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SUPPLEMENTARY INFORMATION 1: GENETIC VARIANCE COMPONENTS AND 

HERITABILITY OF HETEROZYGOSITY AS A FUNCTION OF VARIANCE IN 

ALLELE FREQUENCIES AND MEAN HETEROZYGOSITY 

Variance in allele frequencies 

In the main text we have shown how   
 ,    

 ,    
 , and    for heterozygosity are functions of 

allele frequencies alone. Here we explore how allele frequencies, and in particular their variance, 

shape genetic variance components and the heritability of heterozygosity. Using   

∑   
 
    ⁄    ⁄  for the mean allele frequency and assuming we know the true allele 

frequencies    (i.e. we are not dealing with sampling variance), the variance in allele frequencies 

(      ) within a population (Crawley 2007, page 52) is calculated as 
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            , and some rearrangements, we get 
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Some further rearrangements show that 
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Substituting equation S1.1 into equation 5b yields 
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  (S1.2) 

In equation 5a we have already shown that genetic variance in heterozygosity is a function of the 

allele frequencies only. If we prefer to use variance in allele frequencies rather than actual allele 

frequencies, equation S1.2 clarifies that genetic variance in heterozygosity is a quadratic function 

of only the variance in allele frequencies and the number of alleles. In other words, knowledge of 

the variance in allele frequencies in a population and the number of alleles is sufficient to predict 

variance in heterozygosity. 

Following the same approach for additive genetic variance and substituting equation S1.1 into 

equation 2 yields 
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)  (S1.3) 

Equation S1.3 shows that additive genetic variance is again a quadratic function of the variance 

in allele frequencies and the number of alleles, but also of actual allele frequencies. Thus, 

additive genetic variance in heterozygosity is only partly determined by the variance in allele 

frequencies and the number of alleles. Because the variance in allele frequencies (which, like any 

summary statistic, loses some information about the underlying data) is similar for certain 

combinations of quite dissimilar individual allele frequencies, relatively large differences in 

resulting    
  may result from relatively similar variances in allele frequencies. Because    
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occurs in the expressions for    
    

     
  and       

   
 ⁄ , also    

  and    are functions of 

variance in allele frequencies, number of alleles, as well as individual allele frequencies. Thus, it 

will usually be easier to predict genetic variance components of heterozygosity based only on 

allele frequencies using equations 2, 5b, 6, and 7. 

Mean heterozygosity 

We now analyse how   
 ,    

 ,    
 , and    for heterozygosity depend on mean heterozygosity   . 

We rearrange      ∑   
  

    to get 

 
∑  

 

 

   

       (S1.4) 

Substituting equation S1.4 into equation 5b yields 

   
              

   

       
   (S1.5) 

Thus, variance in heterozygosity is a quadratic function of mean heterozygosity, independent of 

the number of alleles at the locus. Therefore, by knowing mean heterozygosity we can exactly 

predict variance in heterozygosity. 

Substituting equation S1.4 into equation 2 shows that additive genetic variance is again a 

quadratic function of mean heterozygosity, but also of actual allele frequencies: 

 
   

      (∑   [       ]
  

 

   

)  (S1.6) 

Hence, similar to when describing the variance components of heterozygosity as functions of 

variance in allele frequencies, we find that mean heterozygosity only partly describes additive 
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genetic variance in heterozygosity. Because    
  occurs in the expressions for    

    
     

  

and       
   

 ⁄ , also    
  and    are functions of mean heterozygosity, as well as individual 

allele frequencies. It will therefore usually be easier to predict genetic variance components of 

heterozygosity based only on allele frequencies using equations 2, 5b, 6, and 7. 
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SUPPLEMENTARY INFORMATION 2: CORRECTION OF FORMULA FOR 

ADDITIVE EFFECT AND ADDITIVE GENETIC VARIANCE UNDER INBREEDING 

   
  can be derived by decomposing genetic variance of an inbred population into only two 

components following methods from Kempthorne (1957, page 350). However, the derivation by 

Kempthorne (1957, page 350) contains a mistake, leading to an erroneous formula that is also 

repeated in Lynch and Walsh (1998, equation 4.24). The error in this formula lies in its second 

term in the version of Lynch and Walsh (1998, equation 4.24), which becomes obvious when 

studying a case of symmetrical overdominance such as heterozygosity. In such a case all 

homozygotes have the same genotypic value, which leads to subtracting a constant value from all 

inbreeding-corrected additive effects. Thus, it is possible (and likely) that the additive effects of 

all alleles become negative, which violates the requirement of ∑     
 
      (Kempthorne 1957, 

page 350). 

The root of the error lies in the derivation of the additive effects       in an inbred population, 

where Kempthorne uses the genotypic deviations     from the mean genotypic value    of a 

randomly mating population with the same allele frequencies as the focal inbred population. This 

assumption is evident from Kempthorne’s substitution of      ∑      
 
    with the additive 

effects of allele   in a randomly mating population      . However, this is not allowed here, 

because     in the formula for       should be evaluated against the mean    of the inbred 

population, thus           . 

We now derive the relationship between    and    and then use this relationship to derive a 

correct prediction of       that will be used to calculate    
 . The mean genotypic value    of an 

inbred population differs from the value    of a randomly mating population in the following 
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way: The genotypic values     of heterozygotes lost due to inbreeding have a mean of 

 ∑        
 
          (frequency of heterozygotes e.g. from Halliburton 2004, equation 3.22). All 

heterozygotes lost due to inbreeding are instead counted as homozygotes with a mean genotypic 

value of ∑   ∑        
 
         

   , which can also be written as ∑            
     

 
   , or 

 ∑    
 
     ∑   

    
 
   .    can be obtained from    by subtracting the mean genotypic values 

of the heterozygotes lost and adding the mean of the homozygotes gained due to inbreeding, 

resulting in 
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  (S2.1) 

which reduces to 
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Because 

∑        

 

     

     

we get 
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  (S2.2) 

Having derived    as a function of   , we show now how a correct formula for       can be 

obtained and then apply this formula to the case of heterozygosity. 
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Kempthorne (1957, page 350) provides the following equation for the additive effect of allele   

in an inbred population: 

                      ∑     

 

   

  

We start from this equation and use  ,  ,  ,   as indicators of the   alleles at a locus (we need 

these four indicators for the two alleles at a locus to avoid confusion about summation),     

      , and equation S2.2 we get 
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which can be expanded to 
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Using       ∑         
 
    from Kempthorne (1957, page 350) as well as some other 

rearrangements, we get 
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We thus get the general equation that replaces the wrong equation 4.24 in Lynch and Walsh 

(1998): 

      
              ∑    

 
         

   
  

Heterozygosity 

When describing heterozygosity as a trait, the genotypic values of homozygotes     or     equal 

0 and thus, 

      
   

   
       

In inbred populations,       has to be used in equation 4.23c of Lynch and Walsh (1998), so that 

by modifying our equation 2 (main text), we get the equation for additive genetic variance of 

heterozygosity under inbreeding, 
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)  (S2.3) 

Equation S2.3 is numerically equivalent to equation 1 from Cockerham and Weir (1984), which 

is equation 9 in the main text. For a biallelic locus, equation S2.3 is equivalent to 

 
   

  
      

   
   [      ]  (S2.4) 

Equation S2.4 is also given by Falconer (1985) when setting     and    , as is appropriate 

for heterozygosity. 


