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Figure S1:  Schematic depicting the origin of forces favoring deregistration of an 
isolated domain. The shear force, Fshear, is caused by direct interaction with the solvent.  
The motion of the solvent is represented by the large blue arrows.  The drag force, Fdrag, 
is caused by the bulk membrane phase moving around the domain. The motion of the 
phase is represented by the small black arrows.  (A) At low rates of flow, the shear in the 
solvent is low, and the velocity of the bulk phase is low.  The domain remains stationary 
as the bulk phase moves around it.  (B) At high rates of flow the shear in the solvent 
phase and the velocity of the bulk membrane phase both increase, driving the domain out 
of registry. 
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Figure S2: Automated edge tracking process.  (A) Micrograph of the bilayer front.  
(B) A Sobel derivative of Panel A, where regions of high intensity correspond to the edge 
of the bilayer in Panel A.  (C) A line scan along the blue dashed line (vertically averaged 
over the same thickness) in Panel B.  The peak corresponding to the bilayer edge is 
clearly identifiable.  
 
 
 

	
  

Figure S3: Ruptured GUV under flow.  Black areas are bare glass.  Dark gray areas 
within bright areas formed from ruptured GUVs are Lo domains.  Under flow of buffer, 
only a narrow strip of bilayer is displaced at the front edge, while most of the bilayer 
edge remains pinned.  This result illustrates why deregistration experiments in the main 
text used supported lipid bilayers produced from GUVs as well as SUVs, as shown 
schematically in Fig. 1 of the main text. 
 
 
 

 
 
Figure S4:  Lipids diffuse between adjoining supported bilayers formed from GUVs and 
SUVs.  At t = 0 s a ruptured GUV of primarily dark, Lo phase is shown.  At t = 50 s, 
SUVs with the same composition as the Ld phase, but half the concentration of 
fluorescent label, are shown flowing into the chamber as a diffuse bright band in the 
middle of the image.  At t = 120 s, ruptured SUVs have formed a continuous supported 
bilayer, as evidenced by the diffusion of fluorophores that were initially in the Ld 
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domains at the perimeter of the ruptured GUV.  At t = 290 s, the equilibration of these 
fluorophores concentrations is close to complete, and the Ld domains at the perimeter 
have nearly the same intensity as the surrounding Ld phase formed from ruptured SUVs.  
Ld domains in the interior appear brighter than the bulk phase because the low 
partitioning of the fluorophore to the intervening Lo phase slows equilibration.  At t = 
460 s, the majority of the unruptured, free-floating SUVs in solution have been rinsed out 
of the flow chamber.  Because free-floating SUVs introduce high background 
fluorescence intensity, the brightness and contrast of each image was adjusted 
independently. 
	
  
	
  
	
  

	
  

Figure S5: POPC bilayer under a bulk flow moving from left to right over a clean glass 
slide. The labeled bilayer was made from ruptured SUVs.  The bulk flow rate from left to 
right is 0.22 mL/min, and each micrograph was taken at a 20-minute interval. 
 
	
  
	
  

	
  
	
  

Figure S6: Evidence of domain deregistration for an oblong Lo domain before flow (left) 
and during application of 32 Pa of shear (right).  In the cases shown in the main text, 
deregistered domains exhibit only two fluorescence levels because fluorophores partition 
to the top leaflet of the supported bilayer (1).  The case in this figure is an exception.  
(A) The domain is initially in registry.  (B) As the domain moves out of registry, three 
fluorescence levels are observed: a bright level corresponding to regions of Ld phase in 
both leaflets, a dark level corresponding to regions of Lo phase in both leaflets, and an 
intermediate level corresponding to a region of Lo phase in the top leaflet apposing a 
region of Ld phase in the bottom leaflet (the opposite case is more difficult to see).  This 
initial onset of deregistration is used to determine the threshold shear.  (C) As the domain 
moves further out of registry, the same changes drastically.  (D) At long times, the 
presence of a domain in the lower leaflet is still apparent.  As expected with a stationary 
lower leaflet, the boundary between the Lo phase and the Ld phase in the lower leaflet 
does not move significantly.  Threshold shear values for domains exhibiting three 
fluorescence levels were in agreement with the fit in Fig. 6 of the main text. 
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Figure S7: Partially registered domains do not spontaneously register in the absence of 
flow.  The micrographs show a partially deregistered domain immediately after flow 
ceases and 10 min. after flow ceases.  The dotted line shows the original position of the 
domain, which corresponds to the position of the Lo phase in the lower leaflet.  No return 
to registration is observed. 
 
 
	
  

	
  
	
  

Figure S8: Illustration of why domains are not tracked over long times in this study.  The 
micrographs show dark, putatively Lo domains under flow that increases from 
0.44 mL/min to 0.88 mL/min over 25 minutes.  The large domain at the right drastically 
changes in size, and the domain in the lower left is undetectable at late times. 
 
 
 

	
  
 
Figure S9: Threshold shear required to move Lo domains in the upper leaflet of a 
supported bilayer, as in Fig. 6 of the main text.  Data from the six most irregularly shaped 
domains are highlighted in red.  These domains were chosen because they contained 
smaller domains of the majority phase, their boundary was not smooth, and/or their 
overall shape was non-convex. To ensure that these points are consistent with the rest of 
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the data, we refit the line with the data in red removed (dashed line). The best-fit slope 
agrees within uncertainty to that obtained using the entire data set, changing Λ from 
81 ± 22 Pa µm to 79 ± 23 Pa µm.	
  
 
 
 
Calculating Shear 
   
The behavior of flow in a channel is described by the Navier-Stokes equation.  For a 
rectangular channel, the shear force 𝜏 on the bottom of the channel at a position 𝑧 from 
the center line is given by  
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where 𝑄 is the bulk flow rate, ℎ is the height of the channel, 𝑤 is the width of the 
channel, Δ𝑝/Δ𝑥 is the change in pressure in the direction of flow, and 𝜂 is the viscosity of 
the aqueous phase (2, 3).  This expression assumes no-slip boundary conditions, which is 
reasonable because the velocity of the supported bilayer is orders of magnitude smaller 
than the velocity of the bulk liquid in the channel	
  (3).  For domain deregistration 
experiments, we report the shear experienced by the domain center.  For interleaflet 
friction measurements, we report the average shear as was reported in previous work (3).  
Our two channel geometries had widths of 224 µm and 214 µm.  Both had a height of 
105 µm.  To calculate the shear, we truncated the series after the first 100 terms; 
including the next 100 terms would change the approximation by less than 1 part in 10-10. 
 
 
	
  
Derivation of 𝝀𝑻 for an isolated domain 
 
The drag coefficient, 𝜆!, relates to the drag force via 𝐹!"#$ = 𝜆!   𝑣!.  Here, we derive the 
expression for 𝜆! , 𝜆! ≃ 𝜋𝑏!𝑅!, appropriate for the present problem for an isolated  
circular domain (solid or liquid) of radius 𝑅 embedded within the upper leaflet. We focus 
on only the relevant regime in which the surrounding phase flows at a rate proportional to 
the applied shear.  For a bilayer of pure DOPC, this regime corresponds to values of 
applied shear greater than ~3 Pa. Our data in Fig. 6 of the main text apply to this 
condition. To this end, our starting point is the Navier-Stokes equations for creeping flow 
of the incompressible fluid comprising the upper leaflet outside the domain (𝑟 > 𝑅), 
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𝜂!∇!𝐯− ∇𝑝 + 𝜏𝐱 = 𝑏!𝐯 

and 
∇ ∙ 𝐯 =   0, 

 
where v(r) denotes the velocity of the upper leaflet relative to the substrate, and 𝜂! 
denotes the membrane viscosity (4-6). The presence of a shear stress 𝜏 in the solvent is 
accounted for by an effective body force 𝜏  𝐱  acting on the membrane. Far away from the 
domain, 𝐯   →   𝑣!  𝐱, where 𝑣! = 𝜏/  𝑏!. Within the interior of the domain (𝑟 < 𝑅), the 
governing equations are given by 
 

𝜂!! ∇!𝐯′− ∇𝑝′+ 𝜏𝐱 = 𝑏!! 𝐯′  
and 

∇ ∙ 𝐯′ =   0. 
 
At this point, the equations are valid for an arbitrary viscosity contrast between the 
domain and the Ld phase. Note that the special case of a solid domain is obtained upon 
taking the limit 𝜂!! → ∞ in the solution to the governing equations (6). 
 
Now, the governing equations can be readily solved to yield  
 

𝑣! = 𝑣! −
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𝑟! −
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and 

𝑣!! = 𝑣! − 𝐶!! +
𝐶!!

𝑟 𝐼!
𝜖′𝑟
𝑅 cos 𝜃 ,  

𝑣!! = −𝑣! + 𝐶!! −
𝐶!!𝜖!

𝑅   𝐼!
𝜖!𝑟
𝑅 +
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𝑅 sin 𝜃 ,  

𝑝′ =   −𝑏!! 𝐶!!  𝑟cos  (𝜃) 
 
 
in polar coordinates, with 
 

𝜖 = 𝑅
𝑏!
𝜂!
   

and  

𝜖′ = 𝑅
𝑏!!

𝜂!!
  . 
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Furthermore,  𝐼!(𝜖!) and 𝐾!(𝜖) and denote the modified Bessel functions of the first and 
second kind, order i, respectively. 
 
Following our earlier work (6), the 4 integration constants (𝐶!,𝐶!,𝐶!! ,𝐶!!) are determined 
by imposing the continuity of shear stresses and velocity field along the domain boundary 
(𝑟 = 𝑅), as well as requiring that the flow field within the domain vanishes on average; 
that is, 
 
    𝑑𝑟𝑟 𝑑𝜃𝐯′(𝑟,𝜃)!!

!
!
! = 𝟎.  

 
These requirements lead to the following expressions for the integration constants: 
 

𝐶! = 𝑣!𝑅! 1+ 2
𝐾! 𝜖
𝜖𝐾! 𝜖

+
2𝐾!! 𝜖 𝜂! 𝐼! 𝜖! 𝜖′− 2𝐼!(𝜖!)

𝐾!(𝜖)𝑀(𝜖, 𝜖!, 𝜂! , 𝜂!! )
;  

𝐶! =   2𝑣!𝑅 −
1

𝜖𝐾! 𝜖
+
𝐾! 𝜖 𝜂! 2𝐼! 𝜖! − 𝐼! 𝜖! 𝜖′

𝐾!(𝜖)𝑀(𝜖, 𝜖!, 𝜂! , 𝜂!! )
; 

𝐶!! = 𝑣! 1−
2𝐼!(𝜖!)𝐾! 𝜖 𝜖𝜂!
𝑀(𝜖, 𝜖!, 𝜂! , 𝜂!! )

; 

𝐶!! = −
2𝑣!𝑅𝜖𝜂!𝐾!(𝜖)
𝑀(𝜖, 𝜖!, 𝜂! , 𝜂!! )

.  

 
Here, 

𝑀 𝜖, 𝜖!, 𝜂! , 𝜂!!
= 2𝐾! 𝜖 + 𝐾! 𝜖 𝜖 2𝐼! 𝜖! − 𝐼! 𝜖! 𝜖! 𝜂!
− 𝐾! 𝜖 𝜂!! 4𝐼! 𝜖! − 2𝐼! 𝜖! 𝜖! + 𝐼! 𝜖! 𝜖!" . 

 
[Note that the special case of a solid domain is obtained upon setting 𝜂!! → ∞ in the 
above expressions.] Finally, the drag force can be explicitly evaluated to yield 
 

𝐹!"#$ = 2𝑅 𝑑𝜃 𝑝 − 𝜏!! cos  (𝜃)+ 𝜏!"sin  (𝜃) !!!

!

!

= 𝜋𝑣! 𝜂!𝜖!

+
4𝜖𝐾!(𝜖)𝜂! 4+ 𝜖!" 𝐼!(𝜖!)− 2𝜖!𝐼!(𝜖!)+ 2

𝜂!
𝜂!!

𝜖!𝐼!(𝜖!)− 2𝐼!(𝜖!)

𝐾! 𝜖 4+ 𝜖!" 𝐼!(𝜖!)− 2𝜖!𝐼!(𝜖!) + 𝜂!𝜂!!
2𝐾! 𝜖 + 𝜖𝐾!(𝜖) −2𝐼! 𝜖! + 𝜖!𝐼!(𝜖′)

  

≃ 𝜋𝑏!𝑅!𝑣!,  
 
where the latter expression is valid for both solid and liquid domains in the limit 
𝜖, 𝜖! ≫ 1, corresponding to 𝑅 ≫ 10!!m, relevant for our experiments. Thus, 𝜆! =
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𝐹!"#$/𝑣! ≃ 𝜋𝑏!𝑅!.  Note that Fdrag has the same magnitude as Fshear, but is a distinct 
force.  Also note that 𝜆!, which is proportional to the coefficient of interleaflet friction 
𝑏!, is due to increased interleaflet interactions in the bulk membrane phase flowing 
around a stationary domain, and that the value of 𝑏! does not depend on the material 
properties of the domain itself. 
 
	
  
Effect of other domains on 𝝀𝑻 of a given domain 
 
The effect of other domains on the drag coefficient of a particular domain can be 
estimated within an effective medium theory approach (7).  To this end, we imagine that 
the other immobile domains act effectively as a porous medium in which the domain of 
interest is embedded, and the medium is endowed with effective permeability or friction 
coefficient 𝑏! + 𝑏!"". The governing equation is now written 
 
    𝜂!𝛻!𝐯− 𝛻𝑝!"" = 𝑏! + 𝑏!"" 𝐯,  
and the drag force on an isolated domain is computed. The magnitude of 𝑏!"" will be 
determined self-consistently at the end of the calculation.  Following the steps in the 
analysis of an isolated domain readily yields 𝐹!"#$ ≃ 𝜋𝑅!!𝜈!(𝑏! + 𝑏!"").  
 
Consider now 𝑁 immobile domains within an 𝐿×𝐿 area of the upper leaflet.  The net 
force acting on the domains is obtained by summing up the contributions from individual 
drag forces to yield 
 

𝐹!"! = 𝑏! + 𝑏!"" 𝜈! 𝜋𝑅!!
!

!!!

= 𝑏! + 𝑏!"" 𝜈!𝐴!"!!"#$%&. 

 
On the other hand, for a porous medium whose behavior is governed by Darcy’s law 
−𝛻𝑝 = 𝑏!""𝐯, the pressure drop across the area is given by !"

!
= 𝑏!""𝜈!. The total force 

exerted by the pressure drop on the particles is given by 𝛥𝑝𝐿 = 𝑏!""𝜈!𝐿! = 𝐹!"! . Thus, 
𝑏!""𝜈!𝐿! = 𝑏! + 𝑏!"" 𝜈!𝐴!"!!"#$%&,  or 
 
     𝑏!"" = 𝑏!

!
!!!

, 
and 

𝜆! =
𝜋𝑏!𝑅!

1− 𝜙 , 

 
where 𝜙 = 𝐴!"!!"#$%&/𝐿! denotes the area fraction of the domains. It can be seen that the 
presence of the other domains increases the effective drag force on a particular domain.  
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