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ABSTRACT The Caenorhabditis elegans germline is a well-studied model system for investigating the control of cell fate by
signaling pathways. Cell signals at the distal tip of the germline promote cell proliferation; just before the loop, signals couple
cell maturation to organism-level nutrient status; at the proximal end of the germline, signals coordinate oocyte maturation
and fertilization in the presence of sperm. The latter two events require dual phosphorylation and activation of ERK, the effector
molecule of the Ras/MAPK cascade. In C. elegans, ERK is known as MPK-1. At this point, none of today’s methods for real-time
monitoring of dually phosphorylated MPK-1 are working in the germline. Consequently, quantitative understanding of the
MPK-1-dependent processes during germline development is limited. Here, we make a step toward advancing this understand-
ing using a model-based framework that reconstructs the time course of MPK-1 activation from a snapshot of a fixed germline.
Our approach builds on a number of recent studies for estimating temporal dynamics from fixed organisms, but takes advantage
of the anatomy of the germline to simplify the analysis. Our model predicts that the MPK-1 signal turns on ~30 h into germ cell

progression and peaks ~7 h later.

INTRODUCTION

The Caenorhabditis elegans germline is a well-studied model
system for genetic studies of cell signaling (1-3). The adult
hermaphrodite germline consists of two U-shaped tubes that
meet at a common uterus. Each tube is filled with germ cells
spatially arranged according to their maturity (4). Stem cell
divisions at the distal tip of each tube (distal to the common
uterus) maintain the germ cell population as the more mature
cells move away from the distal tip and transition into meiosis
(5,6). After the loop, the bend in the U, a single-file line of
oocytes prepare for fertilization and ovulation. Here, we focus
on the anterior region of the germline, from the distal tip cell
until the loop (Fig. 1), where ~1000 germ cells line the periph-
ery of the gonad tube and are connected to a common cyto-
plasmic core called the rachis (7,8). Nuclei are separated by
incomplete cell membranes that are open to the rachis, so
the terms “nucleus” and “cell” in this region are essentially
interchangeable. Near the loop, a large portion of healthy
germ cells undergo apoptosis, which may leave more cyto-
plasmic material for the surviving cells that become oocytes
(9). In an adult hermaphroditic nematode, the germline rea-
ches steady state, maintaining a roughly constant number of
germ cells and ovulation rate for most of the organism’s repro-
ductive life (7,10).

Within the rachis are spatial gradients of effector mole-
cules that regulate germ cell development as they progress
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through the germline (1,2). Among the regulatory molecules
in the rachis is the extracellular signal-regulated kinase
(ERK), the terminal kinase of the Ras/mitogen-activated
protein kinase (MAPK) signaling cascade. The C. elegans
homolog of ERK is known as MPK-1 (2,11). In the pachy-
tene region of the germline, DAF-2 insulin-like signaling
activates the MAPK cascade when the organism is in a nutri-
tionally replete environment, resulting in MPK-1 becoming
dually phosphorylated (dpMPK-1) and catalytically active
(12); activation of MPK-1 then drives meiotic progression
and oocyte production. The ligand to the DAF-2 receptor
that results in activation of MPK-1 in the germline is un-
known as of this writing. In the proximal part of the germ-
line, MPK-1 activation by signals from sperm couples
oocyte maturation to sperm availability (10).

Active MPK-1 has numerous substrates that control mul-
tiple biological functions (13). Mutations that result in com-
plete loss of active MPK-1 cause germ cells to arrest in the
early pachytene stage of meiosis I. Reduction of MPK-1
activation results in multiple phenotypes, such as delayed
progression of pachytene stage germ cells and the formation
of excessively large oocytes (2). Alternatively, mutations
that overactivate MPK-1 result in higher and ectopic activa-
tion of MPK-1 in the loop region, causing defects in oocyte
growth and maturation (2). All of these mutations render the
animal infertile.

Clearly, the amplitude of the MPK-1 signal in the germline
is important for normal germ cell development. The duration
of MPK-1 signaling has also been shown to be important in
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FIGURE 1 An adult, hermaphrodite C. elegans germline. (A) Shows the
anterior region of the germline, from the distal tip (left in the image, marked
by an asterisk) through the first few cellularized oocytes (right in the im-
age). (B) Focuses on the germline from (A), but zoomed in only on the re-
gion from the distal tip to the loop. (Blue) Nuclei stained with DAPI.
Mitotic cells in the mitotic region undergo divisions that maintain the
germ cell population. As the cells divide and expand the mitotic region,
more mature cells are pushed toward the loop. (Green) Germ cells differen-
tiate in the transition zone, entering meiosis, marked by the HIM-3 protein.
HIM-3 labels the synaptonemal complex axis of the meiotic nuclei (53).
(Red) Activation of MPK-1, which occurs in the final two-thirds of the ante-
rior germline. Near the loop, a large fraction of arriving germ cells undergo
apoptosis (apoptotic cells in each color channel marked by white arrow-
heads). Surviving cells pass the loop and become oocytes. To see this figure
in color, go online.

other cell decision-making contexts, such as the proliferation
versus differentiation decisionin PC12 cells (14—-18), and may
also be arelevant factor in the germline. However, because ex-
isting methods for real-time monitoring of MPK-1 signaling
in living organisms are not yet working in the germline, quan-
titative information about the dynamics of this signal is not
available as of this writing (19-28). In the early Drosophila
melanogaster embryo, ERK activation dynamics were esti-
mated from fixed samples by matching morphological fea-
tures to developmental time (29-31). Here, we provide an
alternative method to quantitatively estimate MPK-1/ERK
activation dynamics in the C. elegans germline. Our approach
builds on recent work in cultured cells estimating dynamic in-
formation from static data (32,33). However, these studies
required molecular markers to order cells according to their
progress in the cell cycle; in the germline, cells are naturally
ordered in space. We take advantage of this anatomical feature
and develop a model-based computational approach for the
reconstruction of active MPK-1 dynamics in the distal germ-
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line (which we define here as the region from the distal tip cell
to the loop). While multiple mathematical models for germ
cell dynamics have been proposed (34-36), all of these simu-
late the stem cell programs in the distal region of the germline.
To our knowledge, this is the first model aimed at the quanti-
tative estimation of signaling dynamics in the germline from
fixed samples and that can be extended to multiple signaling
conditions and environmental contexts.

MATERIALS AND METHODS
Nematode fixation and staining

Wild-type N2 hermaphroditic animals were placed on NGM (normal
growth media (37)) plates seeded with OP50 Escherichia coli bacteria at
the fourth larval stage of development (L4) at 20°C for 24 h, and germlines
were extruded at the end of 24 h. Dissections were performed as described
in Arur et al. (13,38). Briefly, all dissections were performed under 5 min
(immediately after adding levamisole to render the animals immobile) to
achieve optimal dpMPK-1 staining. The dissected germlines were then
fixed in 3% paraformaldehyde for 10 min at room temperature, followed
by fixation in 100% methanol at —20°C for 1 h. The fixed germlines
were then processed for immuno-fluorescence staining via blocking in
30% Normal Goat Serum (in 1 x PBST with 0.1% TWEEN-20) for 1 h, fol-
lowed by incubation with anti-MAP Kinase antibody used at 1:200 (Clone
MAPK-YT; Sigma-Aldrich, St. Louis, MO) overnight in 30% Normal Goat
Serum at 4°C. Secondary antibodies were donkey anti-mouse Alexa Fluor
594. The secondary antibodies were used at 1:400. All germlines were
treated with the same staining solution in the same vial to mitigate anti-
body-staining variation, as described in Lee et al. (2).

dpMPK-1 staining was standardized using wild-type germlines and
germlines from an mpk-1 null allele, gall7, processed in the same tube
(2,12). gall7 was described in Lackner and Kim (39) and is an early
stop in the mpk-1 gene, resulting in no expression of the MPK-1 protein.
The MAPK-YT antibody was rigorously tested for specificity by multiple
laboratories against mpk-1(gall7) null mutant germlines (2,40). The stain-
ing conditions have been standardized such that the antibody does not
detect any signal in the mpk-1 null germline, but reproducibly detects the
two peaks of MPK-1 activation in wild-type N2 germlines.

Imaging

An Al confocal microscope with a Plan-Apo VC 60x Oil objective was
used for imaging germlines (Nikon, Melville, NY). Z-stacks, with 0.5 um
spacing between slices, were taken of the distal part of each germline.
A single z-stack did not fit the entire distal germline in the field of view. Mul-
tiple z-stacks taken along the length of a single germline were stitched
together using a custom MATLAB program (The MathWorks, Natick,
MA). The overlap position between a pair of overlapping z-stacks was found
by finding the position with the highest the normalized cross correlation be-
tween the DAPI images in the stacks (MATLAB normxcorr2).

Image segmentation and extracting fluorescence
data

Individual germ cells were detected in each DAPI image slice of the
stitched z-stacks using the two-dimensional (2D) circular Hough transform.
The built-in MATLAB function imfindcircles was used to implement this.
This approach was used because the germ cells took on irregular shapes
in 3D when pressed by the coverslip. However, within a slice they appeared
circular. As a result, the structure imposed by the 2D circular Hough trans-
form produced more accurate detection rates than other less structured
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methods, such as watershed-based methods. Before applying the Hough
transform, images were smoothed with a 3-pixel-wide Gaussian filter (im-
filter), eroded (imerode) with a 4-pixel disk structuring element (strel), and
reconstructed (imreconstruct), using the Gaussian-smoothed image as the
mask. The purpose of these preprocessing steps was to blur out intracellular
features, while leaving the circular cell shapes intact.

Within a slice, circles with projected area overlap above a threshold were
merged by keeping the circle containing the highest average DAPI fluores-
cence intensity among those overlapping and removing the others. Because
germ cells span multiple slices, a single germ cell would almost always be
identified in multiple slices. Therefore, multiple detections of the same
germ cell across slices had to be registered. This was done by starting
from the bottom (or top) slice, detecting circles in that slice, and then
assigning the mutually closest circle in the next slice to the same cell.
This was repeated until the last slice, with the maximum allowed extent
of a single cell being four slices.

To determine the effectiveness of the image segmentation code, three
germlines were manually segmented in Image] (National Institutes of
Health, Bethesda, MD) using the oval selection tool to circle cells in each
slice. The result of this process was a list of cells, the slices they appear in,
their 2D positions in each slice, and their radii in each slice. The automated
detections then had to be matched to corresponding manual detections. For
each manually detected cell, all automatically detected cells in the same slice
range were considered. It was visually determined that sometimes the auto-
mated segmentation code found that cells extended one slice above or below
the same cell in the manual segmentation, so the slice range for each manu-
ally detected cell was increased above and below by one slice.

Among the automatically detected cells in the same slice range as a given
manually detected cell, the one with the mutually closest 2D position (aver-
aged over slices) was found. A metric was then needed to decide whether this
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closest cell was actually the same cell as the manually detected one. Because
we knew the two cells were in the same slice range, we only considered their
projected areas. The metric used was the area of intersection of the 2D pro-
jections of the two cells divided by the area of their union. This metric is com-
mon in the object detection community and accounts for both the locations
and scales of the objects being compared (41,42). If the metric was above
a preset threshold (0.3), the automatically detected cell was considered to
be the same cell as the manually detected one. Otherwise, the manually de-
tected cell was considered to be undetected by the segmentation code. An
automatically-detected cell that was matched to a manually-detected one
could not be matched to any other manually detected ones. After cycling
through all of the manually detected cells, any cells that were automatically
detected but not assigned to a manually detected one were considered false
detections. Among the three manually segmented germlines, on average
the detector found 90% of the germ cells present, and of the ones detected,
97% were true positives. Images comparing the automated and manual de-
tections are provided in the Section S1 in the Supporting Material.

With the three-dimensional (3D) positions and radii of each germ cell,
fluorescence intensities could be extracted from z-stacks (Fig. 2). In some
cases, the segmentation code could detect faint DAPI signal even when
only the tip of a cell was present in a slice. The dpMPK-1 signal from
the cells in these slices was very weak and not representative of the actual
dpMPK-1 content of the cell. For this reason, the slice of maximum DAPI
intensity was determined for each cell, and the average nuclear dpMPK-1
intensity was measured only from that slice. If the dpMPK-1 signal in a
germline significantly decreased with slice depth due to photobleaching
during imaging, then only the signal from cells in the first few slices
were used to measure the dpMPK-1 spatial profile. Additionally, back-
ground fluorescence was subtracted from the dpMPK-1 profiles. In each
germline, background fluorescence was calculated by averaging the

FIGURE 2 Workflow of the image analysis for a
given germline. (A) Confocal fluorescence micro-
300  scope image of a DAPI-stained germline, extruded
from a wild-type, hermaphroditic adult nematode.
(White circles) Detected nuclei. Only the distal
200  part of the germline is shown. Scale bar is 21 wm.
(B) Nuclei detected from z-stack of the germline
in (A). (Black) The center line estimated for this
100  germline. Nuclei are colored by their arc length
position along the center line. At the distal tip
x = 0, and at the beginning of the 10op X = Xpax
0 (in this germline xp,x ~ 350 um). Germ cells are
assumed to move unidirectionally through the
germline with spatially-dependent velocity v(x).
(C) (Red color channel image) Germline in (A), cor-
responding to the dpMPK-1 antibody staining.
(Overlaid in white) Nuclei locations. (D) The nu-
clear mask in (B) was used to extract nuclear fluo-
rescence intensity of dpMPK-1 from (C) for each
germ cell. Plotted is dpMPK-1 fluorescence inten-
sity versus arc length position. (Black dots) Mea-
surements of dpMPK-1 intensity from each germ
cell. (Dark-red line) Smoothed average across cells;
(shaded region) average intensity =1 SD. To see
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Reconstructing ERK Signaling Dynamics

dpMPK-1 intensity in the mitotic and early meiotic region, where there
should be much less active MPK-1 than in the pachytene region. For
each experiment, ~6—10 intact germlines were imaged with the exact
same microscope settings, and each experiment was repeated at least three
times. The data was internally compared for consistency.

Finding the center line of the gonad tube

The scatter plot of individual cell positions in a single germline viewed
from a distance appears to be a one-dimensional curve. Diffusion Maps,
a nonlinear dimensionality reduction technique (43), essentially takes
advantage of this coarse perspective to order the germ cells according to
their positions along the one-dimensional curve, which in this case corre-
sponds to the center line of the gonad tube. More details about the Diffusion
Maps algorithm are given in the Supporting Material. Diffusion Maps is not
necessarily required to find the center line; we used it because it quickly
and robustly sorts cells by arc length along the center line. A user needed
to manually specify which end of the one-dimensional curve corresponded
to the distal tip. Once the cells had been ordered along the center line and
the distal tip had been chosen, the positions of germ cells within a local
neighborhood of each other were averaged, producing a noisy estimate of
the center line. Following the approach of Kafri et al. (32), the ordered
set of points was converted to spherical coordinates, and each of the three
ordered sets of coordinates was smoothed by taking moving averages using
MATLAB'’s smooth function. Converting back to Cartesian coordinates re-
sulted in a smooth estimate of the center line. Due to neighborhood aver-
aging, the center line estimated this way did not extend all the way to the
two ends of the distal germline. Each end of the center line was extended
in a straight line in the direction of the tangent to the center line at that
end. The center line was extended at each end until it intersected the plane
containing the distal- (or proximal-) most cell with normal vector parallel to
the direction in which the center line was being extended.

Estimating probability distribution functions

Germ cell positions were projected from 3D space onto the closest point on
the center line of the gonad tube to calculate their arc length positions.
Smooth probability density functions and cumulative distribution functions
were estimated in MATLAB using Z. Botev’s code kde, available on the
MathWorks website at: http://www.mathworks.com/central/fileexchange/
14034-kernel-density-estimator (44).

RESULTS
Transport model for the germline

In this section, we formulate a mathematical model of germ
cell transport along the germline. The prediction of this
model will be the average time it takes a germ cell to travel
from the distal tip to any given position in the germline. The
approach, much like models used to describe unidirectional
traffic flow (45), will be to estimate the local velocity as a
function of spatial position. If we were given the average ve-
locity of germ cells at each position, we could immediately
calculate the average transit times. Because we do not get
this information from fixed germlines, we will use our
model to express velocity in terms of quantities that are
measurable from fixed samples.

We will only consider distal-to-proximal motion and
neglect perpendicular motion because the length of the gonad
tube is much longer than its diameter. Position in the germline
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will be measured by arc length: if one were to measure the to-
tal distance driven down a winding road, that distance would
be the arc length of the road. Arc length position, x, will be
measured as distance in microns from the distal tip, with
x = 0 located at the distal tip. We aim to derive an equation
t(x) that describes the time it takes germ cells to travel from
the distal tip to each arc length position along the germline.

In this analysis, we focus only on the distal germline. The
approach described here for estimating time as a function of
arc length is statistical in nature and therefore benefits from
having as many cells as possible in the sample. In the prox-
imal germline, where oocytes are in single-file, there are
too few cells to make any meaningful estimates using this
approach.

We will only consider adult hermaphroditic organisms
(defined as 24 h past the fourth larval molt (L4)) with fully
developed germlines because these germlines have reached
steady state (7,10). Specifically, we assume that the number
of germ cells in the germline and the rate of oocyte ovula-
tion are constant over time (10). Young adults are in a state
of germline expansion, increasing their germ cell numbers.
By 24 h past the fourth larval molt, the germline switches to
a homeostatic mode, maintaining the number of germ cells
more or less constant (7,46). In normal laboratory condi-
tions at 20°C, this state lasts until ~72-90 h past L4
(12,47). Time course analysis of hermaphroditic germlines
assayed at 18, 20, 24, 36, and 48 h past the L4 stage of devel-
opment for dpMPK-1 activation suggests that the concentra-
tion gradients inside the germline are also time-invariant in
homeostatic adult germlines (12).

Next, we assume that germ cells move unidirectionally
through the germline, from which it follows that germ cells
are perfectly arranged according to their maturity. This is
not strictly true, but there is clear directionality to germ cells’
motion when looking at timescales on the order of hours, the
timescale over which germ cells develop. This assumption is
weakest in the mitotic region, where it is unclear whether
there is a mechanism that would prevent some cells from
moving unidirectionally down the germline, such as asym-
metric cell divisions (7), trapping by distal tip cell processes
(7,48), or diffusive motion created by random orientation of
the axes of cell divisions (36). We acknowledge that our
model does not account for effects like these. However, while
an individual cell could get trapped in the mitotic region for
an extended period of time before beginning unidirectional
motion toward the loop, this would only add a time delay
to the beginning of the time course of MPK-1 activation,
without otherwise changing the dynamics.

The final assumption we make is that in a wild-type germ-
line, germ cells undergo stereotypical dynamics, so that the
population-level dynamics are representative of an individ-
ual cell. With this, we assume that the time it takes each cell
to reach the loop is the same across cells.

The intuition behind the derivation is that the rate at
which cells arrive at each position must be balanced by
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the rate at which cells leave that position for there to be no
accumulation of cells at any position over time. We can
construct a balance on the number of cells arriving and leav-
ing an arbitrary arc length position:

dJ

0= —a—i—S(x)—R(x). )

Here, J(x) describes the number of cells per time that pass
through each position x and is known as the convective flux.
In this formulation, cell flux and cell flow rate are equiva-
lent. S(x) is a spatially dependent source term that accounts
for the production of cells by mitotic divisions, and R(x) is a
sink term that accounts for the removal of apoptotic cells
from the germline before they reach the loop. The average
rate at which cells are produced is s= [;™ S(x)dx cells
per hour, and, likewise, the average rate at which cells are
removed via apoptosis is 7= [;™ R(x)dx cells per hour.

We assumed that all new cells are introduced into the
germline at x = 0, reducing Eq. 1 to

dJ
0= — = R(), @
with cell production included as a boundary condition on the
flux at x = 0, J(x = 0) = 5. The left-hand sides of Egs. 1 and
2 correspond to the rate of accumulation of cells over time at
each position x, which is equal to zero under the steady-state
assumption.

The convective flux term can be expressed as J(x) = C(x)
v(x), where C(x) is the concentration of cells at x, and v(x)
is the average velocity of cells at x. We want to solve for
v(x). The concentration of cells can be expressed as
C(x) = Nyffx(x), where N, is the average number of
germ cells in the distal germline, and fx(x) is the probability
density function of germ cell arc length positions x (Fig. 3).
The concentration C(x) is a smoothed histogram of germ
cell positions, and fx(x) is the same but normalized so that
the area under the curve equals 1. We estimated the function
fx(x) empirically for each germline as follows: germ cells
were automatically detected in a z-stack of an extruded
germline using custom code written in MATLAB; the center
line of the germline was constructed; arc length positions of
cells in that germline were calculated; then fy(x) for that
germline was estimated from the collection of cell positions
using kernel density estimation, a standard technique for
empirically estimating probability distributions (44).

Solving the model

In this section we solve the transport model for v(x), the
average local velocity, and #(x), the average transit time to
each position along the gonad tube. First, we substitute
J(x) = Ny fx(x)v(x) for the convective flux term of Eq. 2.
Moving the convective flux term to the left-hand side and
integrating once gives
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where s, the rate of cell production, is the constant of inte-
gration that results from applying the boundary condition
J(x = 0) = s. Solving for v(x) gives

s — Jo R(u)du
Nloth(x) ’ @

v(x) =
We can draw an analogy here to unidirectional, steady-
state fluid flow in a pipe. In the pipe flow problem,
v(x) = Q(x)/A(x)—i.e., the average local velocity of fluid
elements equals the local volumetric flow rate divided by
the local cross-sectional area. The numerator of the
expression on the right-hand side of Eq. 4 is the local
cell flow rate (cells per unit time), analogous to the local
volumetric flow rate in a pipe (volume per unit time).
The cell flow rate at x = 0, where cells are produced by
mitotic divisions, equals s, and the second term in the
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FIGURE 3 (A) Schematic of a germline with a nonuniform distribution
of cells over arc length position x. (Red) Cells undergoing apoptosis.
(B) Histogram of germ cell arc length positions from (A). Smoothing this
histogram and normalizing by the total number of cells in the germline
would give an estimate of fx(x), the probability density function over arc
length positions. (C) A plot of fx(x), calculated from germ cell positions
in a real germline and overlaid on the normalized histogram of cell posi-
tions in that germline. (Shaded region) Mean estimate of fy(x) = the
root-mean-squared error of the estimate (54). To see this figure in color,
go online.



Reconstructing ERK Signaling Dynamics

numerator reduces the local cell flow rate as cells undergo
apoptosis. In the absence of cell death, the cell flow rate
everywhere in the germline would be constant and equal
to the production rate, s. The denominator of the expres-
sion, the local concentration of cells, is analogous to the
local cross-sectional area in the pipe flow case.

The velocity v(x) is the time rate of change of a cell’s
position x, or v(x) = dx/dt. Separating the variables
x and ¢, giving dt = dx/v(x), and then integrating, produces

[ M)

0

The variables u# and w are dummy variables of integration.
The lower bound of the outer integral on the right-hand side
is zero because at x = 0, = 0. The average time cells take to
transit from the distal tip at x = O to the loop at x = X, Will
be denoted 7.

Factoring out N/s from Eq. 5 shows that there are essen-
tially two lumped parameter combinations that govern the
behavior of #(x): the ratios Ny/s and r/s. After factoring,
the equation becomes

[ fw)

N
t(x) = ﬂ/7CZW7 (6)
S 1= R(u)du

where R (x) is a dimensionless function with the same shape
as R(x) and, as mentioned in the previous section, r is the
average rate at which cells undergo apoptosis. The first ratio,
Nyod/s, 1s the total number of cells in the germline divided by
the cell production rate and has units of time. In the absence
of apoptosis, the average transit time from the distal tip to
the loop would be equal to N/s. The second ratio, r/s, is
the fraction of germ cells that undergo apoptosis and is
dimensionless. Ny/s gives the scale of #(x) but does not
affect its shape, which is determined by the expression in-
side the integral.

In practice, fx(x) was estimated for each germline and
R(x) was calculated by pooling data from multiple germ-
lines. Estimation of R(x), which accounts for germ cell
apoptosis and removal from the germline, required pooling
data from multiple germlines and is described in the Sup-
porting Material (Sections S3 and S4). The same values of
the parameters N, s, and r, were used for all germlines. In
particular, N, and s have strong opposing effects on the
model’s predictions; as a result, using a value of N,
from an individual germline and the average value
for s would give biased results. During the error analysis
(Section S5 in the Supporting Material), the parameters
Nyoo» S, and r were sampled uniformly within ranges consis-
tent with the literature to propagate parameter uncer-
tainties through the model, which will be discussed in
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the next section. The trapezoidal rule was used to approx-
imate all integrals.

Exploring the feasible space of physiological
parameters

The model contains one equation and four physiological
parameters: Ny, the average number of cells in a germline
at any given time once adulthood is reached; s, the average
rate of cell production; r, the average rate of cell removal by
apoptosis; and 7, the average time cells take to travel from
the distal tip to the loop. The steady-state assumption pro-
vides an equation relating these physiological parameters,
meaning their values are no longer entirely independent of
each other. Evaluating the indefinite integral in Eq. 6 at
X = Xmax, Where #(xp,.x) = T gives

Xmax

_Ntot/
=<
N

0

fx(w) dw.

- o=, . 7
1—2 " R(u)du @

The density function fx(x) is measurable for each individ-
ual germline, and R (x) can be estimated by pooling data
from multiple germlines. This leaves only the physiological
parameters as unknowns in the equation. Additionally,
choosing values for three of the parameters constrains the
value of the fourth.

Previous studies have estimated ranges for these ph-
ysiological parameters from data on wild-type animals.
The total number of cells in an adult hermaphroditic germ-
line is ~800-1000 cells (7). The cell production rate by
mitotic divisions, s, has been reported to be between 16
and 24 cells per hour (7,49). An engulfment marker shows
that in wild-type animals, each gonad arm contains 24
apoptotic cells at a given time (50). However, the time rate
of cell death, per se, has not been precisely measured. Under
the steady-state assumption, the rate of cell removal via
apoptosis, r, must equal the difference between the rate of
cell production, s, and the rate of cell removal via ovulation.
The latter has been estimated to be between 2 and 5 cells per
hour per gonad arm (10). Therefore, a consistent estimate for
the rate of cell death, r, lies between 11 and 22 cells per hour.
Finally, pulse-chase experiments suggest that 7 lies between
48 and 54 h (51).

Although there are only three independent physiological
parameters after applying Eq. 7, we have information about
all four parameters. To capitalize on this, we sampled the
parameters Ny, s, and r uniformly within the literature-re-
ported ranges, then discarded all parameter combinations
for which the value of 7, calculated using Eq. 7, was outside
of the range consistent with the literature. This procedure
carved out a sliver in the 3D parameter space consist-
ing of the parameter combinations that are consistent with
contemporary knowledge (52). This collection of consistent
parameters is called the “feasible set”.
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Model predictions

With Eq. 6 and the feasible set of parameters, we were able
to calculate, for each germline, a prediction of the transit
time to each position along that germline, #(x). These
maps from position to time were used to transform the
spatial profiles of dpMPK-1 fluorescence intensity to dy-
namic profiles for each germline. Essentially, dpMPK-1 in-
tensity at each position in a germline was plotted against the
time at which cells arrive at that position. The result was a
picture of the time course of MPK-1 signaling that germ
cells experience/produce as they move through that germ-
line (Fig. 4). Doing this for multiple germlines allowed us
to compare signaling dynamics across germlines.
Comparing the estimated time courses of dpMPK-1 from
multiple germlines shows that they approximately collapse.
It was not obvious a priori that this would be the case from
the raw spatial profiles of dpMPK-1. Additionally, naively
plotting dpMPK-1 intensity against normalized arc length
for each germline does not cause the profiles to collapse
(Fig. S5 in the Supporting Material). The collapse of these
curves suggests that, despite varying geometries and
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FIGURE 4 (A) Raw spatial profiles of dpMPK-1 fluorescence intensity,
¥(x), in six germlines from a single experiment, imaged under identical con-
ditions. (B) For each germline, the function #(x) relating arc length positions
to the transit times to reach those positions was estimated using Eq. 5.
Plotted are the results of transforming the spatial dpMPK-1 profiles in
(A) into average time courses of dpMPK-1 seen by traveling cells. To see
this figure in color, go online.
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dpMPK-1 gradients among germlines, germ cells see stereo-
typical dynamics of MPK-1 activation during meiotic
progression.

The average time at which germ cells in different germ-
lines first begin to be exposed to active MPK-1 (30.5 h,
SD 1.5 h) and the time of peak dpMPK-1 concentration
(mean 37.7 h, SD 1.8 h) are very similar across germlines.
These averages were taken over all germlines and all param-
eter combinations in the feasible set. The uncertainties are
dominated by the uncertainty in the rate of apoptosis, r.
Future experiments that constrain the range of possible
values for the parameter r will dramatically reduce the un-
certainty of this model’s estimates.

The model also makes quantitative predictions about
the relationships between physiological parameters in an
animal. From Egs. 6 and 7, one can immediately see
that because ratios of physiological parameters govern
the behavior of #(x), numerous values of the individual pa-
rameters Ny, S, and r can give rise to the same dynamics
in the germline. Additionally, looking at the dependence
of T = t(xnax), the average transit time from the distal
tip to the loop, on the lumped parameter ratios is also
informative (Fig. 5). In a situation where the rate of ovula-
tion decreases, germ cells will subsequently spend more
time in the region distal to the loop. To maintain steady
state, the animal’s physiological parameters must change.
According to the model, steady state can be achieved by:
1) decreasing the rate of cell production, s; 2) increasing
the number of cells in the distal region Ny; or 3)
increasing the rate of apoptosis, . The quantitative model
predictions are therefore in line with qualitative intuitions.

Thus, during the first wave of MPK-1 activation in the
germline, each of the developing germ cells is exposed to
high levels of MPK-1 signaling for several hours, during
which MPK-1 activation is translated into changes in a large

0.9
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FIGURE 5 Dependence of 7, the average transit time from the distal tip
to the loop, on the two lumped parameter ratios in the model. The first,
Nioi/s, 1s the ratio of the number of cells in the germline to the cell produc-
tion rate. The second, #/s, is the ratio of the rate of apoptosis to the cell pro-
duction rate, or the fraction of cells that undergo apoptosis. To see this
figure in color, go online.




Reconstructing ERK Signaling Dynamics

number of processes, including apoptosis, meiotic progres-
sion, and membrane biogenesis.

DISCUSSION

Cell fate decision processes rely on the joint dynamics of
multiple molecular players. Some of these species may be
difficult to follow in real-time, calling for approaches for
reconstructing dynamics based on snapshots from fixed
samples. In the Drosophila melanogaster embryo, cell
signaling and gene induction dynamics were estimated
from fixed samples by matching embryo morphology to
time (29-31). Additionally, a number of recent articles
demonstrated that for a stationary process, in which cells
progress unidirectionally through a sequence of states,
average dynamics can be reconstructed from fixed cells.
For instance, Kafri et al. (32) used data from a population
of unsynchronized, fixed vertebrate cultured cells to recon-
struct the average growth dynamics of an individual cell. In
this work, each cell was labeled for DNA and Geminin (a
protein degraded during mitosis), and this pair of signals
provided a quantitative measure of cell cycle progression
for each cell. The large numbers of cells available to them
in each experiment enabled estimation of cell size distribu-
tions throughout the cell cycle and revealed a feedback
mechanism that reduces the variability in cell sizes. A
similar approach was used by Akopyan et al. (33) to recon-
struct the dynamics of the mitotic entry network. In both of
these studies, reconstruction of dynamics from snapshots
relied on the introduction of some measure of progress,
which was critical for temporal ordering of data from mul-
tiple individual cells. While this step is essential for a data-
set extracted from cells that are independent of each other, it
is not necessary for data from cells within the germline,
where the arc length provides a natural ordering coordinate.

Assuming that the number and spatial arrangement of cells
are invariant over time, we derived a transport model, in
which cells move similar to cars on a packed highway, to
relate arc length, rather than the cell state, to time. In doing
so, we used literature estimates of the physiological parame-
tersin the germline (7,10,49,51). Finally, we pooled data from
multiple germlines to estimate the average local rates of cell
death. This led to the average time course of ERK activation
within a developing germ cell. Looking at this pulse, one can
ask, what controls the onset of ERK activation, its amplitude,
and duration? It is known that this phase of ERK signaling re-
lies on a spatially uniform insulin receptor, but the relevant
ligand and the mechanisms responsible for the intracellular
control of the duration of ERK activation are still unknown.
As the molecular candidates for controlling these processes
are proposed, such as a localized extracellular ligand, our
approach can be used to probe their quantitative contributions
to multiple aspects of ERK signaling.

The estimates derived from our model-based approach
of cell transit times and ERK activation dynamics remain
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to be verified by data from studies with live reporters of
ERK activation. At this point, these estimates provide the
only available insight into the dynamics of a key regulatory
signal in one of the most advanced experimental systems
for studies of cell fate decisions. As measurements of the
physiological parameters in the model become more precise,
the model may be updated and its uncertainties reduced.
Applying this approach to germlines at other steady states un-
der altered conditions is relatively straightforward. Changes
in the rate of cell division, rate of cell death, total number of
cells, or time cells take to reach the loop can cause germlines
to operate at different steady states. These alternative steady
states can be achieved in the lab setting by changing the envi-
ronmental conditions (temperature, crowding, or presence of
anoxious substance) or by introducing genetic perturbations.
However, for analysis of mutant backgrounds, the assump-
tions that the germline is at steady state, that the dpERK
gradient is time-invariant, and that the distribution of germ
cells is not changing over time, must be verified. Addition-
ally, at least three of the four physiological parameters for
that mutant background must be measured to apply to the
model to alternative steady states: the average rate of cell pro-
duction, the average number of cells in the germline, the
average rate of apoptosis, and the average time cells take to
travel from the distal tip to the loop.
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SUPPORTING MATERIAL

Section S1: Comparison of Manual and Automated Image Segmentation




Figure S1: Detection of germ cells in z-stacks of germlines. Each row is an image of the same
germline taken at a different depth. The distal tip is at the bottom-left of each image. The green
circles in the left column are the cells that were correctly identified by the automatic segmentation
algorithm, and the orange circles are the corresponding manually-segmented cells. Green circles
without an orange partner correspond to cases in which the cell was first detected in that slice by
the automatic segmentation algorithm, but first detected in the slice above or below that one by
the manual segmentation. The red circles in the right column are the objects that were incorrectly
identified as cells by the automatic segmentation, while the orange circles are the cells that were
identified by the manual segmentation but not by the automatic one.



Figure S2: Zoomed-in regions of the images in Figure S1. Circle colors have the same meaning
as in Figure S1. The second row is zoomed in on the distal tip. The third row is zoomed in on the
pachytene region, just before the loop.



Section S2: Diffusion Maps Algorithm for Ordering Cells along the Center Line

In the Diffusion Maps algorithm (1), a random walk is constructed over a set of data points, with
hopping probabilities between pairs of points determined by their pairwise distances and a kernel
function. Here, the data points were the positions of the germ cells in a single germline. When the
data points lie on a lower-dimensional manifold, the algorithm produces a robust ordering of the
data along its principal nonlinear axis (or axes) on the manifold. In the case of the germline, the
germ cells essentially lie on a 1D manifold, the center line of the germline. The algorithm was
implemented using custom MATLAB code.

First, weights between data points (germ cell positions) were calculated by passing their pairwise
distances through a Gaussian kernel function. Weights between data points are related to the
probability of a random walker jumping from one of those data points to the other, with higher
weights corresponding to higher hopping probabilities. The width of the Gaussian kernel
determines the relevant scale of hopping. If the kernel width is much smaller than even the smallest
distance between cells, then all weights between data points will be near zero, and a random walker
cannot jump between any pair of data points. As the width is increased from zero, there is a scale
at which the data appear 3D, then 2D, then 1D. At the 2D scale, a hopper can jump across the
entire depth of the flattened germline in one jump, but not the diameter or length of the germline.
At the 1D scale, the hopper can jump across the entire diameter of the germline in one jump, but
not the length of the germline. If the kernel width is larger than the entire germline, all weights
between data points will be close to one, and a random walker can jump between any two data
points, no matter how far apart they are in space. At this scale, the data is essentially zero-
dimensional from the point of view of the hopper, all collapsing to a single point. Previous work
has developed an automated way of choosing the kernel width (2, 3). In practice, Diffusion Maps
is not sensitive to the precise value of the kernel width, as long as it is in the correct dimensionality
regime. We chose the kernel width for each germline so that the data “appeared” one-dimensional
to a random walker.

The weights were then assembled into a symmetric matrix, with entry (i, j) containing the weight
between germ cell i and germ cell j. The rows were normalized so that the sum of each row equaled
one. This normalized matrix can be interpreted as a Markov transition matrix, with entry (i, j)
containing the probability of a hopper located at data point i jumping to data point j in one time
step. As the number of data points approaches infinity, the eigenvectors of this Markov matrix
approach the eigenfunctions of the Laplace (diffusion) operator with Neumann (reflecting)
boundary conditions (2). The first eigenvector of this matrix is a vector of ones, and contains no
information. The first nontrivial eigenvector is one-to-one with and parameterizes the principal
nonlinear axis of the data, the center line of the gonad tube. Element i of this eigenvector is
associated with germ cell i; therefore, the monotonic ordering of the elements gives the ordering
of the cells according to their positions along the center line. Diffusion Maps does not give the arc
length positions of the cells, only their ordering.

Section S3: Estimating the Apoptosis Term, R(x)



Evaluation of Equation 5 of the main text requires an expression for R(x), which accounts for cell
death in the germline. It is common to observe several germ cells undergoing apoptosis in a given
fixed germline. Apoptotic germ cells are recognizable because their chromatin condenses and they
undergo cellularization (4, 5). The former causes the cells to exhibit strong fluorescence when
stained for DNA, while the latter causes the cells to exhibit essentially no fluorescence when
stained for dpMPK-1 (Figure S1). From the time that a germ cell first shows symptoms of
apoptosis to the time that the cell is removed from the germline by sheath cells is about 1 hour (4).
In this time, a dying germ cell can only travel about one cell diameter before being cleared from
the germline (6). As a result, the frequency at which cell corpses are observed at a given position
is essentially the same as the frequency at which cells undergo apoptosis at that position.

Figure S3: Image of the loop region of a C. elegans germline. Apoptotic cells (denoted by white
arrowheads) are recognizable by their strong DAPI signal and lack of dpMPK-1 signal.

By this argument, we assumed that the death/clearance rate R(x) is proportional to the number of
cell corpses observed at x. We can decompose R(x) into a shape function times a constant of
proportionality that determines its scale. Under our assumptions, the shape function is given by
the probability distribution of cell corpse locations (Figure S2). The constant of proportionality is
r, the total rate of cell death, which can be estimated from data in the literature, as discussed in the
main text. Note that the source term S(x) could be estimated in a similar manner by looking at the
relative frequency of cell divisions as a function of arc length across germlines, but this was not
explored here.

However, in a given germline there are too few corpses to estimate the shape of R(x) accurately.
To address this, we pooled corpse counts from multiple fixed germlines to estimate the average
shape of R(x) over multiple germlines. The pooling process, itself, requires aligning spatial
positions across different germlines. Here we will describe a method for registering arc length
positions across different germlines. This is the only part of our approach that requires averaging
across germlines.



Section S4: Registering Arc Length Positions across Germlines

Since there are so few cell corpses in a given germline, we need to estimate the shape of R(x)
from multiple germlines. Germlines come in different sizes, so pooling corpse positions across
germlines requires that arc length positions in different germlines be registered or transformed to
a common axis. Registering positions between two germlines is equivalent to determining an
invertible function that maps positions in one germline to corresponding positions in the other. We
assume that germ cells at “corresponding positions” are at the same developmental maturity, are
the same age, and have spent the same amount of time in their respective germlines. Under the
assumption that germ cells are arranged according to their maturity, this invertible function exists.
The mapping will locally stretch or compress positions in one germline, like an accordion, to match
the corresponding positions in the other. There will be a different mapping between each pair of
germlines.

If x; refers to arc length positions in the first germline and x, refers to those in the second. The
goal is to estimate an invertible function that maps x, to x,, i.e. x, = g(x;) and x; = g~ 1(x,). In
the Derivation section, we introduced the probability density of germ cell arc length positions,
fx(x), which quantifies the local “concentration” of germ cells in a particular germline. A related
quantity is the cumulative distribution of arc length positions, Fy(x), which quantifies the
cumulative fraction of germ cells located at or before x.

Since x; and x, are related by an invertible function, their cumulative distributions must satisfy:

Fx, (x1) = Fx, (x3). (S1)
Proof of Equation S1.:
1 Fx,(x) =P(X; < xq) (definition of a cumulative distribution function)
2. =P(gXy)) <g(x)) (applying g(-) to both sides, and noting that g(-) is
invertible, one-to-one and onto, and monotonically increasing)
3. =P(Xz<x3) (using X, = g(X;) and x; = g(x1))
4. = Fy,(x3). (definition of a cumulative distribution function)

Therefore, the invertible function we are seeking is x, = g(x;) = FX‘Z1 (FXl(xl)). For each

germline, Fx(x) and its inverse are both measurable from data, meaning the mapping between any
pair of germlines is measureable.

Using this approach, germ cell corpse positions from all germlines were transformed to their
corresponding positions in a single germline. The particular germline used does not affect the
result. The shape of R(x) was estimated from these corpse positions the same way as fx(x), by
kernel density estimation. This shape function for R (x) was then transformed back to the arc length
axis of each germline.



Note that the local source term S(x) in Equation 1 of the main text can also be estimated in a
similar fashion by identifying the positions of mitotically dividing cells in multiple germlines and
registering the positions across germlines. Recent work suggests, though, that production
throughout the mitotic region is roughly uniform (7).
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Figure S4: Estimation of R(x). Assuming that the time rate at which cells undergo apoptosis at a
given location is proportional to the frequency with which corpses are observed at that location,
the shape of the spatially-dependent sink term R(x) is the probability density function of cell
corpse locations. A) Shows a schematic of a germline, where red cells are undergoing apoptosis.
B) The histogram of cell corpse positions. With enough corpses, normalizing this histogram would
give a good approximation of the shape of R(x). Since there are not enough corpses in a single
germline to estimate R(x), corpse positions from multiple germlines must be aligned and pooled.
C) Plotted in red is R(x), estimated from 63 cell corpses pooled from 6 germlines and plotted
against arc length position in a particular germline. The spatial dpMPK-1 profile from the same
germline is shown in black. This shows that the peak rate of cell death occurs spatially (and
temporally) after the peak of the dpMPK-1 pulse.

Section S5: Error Analysis
Uncertainty in fx(x)

Assuming that we can measure germ cell arc length positions accurately, uncertainty in the
probability density functions fy(x) for each germline can be approximated by their root mean
squared error (RMSE) in the asymptotic limit of many samples. The mean squared error (MSE) of
the estimate of fy(x) is the squared bias of the estimate (introduced by oversmoothing the true
function) plus the variance of the estimate (introduced by estimating the function from a finite set
of observations). When kernel density estimation is used to estimate probability density functions,
the expression for the MSE is (8):

r 2
n*(rx" () L REx@
4 nh

Ofx(x)? = (S1)



The first term in the sum is the squared bias of the estimate of fyx(x), and the second term is the
variance of the estimate. h is the bandwidth of the smoothing kernel used in the density estimation,
and n is the number of observations (here, the number of cells in a germline). £y (x) is the second
derivative of the density, meaning that regions of the density function with larger curvature are
more difficult to estimate accurately. This quantity was calculated by fitting the estimates of fy (x)
with splines (MATLAB csapi) and taking the second derivative of the spline (MATLAB fnder).
Finally, R is a property of the kernel function used in density estimation; for a kernel function

g, R = ffzog(u)zdu. Here, an approximately Gaussian kernel was used, for which R =

1/2+/m. Technically, density estimation was done via solving a diffusion equation, which acts
much like a Gaussian smoothing kernel, but with better estimates of the density near the boundaries
of the domain. This expression for the MSE should overestimate the error of the estimate near the
boundaries.

Uncertainty in t(x)

Uncertainty in the estimates of t(x) propagate from: uncertainty in fy (x), uncertainty in the values
of the parameters in the model, and uncertainty in the shape of the apoptosis function R (x).

Uncertainty in the model parameters was accounted for by uniformly sampling the literature ranges
for N¢,¢, s, and the rate of ovulation (used to calculate ). Sampling was performed using a Latin
Hypercube design (MATLAB’s Ihsdesign) to generate 100,000 samples. The value of T produced
by each parameter combination was calculated; if the value of t was outside of the literature
reported range for t (48-54 hrs (9)), then the parameter set was discarded. After this pruning,
31,552 parameter sets remained. This collection of acceptable parameter sets was sampled from
during the next step.

To estimate the effect of uncertainty in the shape of the apoptosis function R(x), 5,000 samples
were bootstrapped per germline from the collection of corpse observations. The shape of R(x) was
calculated for each randomly-sampled set of corpses. Then, for each sample, a parameter set was
drawn at random from the collection of acceptable parameter sets, with replacement. Finally, t(x)
was calculated for that set of corpses, that parameter set, and that germline. The result was 5,000
estimates of t(x) for each germline, the distribution of which accounted for uncertainty in the
model parameters and the shape of R(x). We denote the standard deviation of this distribution, as
a function of X, 8ty (X).

The total uncertainty in t(x), for each germline, is given by:

2 2 at \2 2
BEE)? = Sthoot (2 + (37=) Sfx (02, (S2)
where -2 is, from Equation 5 in the main text &z fx—N“’t dw, and & fx (x) is the
dfyx Ydfx 70 s—[Rwau X

RMSE of fyx(x). This quantity was calculated separately for each germline.
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Figure S5: The collection of acceptable samples of N;,;, s, and r. Colors correspond to the value
of t, in hours, calculated from that parameter set, using Equation 7 of the main text. Axes limits
are the ranges consistent with the literature. Using knowledge from the literature of all four
parameters significantly reduces the volume of acceptable parameter combinations. The resulting
region is called the feasible set (10).

Uncertainty in MPK-1 activation dynamics

Uncertainty in the dynamics of dpMPK-1 estimated from fixed samples arose from measurement
uncertainty of the antibody staining and propagation of uncertainty from the time estimates. The
measurement uncertainty was taken to be the standard deviation of the nuclear qpMPK-1 intensity
measurements around the smoothed dynamics for that germline. If y(t) is the fluorescence
intensity of dpMPK-1 with respect to time and §y,,0qsure 1S the measurement uncertainty, then the
total uncertainty in y(t) is:

6Y()? = 8y (heasure + () 5t(x)?, (3)

where dy/dt is the derivative of y(t) with respect to t, and &t is the uncertainty in t. This
derivative was calculated by fitting y(t) with splines (MATLAB csapi) and taking the derivative
(MATLARB fnder). This calculation was performed for each germline.
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Figure S6: Sample t(x) from a germline, plus and minus one standard deviation &t(x), which
accounts for uncertainties propagated from errors in estimating fx (x), uncertainty in the parameter
values, and uncertainty in the shape of R(x).

Section S6: Additional Figures
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Figure S7: dpMPK-1 fluorescence intensity versus normalized arc length (arc length divided by
the total distance from the distal tip to the loop) for multiple germlines. The images were acquired
in the same experiment, at a set microscope condition. Plotting this way does not cause the spatial
dpMPK-1 profiles from multiple germlines to collapse.
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Figure S8: The fold change in dpMPK-1 fluorescence intensity, relative to background levels, as
a function of time. Background fluorescence was calculated by averaging the dpMPK-1 intensity
in the mitotic and early meiotic region, where there should be much less active MPK-1 than in the
pachytene region.
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