1_K56R_F	CTTCTGTCGATTGAGTATCCTCACAGCTACTTTATG
	CCC
AMPKa1_K56R_R	GGGCATAAAGTAGCTGTGAGGATACTCAATCGAC
	AGAAG
AMPKa1_K62R_F	CATCAAGGCTCCGAATCCTCTGTCGATTGAGTATC
AMPKa1_K62R_R	GATACTCAATCGACAGAGGATTCGGAGCCTTGATG
AMPKa1_K71R_F	TGAATTTCTCTGCGGATTCTTCCTACCACATCAAG
	GC
AMPKa1_K71R_R	GCCTTGATGTGGTAGGAAGAATCCGCAGAGAAAT
	TCA
AMPKa1_K80R_F	ATGCCTGAAAAGCCTGAGGTTCTGAATTTCTCTGC
	G
AMPKa1_K80R_R	CGCAGAGAAATTCAGAACCTCAGGCTTTTCAGGCA
	Т
AMPKa1_K89R_F	AGCTTTTCAGGCATCCTCATATAATTAGACTGTAC
	CAGGTCA
AMPKa1_K89R_R	TGACCTGGTACAGTCTAATTATATGAGGATGCCTG
	AAAAGCT
AMPKa1_K118R_F	TTCATCCAGCCTTCCATTCCTACAGATATAATCAA
	ATAGCTCTCC
AMPKa1_K118R_R	GGAGAGCTATTTGATTATATCTGTAGGAATGGAAG
	GCTGGATGAA
AMPKα1_K125R_F	CGCCGACTTTCTCTTTCATCCAGCCTTCCATTCTTA

AMPKa1_K125R_R	TAAGAATGGAAGGCTGGATGAAAGAGAAAGTCGG
	CG
AMPKa1_K152R_F	CATATGGTGGTCCATAGAGATTTGAGACCTGAAAA
	TGTCCTG
AMPKa1_K152R_R	CAGGACATTTTCAGGTCTCAAATCTCTATGGACCA
	CCATATG
AMPKa1_K165R_F	GAAAGACCAAAATCAGCTATCCTTGCATTCATGTG
	TGCATCAA
AMPKa1_K165R_R	TTGATGCACACATGAATGCAAGGATAGCTGATTTT
	GGTCTTTC
AMPKa1_K235R_F	GATCCCATCACATATCTTCCTAAAAAGAGTTGGCA
	CATGGTC
AMPKa1_K235R_R	GACCATGTGCCAACTCTTTTTAGGAAGATATGTGA
	TGGGATC
AMPKa1_K236R_F	GAAGATCCCATCACATATCCTCTTAAAAAGAGTTG
	GCACATGG
AMPKa1_K236R_R	CCATGTGCCAACTCTTTTTAAGAGGATATGTGATG
	GGATCTTC
AMPKa1_K257R_F	CACCTGCAGCATATGTCTCAAAAGGCTAATCACAG
	AAGG
AMPKa1_K257R_R	CCTTCTGTGATTAGCCTTTTGAGACATATGCTGCA
	GGTG
AMPKa1_K266R_F	TTTGATTGTGGCCCTCCTCATGGGATCCACCTG
AMPKa1_K266R_R	CAGGTGGATCCCATGAGGAGGGCCACAATCAAA
AMPKa1_K271R_F	TGTTCCCTGATATCTCTGATTGTGGCCCTCTTCATG
AMPKa1_K271R_R	CATGAAGAGGGCCACAATCAGAGATATCAGGGAA
	CA
AMPKa1_K280R_F	GATATCAGGGAACATGAATGGTTTAGACAGGACC
	TTCCA
AMPKa1_K280R_R	TGGAAGGTCCTGTCTAAACCATTCATGTTCCCTGA
	TATC
AMPKa1_K285R_F	GATCCTCAGGAAAGAGATATCTTGGAAGGTCCTGT
	TTAAAC

AMPKa1_K285R_R	GTTTAAACAGGACCTTCCAAGATATCTCTTTCCTG
	AGGATC
AMPKa1_K305R_F	TCAAACTTTTCACATACTTCTCTTAAGGCTTCATCA
	TCAATCATGG
AMPKa1_K305R_R	CCATGATTGATGATGAAGCCTTAAGAGAAGTATGT
	GAAAAGTTTGA
AMPKa1_K310R_F	TCCTCTTCTGAGCACTCAAACCTTTCACATACTTCT
	TTTAAGG
AMPKa1_K310R_R	CCTTAAAAGAAGTATGTGAAAGGTTTGAGTGCTCA
	GAAGAGGA
AMPKa1_K349R_F	GTCGCCAAATAGAAATCTCTGGCTTCATTCATTAT
	TCTCCTG
AMPKa1_K349R_R	CAGGAGAATAATGAATGAAGCCAGAGATTTCTATT
	TGGCGAC
AMPKa1_K396R_F	CCTTACACCTTGGTGTTTTGGATCTCTGTGGATTTAA
	TTCATCAAG
AMPKa1_K396R_R	CTTGATGAATTAAATCCACAGAGATCCAAACACCA
	AGGTGTAAGG
AMPKa1_K398R_F	CTTTCCTTACACCTTGGTGTCTGGATTTCTGTGGAT
	TTAATTCATC
AMPKa1_K398R_R	GATGAATTAAATCCACAGAAATCCAGACACCAAG
	GTGTAAGGAAAG
AMPKa1_K404R_F	CTAAATGCCATTTTGCTCTCCTTACACCTTGGTGTT
	TGGATT
AMPKa1_K404R_R	AATCCAAACACCAAGGTGTAAGGAGAGCAAAATG
	GCATTTAG
AMPKa1_K406R_F	TTCCTAAATGCCATCTTGCTTTCCTTACACCTTGGT
	GTTTG
AMPKa1_K406R_R	CAAACACCAAGGTGTAAGGAAAGCAAGATGGCAT
	TTAGGAA
AMPKa1_K429R_F	CCATTCATAATCCAATTGTCTGATTGCTCTACATAC
	TTCTGCCA
AMPKα1_K429R_R	TGGCAGAAGTATGTAGAGCAATCAGACAATTGGA

	TTATGAATGG
AMPKa1_K436R_F	GCAAATAATATGGGTTTACAACCCTCCATTCATAA
	TCCAATTGTTTGATT
AMPKa1_K436R_R	AATCAAACAATTGGATTATGAATGGAGGGTTGTAA
	ACCCATATTATTTGC
AMPKa1_K436R_F	GCAAATAATATGGGTTTACAACCCTCCATTCATAA
	TCCAATTGTTTGATT
AMPKa1_K436R_R	AATCAAACAATTGGATTATGAATGGAGGGTTGTAA
	ACCCATATTATTTGC
AMPKa1_K448R_F	TGCTTGTCACAGGATTCCTCCTTCGTACACGCAAA
AMPKa1_K448R_R	TTTGCGTGTACGAAGGAGGAATCCTGTGACAAGCA
AMPKa1_K485R_F	GGAGTAGCAGTCCCTGATCTGGCTTCTGTAATTTC
	AT
AMPKa1_K485R_R	ATGAAATTACAGAAGCCAGATCAGGGACTGCTAC
	TCC
AMPKa1_K515R_F	ACTTCTGAGGATCTTCCTTGAGCCTCAGCATCTGA
AMPKa1_K515R_R	TCAGATGCTGAGGCTCAAGGAAGATCCTCAGAAG
	Т
AMPKa1_K555R_F	GGTTCTATTGTGCAAGAATTCTAATTAGATTTGCA
	CACATCTCAAAAAATTCTATTG
AMPKa1_K555R_R	CAATAGAATTTTTTGAGATGTGTGCAAATCTAATT
	AGAATTCTTGCACAATAGAACC

Supplementary Table 3: Dharmacon siRNAs used in this study

siRNA name	siRNA ID	Targeting gene
siNT pool	D-001810-10	
siPias1 pool	L-059344-01	Mouse Pias1
siPias2 pool	L-055561-01	Mouse Pias2
siPias3 pool	L-045382-00	Mouse Pias3

siPias4 pool	L-048649-01	Mouse Pias4
siTsc2 pool	L-047050-00	Mouse Tsc2
siPias4-10	J-048649-10	Mouse Pias4
siPias4-11	J-048649-11	Mouse Pias4
siUbc9-1	D-040661-01	Mouse Ubc9
siUbc9-2	D-040661-02	Mouse Ubc9
siPIAS4 pool	L-006445-00	Human PIAS4
siUBC9 pool	L-004910-00	Human UBC9

Supplementary Table 4: Primers used in Real-time qPCR:

Primer name	Sequence
Mouse_Pias1_F	CGAGCAAAGGGAATAAGGAA
Mouse_Pias1_R	TGAAGGTGGGAGCAGGTAAG
Mouse_Piasxa_F	GTAAGGGTGCCCAGTGTGAC
Mouse_Piasxa_R	TCAGAAGATGCTCCAAGCTG
Mouse_ <i>Piasxβ</i> _F	GATCCCCAGTACTGTCCTCCT
Mouse_ <i>Piasxβ</i> _R	CTGCTGGTTATGACCCCTGT
Mouse_Pias3_F	GGACGTGTCCTGTGTGTGAC
Mouse_Pias3_R	CTCTGATGCCTCCTTCTTGG
Mouse_Pias4_F	GGAGGCCAAAAACATGGTGAT
Mouse_Pias4_R	GGGCTACAGTCGAACTGCAC
Mouse_Gapdh_F	TGTTCCTACCCCCAATGTGT
Mouse_Gapdh_R	TGTGAGGGAGA TGCTCAGTG

Human_PIAS4_F	GGTGAAGCTGCCGTTCTTTA
Human_PIAS4_R	TCTCGTTGTTCTGTGGGACTAA
Human_GAPDH_F	CGACCACTTTGTCAAGCTCA
Human_GAPDH_R	TGTGAGGGAGA TGCTCAGTG