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Calculation Method

In the paper we use Drude model extended for the interband transitions to calculate the

transient reflectivity change from the dielectric function ǫ which is the function of optical co-

efficients, n and k. In what follows SI units are used. The dielectric function is parametrized

as in Ref. [1]:
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where ǫcore describes all contributions to the dielectric function beyond the free-carrier

absorption. Here, ǫcore = (ncore + i kinterband)
2, where kinterband = α λγ/4π (λγ is a photon

wavelength) describes the contribution from the transition between valence and conduction

bands, using the interband absorption coefficient for a direct interband transition α

parametrized as in Ref. [1] (Eq. (5.31) therein). It reads:

kinterband =
e2 (2 mr)

3/2

m2 ncore (h̄ωγ)2 h̄ ǫ0
| 〈v|p|c〉 |2

√

h̄ωγ − Egap [f(Ev) − f(Ec)] |Ec−Ev=h̄ωγ
. (2)

Coefficient mr denotes the reduced mass for carriers within conduction band and within

valence band, i.e., 1/mr = 1/mc +1/mv, where mc = me and mv = mh are effective electron

and hole masses. Matrix element 〈v|p|c〉 couples states with the same electron wave vector

in the valence and conduction bands. We parametrize it, using the measured absorption

coefficients for GaAs from Ref. [2] (Fig. 3 therein). The factor
√

h̄ω − Egap originates

from the joint density of states evaluated at the critical point M0 [1]. As a result the ab-

sorption coefficient scales with the photon energy Ephot = h̄ωγ as α ∼
√

Ephot − Egap/Ephot.

Factor [f(Ev) − f(Ec)] |Ec−Ev=h̄ωγ
is a state population weight: it contains Fermi functions

representing transient occupation of states within valence and conduction bands with the

condition imposed that Ec −Ev = h̄ωγ. Assuming simple parabolic bands which is accurate

enough for states close to band’s top/bottom, one obtains expressions for Ec and Ev as a

function of band gap Egap and photon energy h̄ωγ:

Ev = −Egap/2 − h̄2 k2/(2 mv)

Ec = +Egap/2 + h̄2 k2/(2 mc), (3)

where k2 = 2 mr

h̄2 (h̄ωγ − Egap).

To sum up, if Eq. (1) is used for the calculation of the transient dielectric function, the

following parameters have to be provided: photon frequency ωγ, transient plasma frequencies

for electrons and holes ωp,e(h), electron and hole collision times τe(h), real part of the refraction

index of unperturbed system ncore, and the calculated value of kinterband which, in particular,

depends on the photon energy Ephot = h̄ ωγ and the actual band gap Egap.

As described in the paper, the evolution of the irradiated system proceeds in two stages.

During the excitation stage that begins with X-ray laser irradiation of GaAs, electrons
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and holes are produced. This occurs within a few hundred femtoseconds since the exposure

start. These timescales are too short for recombination and thermal exchange with lattice to

significantly contribute [3, 4]. Therefore, we can neglect these processes during the excitation

stage. Also, the density of electrons and holes ne−h increases almost linearly with time [5, 6].

We can therefore describe it with an approximate linear rate equation:

d ne−h(t)/dt = γe−h(t), (4)

where the coefficient γe−h depends on the pulse fluence and has been adjusted so as to

obtain the maximal value of ne−h corresponding to the number of absorbed X-ray photons

divided by the average electron-hole pair creation energy 〈Ee−h〉 which is 4.2 eV for GaAs

[7]. E.g., for the case of hard X-ray irradiation with 800 eV photons in [8] it yields: ne−h =

2.47 · 1020, 4.95 · 1020, 9.90 · 1020 cm−3 for pulse fluences F = 10, 20, 40 mJ/cm2, respectively.

Evolution of the electron kinetic temperature is strongly non-equilibrium during the first

tens of femtoseconds after the exposure [5]. The temperature strongly decreases and then

stabilizes. However, only a very low number of electrons (maximally of the order of a few

permilles of the initial valence electron density) is excited. Also, at such short timescales

there is no significant thermal exchange with the lattice yet. We therefore do not need to

follow in detail the electron temperature during the excitation stage. Wherever it is needed,

we estimate it by assuming its slow linear growth with time from the room temperature

(300 K) to a temperature T init
e (at the minimum of ∆R/R curve). We initially fix T init

e from

the relation quoted in the text: 〈T init
e 〉 ≈ 2/3 (〈Ee−h〉 − Egap), assuming negligible kinetic

energy of heavy holes. Later we iteratively fit it to the data.

Let us mention that as the lattice temperature does not change much during the first

100 − 200 fs after the FEL irradiation, i.e., during electron thermalization, the band-gap

width does not change either during this time.

Knowing the real part of the refraction index from unperturbed system ncore and the

transient carrier densities, we can calculate kinterband from Eq. (2). As the carrier densities

ne−h determine the plasma frequency of the material ωp(e,h) ∼
√

ne−h, the plasma frequencies

ωp,e(h) for electrons and holes can then be calculated, and with them the transient complex

refraction index from Eq. (1). With this, transient reflectivity can be directly obtained (see,

e.g., [9]). The average electron collision time τe is then fitted iteratively until the reflectivity

curve at the end of the first evolution stage matches the minimum of the experimental ∆R/R
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curve. The average hole collision time τh can then be estimated from the electron one, using

mass scaling relation for electron and hole collision frequencies [10]. The product of collision

time and photon frequency is ω · τe ∼ 1 for 800 nm and ω · τe ∼ 2 for 400 nm.

As shown in Ref. [6, 11] the minimum of the ∆R/R curve corresponds to the maximal

electron-hole density in the sample. Reaching the maximal electron-hole density within the

system concludes the excitation stage of the sample evolution. At later times the relaxation

stage begins, and proceeds on picosecond timescales. Free carrier distribution can then be

assumed to be thermal. The recombination of the electron-hole pairs begins to contribute as

well as the electron-lattice thermalization. The rate equation for electron-hole distribution

takes the recombination into account:

d ne−h(t)/dt = −γrec · ne−h(t), (5)

where γrec is the recombination rate including both radiative and nonradiative recombination

coefficients for GaAs taken from [3]. Equilibration of electrons and lattice is described by

the set of temperature equations for lattice temperature Tlatt and electron temperature Tel:

d Tlatt(t)/dt = +Glatt[Tel(t) − Tlatt(t)] (6)

d Tel(t)/dt = −Gel[Tel(t) − Tlatt(t)], (7)

where we assumed spatially uniform electron and lattice temperatures with no temperature

gradients and neglected any source terms, as the system only relaxes. As in GaAs holes are

very heavy, the electrons will predominantly contribute to the lattice heating. Therefore, we

neglect the contribution of holes in the temperature equations. With coefficients Glatt and

Gel the electron-lattice thermalization time can be defined as τel−latt = 1/(Glatt + Gel). The

coefficients Glatt and Gel are related to heat capacities of the system through the relations:

Glatt (el) = G/Clatt (el), where Cel is the heat capacity of the free-electron gas taken from Ref.

[10] and Clatt is the heat capacity of the lattice taken from Ref. [7]. The coefficient G is a

temperature-dependent electron-phonon coupling factor. Using previous relations, it can be

expressed as: G = Cel · Clatt/[(Cel + Clatt) τel−latt]. Band-gap shrinkage (entering Eqs. (2),

(3) and consequently, Eq. (1) ) with increasing lattice temperature is described with the

phenomenological relation from [7]. The initial conditions for the equations at the end of

the excitation stage are: Tlatt = 300 K and Tel = T init
e .

Similarly as we did during the first evolution stage, we calculate transient reflectivity and

adjust iteratively τel−latt and the free electron temperature T init
e at the minimum of ∆R/R
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curve, so as to obtain the best fit to the experimental curve. However, we keep collision

times fixed. In Table 1 (from the main text) we listed the final parameters obtained. The

values lay within the range reported in Ref. [12]. Note also the decrease of the thermalization

time with the electron temperature [12].

We assign the dependence of T init
e on the fluence to the strong non-isothermality of the

conduction and valence band carriers that maintains up to a few hundred femtoseconds since

the exposure to the FEL pulse and even after the carriers within each band already thermal-

ized. This non-equilibrium process cannot be accurately described with our approximate

model and would require dedicated non-equilibrium ab-initio studies.
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