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SUPPORTING MATERIAL 

Section S1: Comparison of Manual and Automated Image Segmentation 
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Figure S1: Detection of germ cells in z-stacks of germlines. Each row is an image of the same 

germline taken at a different depth. The distal tip is at the bottom-left of each image. The green 

circles in the left column are the cells that were correctly identified by the automatic segmentation 

algorithm, and the orange circles are the corresponding manually-segmented cells. Green circles 

without an orange partner correspond to cases in which the cell was first detected in that slice by 

the automatic segmentation algorithm, but first detected in the slice above or below that one by 

the manual segmentation. The red circles in the right column are the objects that were incorrectly 

identified as cells by the automatic segmentation, while the orange circles are the cells that were 

identified by the manual segmentation but not by the automatic one. 
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Figure S2: Zoomed-in regions of the images in Figure S1. Circle colors have the same meaning 

as in Figure S1. The second row is zoomed in on the distal tip. The third row is zoomed in on the 

pachytene region, just before the loop. 
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Section S2: Diffusion Maps Algorithm for Ordering Cells along the Center Line 

In the Diffusion Maps algorithm (1), a random walk is constructed over a set of data points, with 

hopping probabilities between pairs of points determined by their pairwise distances and a kernel 

function. Here, the data points were the positions of the germ cells in a single germline. When the 

data points lie on a lower-dimensional manifold, the algorithm produces a robust ordering of the 

data along its principal nonlinear axis (or axes) on the manifold. In the case of the germline, the 

germ cells essentially lie on a 1D manifold, the center line of the germline. The algorithm was 

implemented using custom MATLAB code. 

First, weights between data points (germ cell positions) were calculated by passing their pairwise 

distances through a Gaussian kernel function. Weights between data points are related to the 

probability of a random walker jumping from one of those data points to the other, with higher 

weights corresponding to higher hopping probabilities. The width of the Gaussian kernel 

determines the relevant scale of hopping. If the kernel width is much smaller than even the smallest 

distance between cells, then all weights between data points will be near zero, and a random walker 

cannot jump between any pair of data points. As the width is increased from zero, there is a scale 

at which the data appear 3D, then 2D, then 1D. At the 2D scale, a hopper can jump across the 

entire depth of the flattened germline in one jump, but not the diameter or length of the germline. 

At the 1D scale, the hopper can jump across the entire diameter of the germline in one jump, but 

not the length of the germline. If the kernel width is larger than the entire germline, all weights 

between data points will be close to one, and a random walker can jump between any two data 

points, no matter how far apart they are in space. At this scale, the data is essentially zero-

dimensional from the point of view of the hopper, all collapsing to a single point. Previous work 

has developed an automated way of choosing the kernel width (2, 3). In practice, Diffusion Maps 

is not sensitive to the precise value of the kernel width, as long as it is in the correct dimensionality 

regime. We chose the kernel width for each germline so that the data “appeared” one-dimensional 

to a random walker. 

The weights were then assembled into a symmetric matrix, with entry (𝑖, 𝑗) containing the weight 

between germ cell 𝑖 and germ cell 𝑗. The rows were normalized so that the sum of each row equaled 

one. This normalized matrix can be interpreted as a Markov transition matrix, with entry (𝑖, 𝑗) 

containing the probability of a hopper located at data point 𝑖 jumping to data point 𝑗 in one time 

step. As the number of data points approaches infinity, the eigenvectors of this Markov matrix 

approach the eigenfunctions of the Laplace (diffusion) operator with Neumann (reflecting) 

boundary conditions (2). The first eigenvector of this matrix is a vector of ones, and contains no 

information. The first nontrivial eigenvector is one-to-one with and parameterizes the principal 

nonlinear axis of the data, the center line of the gonad tube. Element 𝑖 of this eigenvector is 

associated with germ cell 𝑖; therefore, the monotonic ordering of the elements gives the ordering 

of the cells according to their positions along the center line. Diffusion Maps does not give the arc 

length positions of the cells, only their ordering. 

 

Section S3: Estimating the Apoptosis Term, 𝑹(𝒙) 
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Evaluation of Equation 5 of the main text requires an expression for 𝑅(𝑥), which accounts for cell 

death in the germline. It is common to observe several germ cells undergoing apoptosis in a given 

fixed germline. Apoptotic germ cells are recognizable because their chromatin condenses and they 

undergo cellularization (4, 5). The former causes the cells to exhibit strong fluorescence when 

stained for DNA, while the latter causes the cells to exhibit essentially no fluorescence when 

stained for dpMPK-1 (Figure S1). From the time that a germ cell first shows symptoms of 

apoptosis to the time that the cell is removed from the germline by sheath cells is about 1 hour (4). 

In this time, a dying germ cell can only travel about one cell diameter before being cleared from 

the germline (6). As a result, the frequency at which cell corpses are observed at a given position 

is essentially the same as the frequency at which cells undergo apoptosis at that position. 

 

 

Figure S3: Image of the loop region of a C. elegans germline. Apoptotic cells (denoted by white 

arrowheads) are recognizable by their strong DAPI signal and lack of dpMPK-1 signal. 

 

By this argument, we assumed that the death/clearance rate 𝑅(𝑥) is proportional to the number of 

cell corpses observed at 𝑥. We can decompose 𝑅(𝑥) into a shape function times a constant of 

proportionality that determines its scale. Under our assumptions, the shape function is given by 

the probability distribution of cell corpse locations (Figure S2). The constant of proportionality is 

𝑟, the total rate of cell death, which can be estimated from data in the literature, as discussed in the 

main text. Note that the source term 𝑆(𝑥) could be estimated in a similar manner by looking at the 

relative frequency of cell divisions as a function of arc length across germlines, but this was not 

explored here. 

However, in a given germline there are too few corpses to estimate the shape of 𝑅(𝑥) accurately. 

To address this, we pooled corpse counts from multiple fixed germlines to estimate the average 

shape of 𝑅(𝑥) over multiple germlines. The pooling process, itself, requires aligning spatial 

positions across different germlines. Here we will describe a method for registering arc length 

positions across different germlines. This is the only part of our approach that requires averaging 

across germlines. 
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Section S4: Registering Arc Length Positions across Germlines 

Since there are so few cell corpses in a given germline, we need to estimate the shape of 𝑅(𝑥) 
from multiple germlines. Germlines come in different sizes, so pooling corpse positions across 

germlines requires that arc length positions in different germlines be registered or transformed to 

a common axis. Registering positions between two germlines is equivalent to determining an 

invertible function that maps positions in one germline to corresponding positions in the other. We 

assume that germ cells at “corresponding positions” are at the same developmental maturity, are 

the same age, and have spent the same amount of time in their respective germlines. Under the 

assumption that germ cells are arranged according to their maturity, this invertible function exists. 

The mapping will locally stretch or compress positions in one germline, like an accordion, to match 

the corresponding positions in the other. There will be a different mapping between each pair of 

germlines. 

If 𝑥1 refers to arc length positions in the first germline and 𝑥2 refers to those in the second. The 

goal is to estimate an invertible function that maps 𝑥1 to 𝑥2, i.e. 𝑥2 = 𝑔(𝑥1) and 𝑥1 = 𝑔−1(𝑥2). In 

the Derivation section, we introduced the probability density of germ cell arc length positions, 

𝑓𝑋(𝑥), which quantifies the local “concentration” of germ cells in a particular germline. A related 

quantity is the cumulative distribution of arc length positions, 𝐹𝑋(𝑥), which quantifies the 

cumulative fraction of germ cells located at or before 𝑥.  

Since 𝑥1 and 𝑥2 are related by an invertible function, their cumulative distributions must satisfy: 

𝐹𝑋1(𝑥1) = 𝐹𝑋2(𝑥2).      (S1) 

Proof of Equation S1: 

1. 𝐹𝑋1(𝑥1) = 𝑃(𝑋1 ≤ 𝑥1)  (definition of a cumulative distribution function) 

2. = 𝑃(𝑔(𝑋1) ≤ 𝑔(𝑥1))   (applying 𝑔(∙) to both sides, and noting that 𝑔(∙) is 

invertible, one-to-one and onto, and monotonically increasing) 

3. = 𝑃(𝑋2 ≤ 𝑥2)   (using 𝑋2 = 𝑔(𝑋1) and 𝑥2 = 𝑔(𝑥1)) 

4. = 𝐹𝑋2(𝑥2).   (definition of a cumulative distribution function) 

 

Therefore, the invertible function we are seeking is 𝑥2 = 𝑔(𝑥1) = 𝐹𝑋2
−1 (𝐹𝑋1(𝑥1)). For each 

germline, 𝐹𝑋(𝑥) and its inverse are both measurable from data, meaning the mapping between any 

pair of germlines is measureable. 

Using this approach, germ cell corpse positions from all germlines were transformed to their 

corresponding positions in a single germline. The particular germline used does not affect the 

result. The shape of 𝑅(𝑥) was estimated from these corpse positions the same way as 𝑓𝑋(𝑥), by 

kernel density estimation. This shape function for 𝑅(𝑥) was then transformed back to the arc length 

axis of each germline.  
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Note that the local source term 𝑆(𝑥) in Equation 1 of the main text can also be estimated in a 

similar fashion by identifying the positions of mitotically dividing cells in multiple germlines and 

registering the positions across germlines. Recent work suggests, though, that production 

throughout the mitotic region is roughly uniform (7). 

 

 

Figure S4: Estimation of 𝑅(𝑥). Assuming that the time rate at which cells undergo apoptosis at a 

given location is proportional to the frequency with which corpses are observed at that location, 

the shape of the spatially-dependent sink term 𝑅(𝑥) is the probability density function of cell 

corpse locations. A) Shows a schematic of a germline, where red cells are undergoing apoptosis. 

B) The histogram of cell corpse positions. With enough corpses, normalizing this histogram would 

give a good approximation of the shape of 𝑅(𝑥). Since there are not enough corpses in a single 

germline to estimate 𝑅(𝑥), corpse positions from multiple germlines must be aligned and pooled. 

C) Plotted in red is 𝑅(𝑥), estimated from 63 cell corpses pooled from 6 germlines and plotted 

against arc length position in a particular germline. The spatial dpMPK-1 profile from the same 

germline is shown in black. This shows that the peak rate of cell death occurs spatially (and 

temporally) after the peak of the dpMPK-1 pulse. 

 

Section S5: Error Analysis 

Uncertainty in 𝑓𝑋(𝑥) 

Assuming that we can measure germ cell arc length positions accurately, uncertainty in the 

probability density functions 𝑓𝑋(𝑥) for each germline can be approximated by their root mean 

squared error (RMSE) in the asymptotic limit of many samples. The mean squared error (MSE) of 

the estimate of 𝑓𝑋(𝑥) is the squared bias of the estimate (introduced by oversmoothing the true 

function) plus the variance of the estimate (introduced by estimating the function from a finite set 

of observations). When kernel density estimation is used to estimate probability density functions, 

the expression for the MSE is (8): 

𝛿𝑓𝑋(𝑥)
2 =

ℎ4(𝑓𝑋
′′(𝑥))

2

4
+

𝑅𝑓𝑋(𝑥)

𝑛ℎ
.    (S1) 
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The first term in the sum is the squared bias of the estimate of 𝑓𝑋(𝑥), and the second term is the 

variance of the estimate. ℎ is the bandwidth of the smoothing kernel used in the density estimation, 

and 𝑛 is the number of observations (here, the number of cells in a germline). 𝑓𝑋
′′(𝑥) is the second 

derivative of the density, meaning that regions of the density function with larger curvature are 

more difficult to estimate accurately. This quantity was calculated by fitting the estimates of 𝑓𝑋(𝑥) 
with splines (MATLAB csapi) and taking the second derivative of the spline (MATLAB fnder).  

Finally, 𝑅 is a property of the kernel function used in density estimation; for a kernel function 

𝑔(𝑢), 𝑅 = ∫ 𝑔(𝑢)2𝑑𝑢
∞

−∞
. Here, an approximately Gaussian kernel was used, for which 𝑅 =

1/2√𝜋. Technically, density estimation was done via solving a diffusion equation, which acts 

much like a Gaussian smoothing kernel, but with better estimates of the density near the boundaries 

of the domain. This expression for the MSE should overestimate the error of the estimate near the 

boundaries. 

 

Uncertainty in 𝑡(𝑥) 

Uncertainty in the estimates of 𝑡(𝑥) propagate from: uncertainty in 𝑓𝑋(𝑥), uncertainty in the values 

of the parameters in the model, and uncertainty in the shape of the apoptosis function 𝑅(𝑥). 

Uncertainty in the model parameters was accounted for by uniformly sampling the literature ranges 

for 𝑁𝑡𝑜𝑡, 𝑠, and the rate of ovulation (used to calculate 𝑟). Sampling was performed using a Latin 

Hypercube design (MATLAB’s lhsdesign) to generate 100,000 samples. The value of 𝜏 produced 

by each parameter combination was calculated; if the value of 𝜏 was outside of the literature 

reported range for 𝜏 (48-54 hrs (9)), then the parameter set was discarded. After this pruning, 

31,552 parameter sets remained. This collection of acceptable parameter sets was sampled from 

during the next step. 

To estimate the effect of uncertainty in the shape of the apoptosis function 𝑅(𝑥), 5,000 samples 

were bootstrapped per germline from the collection of corpse observations. The shape of 𝑅(𝑥) was 

calculated for each randomly-sampled set of corpses. Then, for each sample, a parameter set was 

drawn at random from the collection of acceptable parameter sets, with replacement. Finally, 𝑡(𝑥) 
was calculated for that set of corpses, that parameter set, and that germline. The result was 5,000 

estimates of 𝑡(𝑥) for each germline, the distribution of which accounted for uncertainty in the 

model parameters and the shape of 𝑅(𝑥). We denote the standard deviation of this distribution, as 

a function of x, 𝛿𝑡𝑏𝑜𝑜𝑡(𝑥).  

The total uncertainty in 𝑡(𝑥), for each germline, is given by: 

𝛿𝑡(𝑥)2 = 𝛿𝑡𝑏𝑜𝑜𝑡(𝑥)
2 + (

𝑑𝑡

𝑑𝑓𝑋
)
2

𝛿𝑓𝑋(𝑥)
2,   (S2) 

where 
𝑑𝑡

𝑑𝑓𝑋
 is, from Equation 5 in the main text, 

𝑑𝑡

𝑑𝑓𝑋
= ∫

𝑁𝑡𝑜𝑡

𝑠−∫ 𝑅(𝑢)𝑑𝑢
𝑤
0

𝑑𝑤
𝑥

0
, and 𝛿𝑓𝑋(𝑥) is the 

RMSE of 𝑓𝑋(𝑥). This quantity was calculated separately for each germline. 
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Figure S5: The collection of acceptable samples of 𝑁𝑡𝑜𝑡, s, and 𝑟. Colors correspond to the value 

of 𝜏, in hours, calculated from that parameter set, using Equation 7 of the main text. Axes limits 

are the ranges consistent with the literature. Using knowledge from the literature of all four 

parameters significantly reduces the volume of acceptable parameter combinations. The resulting 

region is called the feasible set (10). 

 

Uncertainty in MPK-1 activation dynamics 

Uncertainty in the dynamics of dpMPK-1 estimated from fixed samples arose from measurement 

uncertainty of the antibody staining and propagation of uncertainty from the time estimates. The 

measurement uncertainty was taken to be the standard deviation of the nuclear dpMPK-1 intensity 

measurements around the smoothed dynamics for that germline. If 𝑦(𝑡) is the fluorescence 

intensity of dpMPK-1 with respect to time and 𝛿𝑦𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is the measurement uncertainty, then the 

total uncertainty in 𝑦(𝑡) is: 

𝛿𝑦(𝑡)2 = 𝛿𝑦(𝑡)𝑚𝑒𝑎𝑠𝑢𝑟𝑒
2 + (

𝑑𝑦

𝑑𝑡
)
2

𝛿𝑡(𝑥)2,    (S3) 

where 𝑑𝑦 𝑑𝑡⁄  is the derivative of 𝑦(𝑡) with respect to 𝑡, and 𝛿𝑡 is the uncertainty in 𝑡. This 

derivative was calculated by fitting 𝑦(𝑡) with splines (MATLAB csapi) and taking the derivative 

(MATLAB fnder). This calculation was performed for each germline. 
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Figure S6: Sample 𝑡(𝑥) from a germline, plus and minus one standard deviation 𝛿𝑡(𝑥), which 

accounts for uncertainties propagated from errors in estimating 𝑓𝑋(𝑥), uncertainty in the parameter 

values, and uncertainty in the shape of 𝑅(𝑥). 

 

Section S6: Additional Figures  

 

Figure S7: dpMPK-1 fluorescence intensity versus normalized arc length (arc length divided by 

the total distance from the distal tip to the loop) for multiple germlines. The images were acquired 

in the same experiment, at a set microscope condition. Plotting this way does not cause the spatial 

dpMPK-1 profiles from multiple germlines to collapse. 
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Figure S8: The fold change in dpMPK-1 fluorescence intensity, relative to background levels, as 

a function of time. Background fluorescence was calculated by averaging the dpMPK-1 intensity 

in the mitotic and early meiotic region, where there should be much less active MPK-1 than in the 

pachytene region. 
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