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Supplementary Material

Transition rates

Formally, the TGP process (Xt)t≥0 is modeled as a Markov process on the state space
S = {0, 1, 2, ..., N,E}. The dynamics is determined by the rate matrix Q = (q(k, l))k,l∈S
with

q(k, l) =



(N−k)k
N

(1− v) + (N−k)(N−k)u
N

, 0 ≤ k ≤ N − 1, l = k + 1,
(N−k)k(1−u)

N
, 1 ≤ k ≤ N − 1, l = k − 1,

kv, 1 ≤ k ≤ N − 1, l = E,

−
∑
m∈S
m6=k

q(k,m), l = k,

0, else,

(S1)

where u and v represent the mutation probabilities from wild-type to type-I cells and
from type-I cells to type-II cells, respectively. These rates induce that the states N and
E are absorbing states of the process.

Absorption probabilities

In order to calculate the absorption probabilities of the Markov process determined by
the rates in equation (S1), a sub-process is investigated. This sub-process is characterized

by the state space S̃ = {1, 2, 3, ...., N,E} and rate matrix Q̃ = (q̃(k, l))k,l∈S which is
obtained from the original rates given in (S1) by eliminating state 0 and setting u = 0
such that

q̃(k, l) =



(N−k)k
N

(1− v), 1 ≤ k ≤ N − 1, l = k + 1,
(N−k)k

N
, 2 ≤ k ≤ N − 1, l = k − 1,

kv, 1 ≤ k ≤ N − 1, l = E,

−
∑
m∈S̃
m 6=k

q(k,m), l = k,

0, else.

(S2)

By de�ning q̃(k) := −q̃(k, k), we get

q̃(1) = q̃(1, E) + q̃(1, 2) =
N + v − 1

N
,

q̃(k) = q̃(k, k + 1) + q̃(k, k − 1) + q̃(k,E) =
2(N − k)k + k2v

N
, 2 ≤ k ≤ N − 1.

We further de�ne transition probabilities
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p(i, j) :=

{
q̃(i,j)
q̃(i)

, i 6= j,

0, else,

which look as follows.

p(1, E) =
Nv

N + v − 1
,

p(1, 2) =
(N − 1)(1− v)

N + v − 1
,

p(k,E) =
Nv

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(k, k + 1) =
(N − k)(1− v)

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(k, k − 1) =
(N − k)

2(N − k) + kv
, 2 ≤ k ≤ N − 1,

p(E,E) = 1.

The absorption probabilities of the processes determined by the rate matrix q and the
transition matrix P are equal. This holds due to the fact that P implies an equivalent
process where we only eliminated transitions into the same state which only in�uences the
time-scale of the process. The absorption probabilities for the process which is determined
by the transition matrix P = (pi,j)i,j∈S̃ is obtained as follows. Denote by the vector

αN =
(
αN(i, v)

)
i∈S̃ the absorption probabilities, where αN(i, v) equals the absorption

probability in state N starting from state i. First step analysis yields

αN(i, v) =
∑
j∈S̃

p(i, j)αN(j, v), i ∈ S̃.
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It holds that αN(E, v) = 0, αN(N, v) = 1 and therefore

αN(i, v) =
N∑
j=1

p(i, j)αN(j, v)

=
N−1∑
j=1

p(i, j)αN(j, v) + p(i, N)

= p(i, i− 1)αN(i− 1, v) + p(i, i+ 1)αN(i+ 1, v) + p(i, N)

=


(N−1)(1−v)
N+v−1 αN(2, v), i = 1
(N−i)

2(N−i)+ivα
N(i− 1, v) + (N−i)(1−v)

2(N−i)+iv α
N(i+ 1, v), 2 ≤ i ≤ N − 2,

1
2+(N−1)vα

N(N − 2, v) + 1−v
2+(N−1)v , i = N − 1.

Hence,

−αN(1, v) +
(N − 1)(1− v)

N + v − 1
αN(2, v) = 0

(N − i)
2(N − i) + iv

αN(i− 1, v)− αN(i, v) +
(N − i)(1− v)

2(N − i) + iv
αN(i+ 1, v) = 0, 2 ≤ i ≤ N − 2,

−αN(N − 1, v) +
1

2 + (N − 1)v
αN(N − 2, v) = − 1− v

2 + (N − 1)v
.

By multiplying each line with its denominator, one gets an equivalent system P
′
α̃N = b

for a (N − 1) × (N − 1) matrix P
′
and α̃N := (αN(i, v))i=1,...,N−1. This system reads in

tableau form as follows.

αN (1,v) αN (2,v) αN (3,v) ... αN (N−1,v) 1

1 −(N + v − 1) (N − 1)(1− v) 0 · · · 0 0

2 (N − 2) −2(N − 2)− 2v (N − 2)(1− v)
. . . 0 0

3 0 (N − 3) −2(N − 3)− 3v
. . .

...
...

...
...

. . . . . . . . . 0
...

...
...

. . . . . . . . . 2(1− v) 0
N−1 0 · · · · · · 1 −2− (N − 1)v −(1− v)

(S3)

We are interested in the absorption probability αN(1, v) = α̃N(1, v), i.e. the probability
of getting absorbed in state N when the process is started with a single type-I cell. We
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use Cramer's rule which reads

αN(1, v) =
detP

′
1

detP ′ ,
(S4)

where P
′
1 is the matrix formed by replacing the �rst column of P

′
by the column vector

b. We calculate det P
′
�rst. By induction over N the general structure can be inferred.

It holds that

detP
′
=

∣∣∣∣∣∣
−(3 + v) 3(1− v) 0

2 −4− 2v 2(1− v)
0 1 −2− 3v

∣∣∣∣∣∣ = 6(v3 + 9v2 + 9v + 1)

= 3!(v3 + 32v2 + 32v + 1), for N = 4 and

detP
′
=

∣∣∣∣∣∣∣∣
−(4 + v) 4(1− v) 0 0

3 −6− 2v 3(1− v) 0
0 2 −4− 3v 2(1− v)
0 0 1 −2− 4v

∣∣∣∣∣∣∣∣ = 24(v4 + 16v3 + 36v2 + 16v + 1)

= 4!(v4 + 42v3 + 62v2 + 42v + 1) for N = 5.

Furthermore,

detP
′
= 120(v5 + 25v4 + 100v3 + 100v2 + 25v + 1)

= 5!(v5 + 52v4 + 102v3 + 102v2 + 52v + 1) for N = 6.

Therefore, we conclude that the general form of detP
′
is given by

detP
′
= (N − 1)!

((
N − 1

N − 1

)2

vN−1 +

(
N − 1

N − 2

)2

vN−2 + ...+

(
N − 1

1

)2

v1 +

(
N − 1

0

)2

v0

)

= (N − 1)!
N−1∑
i=0

(
N − 1

i

)2

vi

= (N − 1)!PN−1

(
v + 1

1− v

)
(1− v)N−1, N ∈ N. (S5)

Here, PN(x) denotes the Legendre polynomials [2] which are the particular solutions to
the Legendre di�erential equation(

1− x2
)
f ′′(x)− 2x f ′(x) +N(N + 1) f(x) = 0, N ∈ N0.
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The second determinant is calculated as follows. The matrix P
′
1 has the structure

P
′

1 =



0 (N − 1)(1− v) 0 · · · · · · 0

0 −2(N − 2)− 2v (N − 2)(1− v) 0
. . . 0

0 (N − 3) −2(N − 3)− 3v (N − 3)(1− v)
. . .

...
...

. . . . . . . . . . . .
...

0
. . . . . . . . . . . . 2(1− v)

−(1− v) 0 · · · · · · 1 −2− (N − 1)v


.

Therefore, the determinant can be calculated by applying Laplace expansion along the
�rst column and evaluating the determinant of the remaining triangular matrix.

detP
′

1 = (1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(N − 1)(1− v) 0 · · · · · · · · · 0

−2(N − 2)− 2v (N − 2)(1− v) 0
. . . . . . 0

(N − 3) 2(N − 3)− 3v (N − 3)(1− v)
. . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 · · · . . . . . . . . . 2(1− v)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1− v)(N − 1)(1− v)(N − 2)(1− v)(N − 3)(1− v)...2(1− v)

= (N − 1)!(1− v)N−1. (S6)

Using the calculated determinants from equations (S5) and (S6) allows the calculation of
the absorption probability αN(1, v) with equation (S4).

αN(1, v) =
detP

′
1

detP ′ =
1

PN−1
(
v+1
1−v

) . (S7)

Asymptotic absorption probabilities

Here, we derive the absorption probability in dependency of the risk coe�cient γ as the
system size N tends to in�nity.
The second assumption on the parameter regime of the TGP model reads (N

√
v)2 = γ.

Hence, v = γ
N2 . Substitution in equation (S7) yields

αN(γ) := αN(1, γ) =
1

PN−1
(
v+1
1−v

) =
1

PN−1

( γ

N2+1

1− γ

N2

) =
1

PN−1

(
N2+γ
N2−γ

)
.

(S8)

One important property of the Legendre polynomials is the integral representation
(see [2])

PN(x) =
1

π

∫ π

0

[
x+
√
x2 − 1 cosϕ

]N
dϕ, x ∈ R\{−1, 1}.
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This integral representation is used in order to calculate the limit for the denominator in
(S8) as N goes to in�nity.

PN−1

(
N2 + γ

N2 − γ

)
=

1

π

∫
π

0

N2 + γ

N2 − γ
+

√(
N2 + γ

N2 − γ

)2

− 1 cosϕ

N−1 dϕ

=
1

π

∫
π

0

N2 + γ

N2 − γ
+

√
(N2 + γ)2 − (N2 − γ)2 cosϕ

N2 − γ

N−1 dϕ

=
1

π

∫
π

0

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1
dϕ. (S9)

Therefore,

lim
N→∞

PN−1

(
N2 + γ

N2 − γ

)
= lim

N→∞

1

π

∫
π

0

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1
dϕ

=
1

π

∫
π

0

lim
N→∞

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1
dϕ. (S10)

The exchange of the limit and the integral is justi�ed by using Lebesgue's dominated
convergence theorem since there is an integrable majorant which can be derived as follows.∣∣∣∣N2 + γ + 2N

√
γ cosϕ

N2 − γ

∣∣∣∣N−1 ≤ ∣∣∣∣N2 + γ + 2N
√
γ

N2 − γ

∣∣∣∣N−1
=

∣∣∣∣ (N +
√
γ)2

(N −√γ)(N +
√
γ)

∣∣∣∣N−1
=

∣∣∣∣N +
√
γ

N −√γ

∣∣∣∣N−1
=

∣∣∣∣1 +
2
√
γ

N −√γ
)

∣∣∣∣N−1
=

∣∣∣∣∣
[
1 +

2
√
γ

N −√γ

]N−√γ [
1 +

2
√
γ

N −√γ

]√γ−1∣∣∣∣∣
≤ exp(2

√
γ) · 2
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for N su�ciently large and since the sequence
(
1 + 1

N

)N
is monotonously increasing.

The limit in (S10) can be calculated as follows.

lim
N→∞

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1
= lim

N→∞

[
1 +

2γ + 2N
√
γ cosϕ

N2 − γ

]N−1
= exp(2

√
γ cosϕ)

since
2γ + 2N

√
γ cosϕ

N − γ
N

→ 2
√
γ cosϕ

and aN → a implies (1 + aN
N

)N → exp(a). Hence, we obtain for (S10)

1

π

∫
π

0

lim
N→∞

[
N2 + γ + 2N

√
γ cosϕ

N2 − γ

]N−1
dϕ =

1

π

∫
π

0

exp(2
√
γ cosϕ)dϕ

= I0(2
√
γ),

where In denotes the modi�ed Bessel function of the �rst kind. This function can be
expressed by the series

In(x) =
∞∑
m=0

1

m!Γ(m+ n+ 1)

(x
2

)2m+n

(S11)

where Γ(x) denotes the Gamma function, see [2] for details. Now, equation (S9) implies

α(γ) := lim
N→∞

αN(1, γ) = lim
N→∞

1

PN−1

(
N2+γ
N2−γ

) =
1

I0(2
√
γ)
. (S12)

A comparison between simulation results produced by sampling trajectories of the pro-
cess (Xt)t≥0, absorption probabilities obtained by using the exact formula (S7) and the
asymptotic equation (S12) is given in Table S1.

Derivation of the regression function

The regression function βNγ (ρ) can be estimated by a di�usion approximation of the TGP
process. In order to achieve this, a derivation in [1] is used and extended. There, it is
shown that it su�ces to investigate a modi�ed process (Yt)t≥0. This process is determined
by the original rates given by (S1) with the following modi�cation. The rate for a type-I
mutation equals u = 0 in q(k, l) if k > 0. Hence, type-I mutations are not allowed if
type-I cells are already present in the system. The modi�cation can be justi�ed by the
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assumption u � 1
N

which allows to treat each mutant lineage independently. Note that
this decomposition was already used in the calculation of the absorption probabilities.
There, the state space has been reduced by state 0 since the occurrence of the successful
mutant is assumed at the beginning. For the process (Yt)t≥0, this reduction of the state
space is not sensible since we want to investigate the regression probability, i.e. the
probability of reaching state 0. Hence, both modi�ed processes only di�er in the possibility
of reaching state 0.
Under appropriate time and space scaling, (Yt)t≥0 can be asymptotically approximated
for N → ∞ by the Wright-Fisher di�usion process Zt on [0, 1]. The details of this
construction can be found in [1]. The important connection between the processes (Yt)t≥0
and (Zt)t≥0 is that Zt = 0 implies Xt = 0.
Therefore, we approximate βNγ (ρ) ≈ βγ(ρ) where βγ(ρ) is the probability that Zt reaches
0 when starting in ρ,

βγ(ρ) := P(Zt = 0 for some t > 0|Z0 = ρ), 0 ≤ ρ ≤ 1.

It holds that

βγ(ρ) = c
∞∑
k=1

γk

k!(k − 1)!
(1− ρ)k, 0 ≤ ρ ≤ 1, (S13)

where the constant c is determined by the condition βγ(0) = 1. See [1, Lemma 6.9] for
details and a rigorous derivation of this approximation.
Here, we express the series representation (S13) in terms of Bessel functions and derive
the constant c as follows. In the �rst step, the indices of the sum are adjusted. In the
second step, we used that Γ(n) = (n− 1)! for n ∈ N.

∞∑
k=1

γk

k!(k − 1)!
(1− ρ)k =

∞∑
k=0

1

(k + 1)!k!
(γ(1− ρ))k+1

=
∞∑
k=0

1

k!Γ(k + 2)
(γ(1− ρ))k+1

=
∞∑
k=0

1

k!Γ(k + 2)

(√
γ(1− ρ)

)2k+2

=
√
γ(1− ρ)

∞∑
k=0

1

k!Γ(k + 2)

(√
γ(1− ρ)

)2k+1

=
√
γ(1− ρ)I1

(
2
√
γ(1− ρ)

)
.

In the last step the de�nition of the modi�ed Bessel function of the �rst kind (S11) was
utilized with x = 2

√
γ(1− ρ) and n = 1. Hence, equation (S13) yields

βγ(ρ) = c
√
γ(1− ρ)I1

(
2
√
γ(1− ρ)

)
.
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Since βγ(0) = 1, one can conclude that the constant c equals

c =
1

√
γI1(2

√
γ)

and therefore

βγ(ρ) =

√
1− ρI1

(
2
√
γ(1− ρ)

)
I1(2
√
γ)

(S14)

for 0 ≤ ρ ≤ 1.

Taylor expansion of the regression function

The Taylor expansion of the regression function is derived as follows. Since the regres-
sion function is de�ned for 0 ≤ ρ ≤ 1, we expand it at ρ0 = 0.5. Furthermore, an estimate
for the remainder term is given.
The �rst order Taylor polynomial at x0 of an two times di�erentiable function f is given
by

T1(x) = f(x0) + f ′(x0)(x− x0) +R1(x),

where R1(x) = f(x) − T1(x) denotes the remainder term. The Lagrange form of the
remainder term is

R1(x) =
f ′′(ξ)

2
(x− x0)2

for some real number ξ between x0 and x.
We choose

f(ρ) = βγ(ρ) =

√
1− ρI1

(
2
√
γ(1− ρ)

)
I1(2
√
γ)

,

i.e. the regression function derived in equation (S14). The �rst two derivatives of f are
given by

f ′(ρ) = −
I1

(
2
√
γ(1− ρ)

)
+
√
γ(1− ρ)

(
I0

(
2
√
γ(1− ρ)

)
+ I2

(
2
√
γ(1− ρ)

))
2
√

1− ρI1(2
√
γ)

,

f ′′(ρ) = γ
I1

(
2
√
γ(1− ρ)

)
I1(2
√
γ)
√

(1− ρ)
.

Here, it was used that

d

dx
I0(x) = I1(x) and

d

dx
Im(x) =

Im−1(x) + Im+1(x)

2
= Im−1(x)− mIm(x)

x
, m ∈ N,
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see [2]. Therefore, for ρ0 = 0.5, it holds that

T1(ρ) =
I1
(√

2γ
)

√
2I1
(
2
√
γ
) − √2I1

(√
2γ
)

+
√
γ
(
I0
(√

2γ
)

+ I2
(√

2γ
))

2I1
(
2
√
γ
) (ρ− 0.5). (S15)

The remainder term for 0 ≤ ρ ≤ 1 can be estimated in the following way. First, note that
for ρ ∈ [0, 1] it holds that

f ′′(ρ) = γ
I1

(
2
√
γ(1− ρ)

)
I1(2
√
γ)
√

(1− ρ)
≤ γ

I1

(
2
√
γ(1− ρ)

)
I1(2
√
γ)

≤ γ

since I1(x) is monotonously increasing. Therefore, max
ρ∈[0,1]

f ′′(ρ) = f ′′(0) = γ and

|R1(ρ)| =
∣∣∣∣f ′′(ξ)2

(ρ− 0.5)2
∣∣∣∣

=

∣∣∣∣∣γI1
(
2
√
γ
√

1− ξ
)

I1(2
√
γ)
√

1− ξ
(ρ− 0.5)2

2

∣∣∣∣∣
≤ γ

(1− 0.5)2

2

=
γ

8
. (S16)
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