SUPPORTING MATERIAL

Pressure and Temperature Effects on the Activity and Structure of the Catalytic Domain of Human MT1-MMP

Elena Decaneto,^{1,3} Saba Suladze,² Christopher Rosin,² Martina Havenith,³ Wolfgang Lubitz,¹ and Roland Winter²

¹Max Planck Institute for Chemical Energy Conversion, Mülheim a. d. Ruhr, Germany; ²Department of Chemistry and Chemical Biology, Physical Chemistry, Technische Universität Dortmund, Dortmund, Germany; ³Department of Physical Chemistry II, Ruhr-University Bochum, Bochum, Germany.

Pressure effect on the rate constant

Fig. S 1 Pressure-dependent activity measurements for the hydrolysis of a collagen-like peptide by the catalytic domain of MT1-MMP. The signal detected corresponds to the relative fluorescence intensity as a function of time at 25 °C (left) and 37 °C (right). Reaction slopes exhibited nearly linear behavior during the course of the reaction, implying saturating enzyme concentration with substrate.

Fig. S 2 Pressure dependence of the enzymatic activity of MT1-MMP at 25 °C (298 K) and 37 °C (310 K). k_{cat}/k_0 corresponds to the ratio between the rate constant at pressure *p* and the rate constant at atmospheric pressure (1 bar).

Assuming a pressure-induced displacement of a conformational equilibrium between two conformational states, $A \rightleftharpoons B$, of the enzyme with different activity, data were fitted with the integral form of the equation for the pressure-dependence of the equilibrium constant, K_{eq} (1,2):

$$K_{\rm eq} = \frac{[A]}{[B]} = e^{(p_{1/2} - p)\Delta V^{\circ}/RT}$$

Since k_{cat}/k_0 can be assumed to be proportional to the fraction of MT1-MMP in the most active conformation of the enzyme, x_A , we can write:

$$x_A = \frac{[A]}{[A] + [B]} = \frac{1}{1 + e^{-(p - p_{1/2})\Delta V^{\circ}/RT}}$$

The values of the pressure-induced standard molar volume change, ΔV° , and the "half pressure" of the conversion, $p_{1/2}$, at which [A] = [B], amounts to $\Delta V^{\circ} = -93 \pm 6 \text{ mL mol}^{-1}$ and $p_{1/2} = 1080 \pm 25$ bar ($r^2 = 0.9998$) at 37 °C and $\Delta V^{\circ} = -85 \pm 10 \text{ mL mol}^{-1}$ and $p_{1/2} = 1475 \pm 60$ bar ($r^2 = 0.997$) at 25 °C, respectively.

Temperature and pressure effect on secondary structure

Figures S 3 and S 4 display the temperature-dependent changes of the FSD and 2^{nd} derivative spectra of the amide I' band of MT1-MMP. The FSD spectrum of the native protein (Fig. A, blue lines) exhibits nine peaks corresponding to nine underlying secondary structure elements, approved by the 2^{nd} derivative spectra (Table 4 in the main article for assignment). Therefore, nine Gaussian shaped bands were fitted to the temperature dependent data revealing information about changes in secondary structure elements while temperature is increased.

Fig. S 3 (**A**) FSD (solid lines) and 2^{nd} derivative (dashed lines) spectra of the amide I' band of MT1-MMP (20 °C in blue and 90 °C in red). (**B**) Amide I' band of MT1-MMP at 20 °C (black filled circles) and fitted curve (red line) generated by the superposition of the underlying Gaussian shaped subbands.

Fig. S 4 (**A**) FSD (solid lines) and 2^{nd} derivative (dashed lines) spectra of the amide I' band of MT1-MMP (pressure of 1 bar in blue and 11 kbar in red). (**B**) Amide I' band of MT1-MMP at 1 bar (black filled circles) and fitted curve (red line) generated by the superposition of the underlying Gaussian-shaped subbands.

Fig. S 5 Van't Hoff plots constructed from the temperature-dependence of the equilibrium constant for the structural transition at 1667 (β -turn, black) and 1631 cm⁻¹ (β -sheet, red). Data were fitted with $\ln K = -\Delta H/RT + \Delta S/R$ where *R* is the gas constant. The linear correlation coefficients correspond to r = 0.989 (β -turn, black) and r = 0.982 (β -sheet, red), respectively.

Fig. S 6 Van't Hoff plots constructed from the temperature-dependence of the equilibrium constant for the structural transition at 1641 cm⁻¹ (α -helix). The linear correlation coefficient corresponds to *r* = 0.978.

Supporting References

- 1. Weber G. 1992. Protein interactions. Chapman and Hall, New York.
- Sineva E. V. and D. R. Davydov. 2010. Cytochrome P450 from Photobacterium profundum SS9. A piezophilic bacterium exhibits a tightened control of water access to the active site. *Biochemistry* 49:10636-10646.