<u>2014 AHA/ACC/HRS Atrial Fibrillation Guideline Data Supplements</u> (Section numbers correspond to the full-text guideline.)

Table of Contents

Data Supplement 1. Electrophysiologic Mechanisms in the Initiation and Maintenance of AF (Section 2)	2
Data Supplement 2. Pathophysiologic Mechanisms Generating the AF Substrate (Section 2)	2
Data Supplement 3. Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) vs. Warfarin (Section 4.2.2)	3
Data Supplement 4. Warfarin vs. Control (Section 4.2)	6
Data Supplement 5. Warfarin vs. Antiplatelet Therapy (Section 4.2)	7
Data Supplement 6. Beta Blockers (Sections 5.1.1)	9
Data Supplement 7. Nondihydropyridine Calcium Channel Blockers (Sections 5.1.2)	10
Data Supplement 8. Digoxin (Sections 5.1.3)	11
Data Supplement 9. Other Pharmacological Agents for Rate Control (Sections 5.1.4)	12
Data Supplement 10. AV Junction Ablation (Sections 5.2)	13
Data Supplement 11. Broad Considerations in Rate Control (Sections 5.3.1)	13
Data Supplement 12. Antiarrhythmic Drug Therapy (Section 6.2.1)	14
Data Supplement 13. Outpatient Initiation of Antiarrhythmic Drug Therapy (Section 6.2.1.2)	24
Data Supplement 14. Upsteam Therapy (Section 6.2.2)	25
Data Supplement 15. AF Catheter Ablation to Maintain Sinus Rhythm (Section 6.3)	27
Data Supplement 16. Meta-Analyses and Surveys of AF Catheter Ablation (Section 6.3)	30
Data Supplement 17. Specific Patient Groups (Section 7)	31
References	37

1

Data Supplement 1. Electrophysiologic Mechanisms in the Initiation and Maintenance of AF (Section 2)

Mechanism	Re	ferences
Wechanish	Experimental	Human
Multiple wavelet hypothesis	(1-3)	(4-8)
 Heterogeneity in atrial electrophysiology 	(3, 9)	(10-13)
Focal firing	(14-17)	(18-21)
Pulmonary vein foci		
 Electrophysiology 	(16, 22-28)	(29, 30)
 Evidence for reentry 	(24, 31-33)	(30, 34-36)
 Evidence for focal firing 	(32)	(35)
Nonpulmonary vein foci	(17)	(19, 21, 37-42)
Rotor with fibrillatory conduction	(9, 31-33, 43-46)	(34-36, 47-50)
 Dominant frequency gradients 	(9, 32, 43, 46, 51)	(34, 49-52)

AF indicates atrial fibrillation.

Data Supplement 2. Pathophysiologic Mechanisms Generating the AF Substrate (Section 2)

Mechanism	Ref	erences			
Wechanism	Experimental	Human			
Atrial structural abnormalities	(9, 53-55)	(56-62)			
 Fibrosis 	(63-70)	(55, 56, 62, 63, 71-73)			
 Noninvasive imaging of fibrosis 	(74, 75)	(76-79)			
Inflammation/oxidative stress	(80-83)	(59, 80, 82-88)			
 Steroids 	(89-91)	N/A			
Statins	(92-94)	N/A			
Omega-3 polyunsaturated fatty acids	(95-100)	(96, 101-103)			
Renin-angiotensin-aldosterone system activation	(104-114)	(72, 115, 116)			
Aldosterone	(117, 118)	(119-121)			
 Transforming growth factor-β₁ 	(68, 122, 123)	N/A			
Autonomic nervous system	(3, 14-16, 27, 124-126)	(127-129)			
Genetic variants	See S	ection 7.10			
Atrial tachycardia remodeling					
 Electrophysiologic 	(9, 130-136)	(137, 138)			
Structural	(53, 132, 139-142)	N/A			
Intracellular calcium	(143-145)	(145-148)			
Extracardiac factors	See Section 2.2				

AF indicates atrial fibrillation.

Data Supplement 3. Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) vs. Warfarin (Section 4.2.2)

Study Name,	Study Aim	Study	Intervention vs.		opulation	Study	11212	Endpoints		P Values,	Adverse	Study
Author, Year		Type/Size (N)	Comparator (n)			Intervention		·		OR: HR: RR: & 95% CI:	Events	Limitations
		. ,		Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results			
RE-LY Randomized Connolly SJ, et al., 2009 (149) 19717844	To compare 2 fixed doses of dabigatran with open-label use of warfarin in pts with AF at increased risk of stroke	RCT, open- label, blinded doses of dabigatran (18,113)	Dabigatran 110 mg (6,015) Dabigatran 150 mg (6,076) Warfarin (6,021)	AF and ≥1 of the following: prior stroke or TIA; LVEF<40% , NYHA class II or higher HF Sx, age ≥75 y or an age of 65- 74 y plus DM, HTN, or CAD Mean CHADS2 of 2.1	Severe heart-valve disorder, stroke within 14 d or severe stroke within 6 mo, condition that increased hemorrhag e risk, CrCl <20 mL/min, active liver disease, pregnancy	Dabigatran in 2 fixed doses – oral prodrug, direct competitive inhibitor of thrombin Warfarin INR 2-3, mean TTR 64%	Stroke or SE Dabigatran1 10 mg 1.53%/y Dabigatran 150 mg 1.11%/y Warfarin 1.69%/y	Major Hemorrhage Dabigatran 110 mg 2.71%/y Dabigatran 150 mg 3.11%/y Warfarin 3.36%/y Intracranial Bleeding Dabigatran 110 mg 0.23%/y Dabigatran 150 mg 0.30%/y Warfarin 0.74%/y Major Gl	Dabigatran 110 mg 1.44%/y Dabigatran 150 mg 1.01%/y Warfarin 1.57%/y Stroke, ST elevation, PE, MI, death, or major bleeding Dabigatran 110 mg 7.09%/y Dabigatran 150 mg 6.91%/y Warfarin 7.64%/y	Dabigatran 110 mg RR: 0.91; 95% Cl: 0.74- 1.11; p<0.001 for noninferiority, p=0.34 for superiority Dabigatran 150 mg RR: 0.66; 95% Cl: 0.53- 0.83; p<0.001 for noninferiority, p<0.001 for superiority	Dyspepsia	Open-label Median duration of FU 2 y

ROCKET-AF Patel MR, et al., 2011 (150) 21830957	To compare QD oral rivaroxaban with dose-adjusted warfarin for the prevention of stroke and SE in pts with NVAF who were at moderate to high risk of stroke	RCT, double- dummy, double- blinded (14,264)	Rivaroxaban (7,131) Warfarin (7,133)	NVAF at moderate to high risk of stroke: Hx of stroke, TIA, or SE or ≥2 of the following (HF or LVEF<35%, HTN, age >75 y, DM (CHADS2 score of≥2) Mean CHADS2 score of 3.5	Severe valvular disease, transient AF caused by a reversible disorder, hemorrhag e risk related criteria; severe, disabling stroke within 3 mo or any stroke within 14 d, TIA within 3 d; indication for anticoagula nt Tx	Rivaroxaban Factor Xa inhibitor, 20 mg QD or 15 mg QD for those with CrCl of 39- 40 mL/min Warfarin INR 2-3, mean TTR 55%	Any stroke or SE Per-protocol as treated Rivaroxaban 1.7%/y Warfarin 2.2%/y Intention to Treat Rivaroxaban 2.1%/y Warfarin 2.4%/y	Dabigatran 110 mg 1.12%/y Dabigatran 150 mg 1.51%/y Warfarin 1.02%/y Major and non-major clinically relevant bleeding Rivaroxaban 14.9/100 pt- years Warfarin 14.5/100 pt- years ICH Rivaroxaban 0.5/100 pt- years Warfarin 0.7/100 pt- years	Stroke, SE, or VD Rivaroxaba n 3.11/100 pt-years Warfarin 3.64/100 pt-years HR: 0.86; 95% CI: 0.74-0.99; p=0.034	Per-Protocol, as treated HR: 0.79; 95% CI: 0.66-0.96; p<0.001 for noninferiority Intention to treat HR: 0.88; 95% CI: 0.75-1.03; p<0.001 for noninferiority p=0.12 for superiority	N/A	Median duration of follow-up was 707 d Lower TTR in warfarin group 1° analysis was prespecified as a per- protocol analysis High-event rate after discontinuati on of Tx
---	---	---	--------------------------------------	---	--	--	---	--	---	--	-----	---

ARISTOTLE Granger CB, et al., 2011 (151) 21870978	To determine whether apixaban was noninferior to warfarin in reducing the rate of stroke (ischemic or hemorrhagic) or SE among pts with AF and ≥1 other risk factor for stroke	RCT, double- dummy, double- blinded (18,201)	Apixaban (9,120) Warfarin (9,081)	AF and ≥1 stroke risk factor (age >75 y; previous stroke, TIA or SE; symptomati c HF within the prior 3 mo or LVEF≤40%; DM; or HTN) Mean CHADS2 score of 2.1	AF due to a reversible cause, moderate or severe mitral stenosis, conditions other than AF requiring OAC, stroke within the prior 7 d, a need for ASA>165 mg or for ASA and CP, or severe renal insufficienc y (CrCl<25 mL/min)	Apixaban Factor Xa inhibitor 5 mg BID or 2.5 mg BID among pts with ≥2 of the following (≥80 y, body weight ≤60 kg, or serum Cr level of ≥1.5 mg/dL) Warfarin INR 2-3 Mean TTR 62.2%	Any stroke or SE Apixaban 1.27%/y Warfarin 1.6%/y	Major Bleeding Apixaban 2.13%/y Warfarin 3.09%/y ICH Apixaban 0.33%/y Warfarin 0.80%/y Major Gl Apixaban 0.76%/y Warfarin 0.86%/y	Stroke, SE, major bleeding, or death from any cause Apixaban 6.13%/y Warfarin 7.20%/y	HR: 0.79; 95% CI: 0.66- 0.95; p<0.001 for noninferiority, p=0.01 for superiority HR: 0.85; 95% CI: 0.78- 0.92; p<0.001	No difference s	Median duration of FU 1.8 y
AVERROES Connolly SJ, et al., 2011 (152) 21309657	To determine the efficacy and safety of apixaban, at a dose of 5 mg BID, as compared with ASA, at a dose of 81-324 mg QD, for the Tx of pts with AF for whom VKA Tx was considered unsuitable	RCT double- blind, double- dummy (5,559)	Apixaban (2,808) ASA (2,791)	≥50 y and AF and ≥1 of the following stroke risk factors: prior stroke or TIA, ≥75 y, HTN, DM, HF, LVEF≤35% , or PAD. Pts could not be receiving VKAs	Pts required long-term anticoagula tion, VD requiring surgery, a serious bleeding event in the previous 6 mo or a high-risk bleeding, stroke	Apixaban Factor Xa inhibitor 5 mg BID or 2.5 mg BID among pts with ≥2 of the following (age ≤80 y, body weight ≤60 kg, or serum Cr level of ≥1.5 mg/dL) ASA	Any stroke or SE Apixaban 1.6%/y ASA 3.7%/y p<0.001	Major Bleeding Apixaban 1.4% ASA 1.2% Intracranial Bleeding Apixaban 0.4% ASA 0.4% Major Gl	Stroke, SE, MI, VD or major bleeding event Apixaban 5.3%/y ASA 7.2%/y HR: 0.74; 95% CI: 0.60–0.90; p<0.003	HR: 0.45; 95% Cl: 0.32- 0.62; p<0.001	No difference s	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

		because it	within the	81-325	Apixaban		
		had already	previous 10	mg/dL	0.4%		
		been	d, severe		ASA		
		demonstrat	renal		0.4%		
		ed to be	insufficienc				
		unsuitable	y (a				
		or because	sCr>2.5				
		it was	mg/dL) or				
		expected to	a				
		be	calculated				
		unsuitable.	CrCl<25				
			mL/min				
		Mean					
		CHADS2 of					
		2.0					

^{1°} indicates primary; AF, atrial fibrillation; ARISTOTLE, Apixaban for Reduction in Stroke and Other Thromboembolic Events in AF; ASA, aspirin; AVERROES, Apixaban Versus Acetylsalicylic Acid to Prevent Stroke in Atrial Fibrillation Patients Who Have Failed or Are Unsuitable for Vitamin K Antagonist Treatment; BID, twice daily; CAD, coronary artery disease; CHADS2, Congestive heart failure, Hypertension, Age 75 years, Diabetes mellitus, Stroke; CP, codeine phosphate; Cr, creatinine; CrCl, creatinine clearance; DM, diabetes mellitus; FU, follow-up; GI, gastrointestinal; HF, heart failure; HR, hazard ratio; HTN, hypertension; Hx, history; ICH, intracranial hemorrhage; INR, international normalized ratio; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; PAD, peripheral arterial disease; PE, pulmonary embolism; N/A, not applicable; NVAF, nonvalvular atrial fibrillation; NYHA, New York Heart Association; OAC, oral anticoagulation; pts, patient; QD, once daily; RCT, randomized controlled trial; RE-LY, Randomized Evaluation of Long-Term Anticoagulation Therapy; ROCKET-AF, Rivaroxaban Once Daily Oral Direct Factor Xa Inhibitor Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial; RR, relative risk; sCr, serum creatinine; SE, systemic embolism; Sx, symptom; TIA, transient ischemic attack; TTR, time in therapeutic range; Tx, therapy; VD, valvular disease; and VKA, vitamin K antagonist.

Data Supplement 4. Warfarin vs. Control (Section 4.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs.	Patient F	Patient Population			Endpoints		Endpoints		
			Comparator (n)	Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results	95% CI:		
Aguilar MI, et al., 2005 (153) 16034869	To characterize the efficacy and safety of oral anticoagulants for the 1° prevention of stroke in pts with chronic AF	Cochrane Collaboration Systematic Review (AFASAK I, BAATAF, CAFA, SPAF I, SPINAF)	2,313 pts Warfarin 1,154 PC 1,159	AF (intermittent or sustained)	Prior stroke or TIA, mitral stenosis or prosthetic cardiac valves	Oral VKAs (warfarin) mean INR 2.0- 2.6	All Stroke (ischemic or ICH) Warfarin 27 PC 71	ICH, Major extracranial bleeds ICH, Warfarin 5, PC 2 Extracranial bleeds, Warfarin	Stroke, MI or VD Warfarin 69 PC 118	All ischemic stroke or ICH OR: 0.39; 95% CI: 0.26-0.59 Ischemic stroke OR: 0.34; 95% CI: 0.23-0.52		

[©] American College of Cardiology Foundation and American Heart Association, Inc.

				17, PC 16	Stroke, MI, VD OR: 0.57; 95% CI: 0.42-0.77
					All ICH OR: 2.38; 95% CI: 0.54-10.50)
					Major extracranial bleeds OR: 1.07; 95% CI: 0.53-2.12

^{1°} indicates primary; AF, atrial fibrillation; AFASAK, Atrial Fibrillation, Aspirin and Anticoagulant Therapy Study; BAATAF, Boston Area Anticoagulation Trial for Atrial Fibrillation; CAFA, Canadian Atrial Fibrillation Anticoagulation; ICH, intracranial hemorrhage; INR, international normalized ratio; MI, myocardial infarction; N/A, not applicable; OR, odds ratio; PC, placebo; Pts, patients; RR, relative risk; SPAF I, Stroke Prevention in Atrial Fibrillation Study; SPINAF, Stroke Prevention in Atrial Fibrillation; TIA, transient ischemic attack; VD, vascular death; and VKA, vitamin K antagonist.

Data Supplement 5. Warfarin vs. Antiplatelet Therapy (Section 4.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)		Population	Study Intervention	Endpoints			P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results		
Aguilar MI, et al., 2007 (154) <u>17636831</u>	To characterize the relative effect of long-term oral anticoagulant Tx compared with antiplatelet Tx in pts with AF and no Hx of stroke or TIA	Cochrane Collaboration Systematic Review (ACTIVE-W, AFASAK I, AFASAK II, ATHENS, NASPEAF, PATAF, SPAF IIa, SPAF IIb,	9,598 pts OAC 4,815 Antiplatelet 4,783	AF (intermitten t or sustained)	Prior stroke or TIA, mitral stenosis or prosthetic cardiac valves	Adjusted dose warfarin or other coumarins; antiplatelet therapies	All Stroke (ischemic or ICH) OAC 132/4,815 Antiplatelet 190/4,783	ICH, major extracranial bleeds	Stroke, MI, or VD	All Stroke OR: 0.68; 95% CI: 0.54-0.85; p=0.00069 Ischemic stroke OR: 0.53; 95% CI: 0.41-0.69 ICH OR: 1.98; 95% CI: 1.20-3.28 Major Extracranial OR: 0.97; 95% CI: 0.74-1.28	N/A

 $[\]hbox{$\mathbb C$}$ American College of Cardiology Foundation and American Heart Association, Inc.

	Г	T	ı	1	1	T	T	T	I	I	1
										Major Extracranial (exclude ACTIVE W with CP+A) OR: 1.90; 95% CI: 1.07-3.39 Stroke, MI, 485 VD OR: 0.74; 95% CI:	
Saxena R, et al., 20 <u>11</u> (155) 15494992	To compare the value of anticoagulants and antiplatelet Tx for the long term prevention of recurrent vascular events in pts with non-rheumatic AF and previous TIA or minor ischemic stroke	Cochrane Collaboration Systematic Review (EAFT, SIFA)	1,371 pts, warfarin 679, antiplatelet 692	AF and prior minor stroke or TIA	Rheumatic VD	Oral VKAs (warfarin) mean INR>2.0; Antiplatelets 300 mg ASA; indobufen 200 mg BID	All major vascular events (VD, recurrent stroke, MI, or SE)	Any ICH; major extracranial bleed	All fatal or nonfatal recurrent strokes	0.61-0.90 All Major Vasc Events OR: 0.67; 95% CI: 0.50-0.91 Recurrent Stroke OR: 0.49; 95% CI: 0.33-0.72 Any ICH OR: 1.99; 95% CI: 0.40-9.88 Major Extracranial bleed OR: 5.16; 95% CI: 2.08-12.83	N/A
Mant J, et al., 2007 BAFTA (156) 17693178	To compare the efficacy of warfarin with that of ASA for the prevention of fatal and nonfatal stroke, ICH, and other clinically significant arterial embolism in a 1° care	RCT (973 pts)	973 pts, ASA 485, warfarin 488	Age ≥75 y, AF or flutter by EKG within 2 y from 1° care practices	Rheumatic heart disease, a major nontraumatic hemorrhage within 5 y, ICH, documented peptic ulcer disease within the previous year, esophageal varices,	ASA 75 mg QD; Warfarin target INR 2.5, range 2- 3	Fatal or nonfatal disabling stroke (ischemic or hemorrhagic), other ICH, or clinically significant arterial embolism Warfarin 24 (1.8%/y)	Hemorrhage Major extracranial Warfarin 18 (1.4%/y) ASA 20 (1.6%/y) All major hemorrhages Warfarin 25 (1.9%/y) ASA 25 (2.0%/y)	Major vascular events (stroke, MI, PE, VD) Warfarin 76 (5.9%/y) ASA 100 (8.1%/y) 1° events plus major hemorrhage Warfarin 39	RR: 0.48; 95% CI: 0.28-0.80; p=0.0027 Stroke RR: 0.46; 95% CI: 0.26-0.79; p=0.003 All major hemorrhages RR: 0.96; 95% CI: 0.53-1.75; p=0.90 Major vascular	Open-label with blind assessment s 67% of the warfarin group remained on Tx TTR was 67%

[©] American College of Cardiology Foundation and American Heart Association, Inc.

population of	allergic		(3.0%/y)	events (stroke, MI,
pts aged ≥75	hypersensitivi	t ASA 48	ASA 64	PE, VD)
y who had AF	y to study	(3.8%/y)	(5.1%/y)	RR: 0.73; 95% CI:
	drugs,			0.53-0.99; p=0.03
	terminal			·
	illness,			1° events plus
	surgery within			major hemorrhage
	the last 3 mo,			RR: 0.59; 95% CI:
	BP>180/110			0.38-0.89; p=0.008

^{1°} indicates primary; AF, atrial fibrillation; ACTIVE-W, Atrial Fibrillation Clopidogrel Trial with Irbesartan for Prevention of Vascular Events-W; AFASAK, Atrial Fibrillation, Aspirin and Anticoagulant Therapy Study; ATHENS, Primary Prevention of Arterial Thromboembolism in the Oldest Old with Atrial Fibrillation; BID, twice daily; BP, blood pressure; EAFT, European Atrial Fibrillation Trial; EKG, electrocardiogram; Hx, history; ICH, intracranial hemorrhage; MI, myocardial infarction; N/A, not applicable; NASPEAF, National Study for Prevention of Embolism in Atrial Fibrillation; PE, pulmonary embolism; pts, patients; QD, once daily; RR, relative risk; SE, systemic embolism; SIFA, Studio Italiano Fibrillazione Atriale; SPAF, Stroke Prevention in Atrial Fibrillation Study; TIA, transient ischemic attack; TTR, time in therapeutic range; Tx, therapy; and VD, vascular death.

Data Supplement 6. Beta Blockers (Sections 5.1.1)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Endpoints Intervention			P Values, OR: HR: RR: & 95% CI:	Adverse Events	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results			
Abrams J, et al., 1985 (157) 3904379	Evaluation of the efficacy and safety of esmolol in comparing to propranolol for the acute control of SVT	Randomized prospective, multicenter double-blind	IV esmolol vs. IV propranolol	Pts over age 18 y with ventricular rates >120 bpm 2° to AF, atrial flutter, SVT, atrial tachycardia, idiopathic sinus tachycardia and AV reentrant tachycardias	WPW syndrome, hypotension, sick sinus syndrome, AV conduction delay decompensate d HF or noncardiac precipitated arrhythmias	Esmolol vs. propranolol	Composite endpoint of either ≥20% reduction from average baseline heart rate, reduction in heart rate to <100 bpm, or conversion to NSR esmolol 72% vs. propranolol 69%	N/A	No difference	Hypotensi on (esmolol 45% vs. propranol ol 18%)	Small sample size Only 66% of pts had AF
Farshi R, et al., 1999 (158) <u>9973007</u>	Comparison of the effects of 5 standard drug	Prospective, open-label crossover outpatient	N/A	Chronic AF pts who had a duration of ≥1 y	LVEF<0.35, WPW syndrome, sick sinus	Comparison of the effects of 5 standard drug	Comparison of 24 h mean ventricular rates	Peak ventricular response at 5 m of exercise:	p<0.01 for comparison of atenolol or atenolol and	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

regimen	S:		syndrome,	regimens:	Digoxin:	Digoxin:	digoxin	
digoxin,			pacemaker or	digoxin,	78.9±16.3	175±36	compared to	
diltiazer	۱,		clinically	diltiazem,	Diltiazem:	Diltiazem:	digoxin alone	
atenolol	,		significant	atenolol,	80.0±15	151±27		
digoxin	olus		renal, thyroid or	digoxin plus	Atenolol:	Atenolol:		
diltiazer	n, and		hepatic disease	diltiazem,	75.9±11.7	130±34		
digoxin	+			and digoxin	Digoxin +	Digoxin +		
atenolol	on			+ atenolol on	Diltiazem:	Diltiazem:		
the mea	n 24-			the mean 24-	67.3±14.1	146±40		
h heart	ate			h heart rate	Digoxin +	Digoxin +		
					atenolol:	atenolol:		
					65±9.4	126±29		

^{1°} indicates primary; 2°, secondary; AF, atrial fibrillation; AV, atrioventricular; HF, heart failure; HR, hazard ratio; IV, intravenous; LVEF, left ventricular ejection fraction; N/A, not applicable; NSR, normal sinus rhythm; pts, patients; SVT, supraventricular tachycardia; Tx, therapy; and WPW, Wolff-Parkinson-White.

Data Supplement 7. Nondihydropyridine Calcium Channel Blockers (Sections 5.1.2)

	nt 7. Nonainyaropy					A 1		B 17 1	A 4 I
Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	·		Study Intervention	Endpoints	P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results		
Ellenbogen KA, et al., 1991 (159) 1894861	To demonstrate the safety and efficacy of a continuous IV diltiazem infusion for 24 h heart rate control	Randomized, double-blind, parallel, PC- controlled	IV diltiazem vs. PC	Pts >18 y with AF or atrial flutter with duration >24 h and HR>120 bpm	Severe CHF, sinus node dysfunction, 2 nd or 3 rd degree AV block, WPW syndrome or hypotension	IV diltiazem vs. PC	Therapeutic response (ventricular response <100 bpm, ≥20% decrease in heart rate from baseline or conversion to NSR	p<0.001	Small sample size
Steinberg JS, et al., 1987 (160) 3805530	To determine the efficacy of diltiazem to control ventricular response at rest, during exercise, and during daily activities	Prospective, open-label	Oral diltiazem	Pts with chronic AF with a VR>100 bpm at 3 min of a standardized exercise test	UA, acute MI, WPW syndrome, hypotension, renal or hepatic failure, sick sinus syndrome without a pacemaker	Oral diltiazem	74% vs. 0% Ventricular response: Rest: 69±10 vs. 96±17 Exercise: 116±26 vs. 155±28+	p<0.001	Small sample size Most pts at entry were on digoxin and continued on digoxin

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Siu CW, 2009 et	To compare the	Randomized,	IV diltiazem vs.	Hospitalized pts	Ventricular	IV diltiazem vs.	VR control (<90	p<0.47	N/A
al., (161)	clinical efficacy of	prospective,	IV amiodarone	with symptomatic	response >200	IV amiodarone	bpm) within 24 h:		
<u>19487941</u>	IV diltiazem,	open-label	vs. IV digoxin	AF<48 h with	bpm, pre-excitation	vs. IV digoxin	ventricular		
	digoxin, and			ventricular	syndrome,		response <90 bpm		
	amiodarone for			response >120	hypotension, CHF,		sustained for ≥4 h		
	acute VR in			bpm	implanted				
	symptomatic AF				pacemaker/defibrill		Diltiazem 90% vs.		
					ator, recent MI, UA		amiodarone 74%		
					or stroke		vs. digoxin 74%		

AF indicates atrial fibrillation; AV, atrioventricular; CHF, congestive heart failure; IV, intravenous; MI, myocardial infarction; N/A, not applicable; NSR, normal sinus rhythm; PC, placebo; pts, patients; RR, relative risk; UA, unstable angina; VR, ventricular rate; and WPW, Wolff-Parkinson-White.

Data Supplement 8. Digoxin (Sections 5.1.3)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Population		Study Intervention	Endpoints		P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results		
IV Digoxin in Acute AF (162) 9129897	To examine the effects of IV digoxin in acute AF	Randomized, prospective, multicenter, double-blind PC-controlled	IV digoxin vs. PC	Pts >18 y with AF≤7d	Ongoing Tx with digoxin or antiarrhythmics, sick sinus syndrome or 2nd /3rd degree AV block without a pacemaker, WPW syndrome, heart rate <60 or >170 bpm, ongoing ischemia or recent MI	IV digoxin vs. PC	Conversion to sinus rhythm at 16 h Digoxin 46% vs. PC 51%	Effect on heart rate: 91.2±20 vs. 116.2±25	p=0.37 p<0.0001	N/A
AFFIRM Olshansky B, et al., 2004 (163) 15063430	To examine whether digoxin use was associated with adverse	Post hoc analysis	Nonrandomized comparison of digoxin vs. no digoxin	Pts with AF considered at high risk for stroke	N/A	Post hoc analysis including propensity analysis	Estimated HR of 1.41 for all- cause mortality for digoxin	Estimated HR of 1.61 for arrhythmic mortality Estimated HR	p<0.001 p<0.009 p<0.016	Post hoc analysis utilizing propensity scoring

 $[\]hbox{$\mathbb C$}$ American College of Cardiology Foundation and American Heart Association, Inc.

mortality and			of 1.35 for CV	
morbidity			mortality	

AF indicates atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; AV, atrioventricular; HR, hazard ratio; IV, intravenous; MI, myocardial infarction; N/A, not applicable; PC, placebo; pts, patients; RR, relative risk; Tx, therapy; and WPW, Wolff-Parkinson-White.

Data Supplement 9. Other Pharmacological Agents for Rate Control (Sections 5.1.4)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient P	opulation	Study Intervention		Endpoints		P Values, OR: HR: RR: & 95% CI:	Adverse Events
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Safety Endpoint & Results	Secondary Endpoint & Results		
Delle Karth G, et al., 2001 (164) 11395591	To compare the efficacy of IV diltiazem bolus/infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusion for immediate (4 h) and 24-h rate control during AF	Randomized prospective, controlled	IV diltiazem bolus/infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusion	Critically ill pts with recent-onset AF with ventricular rate >120 bpm	N/A	IV diltiazem bolus/ infusion vs. IV amiodarone bolus vs. IV amiodarone bolus/infusio n	Sustained heart rate reduction ≥30% within 4 h 70% vs. 55% vs. 75%	Bradycardia or hypotension 35% vs. 0% vs. 5%	Uncontrolle d tachycardia 0% vs. 45% vs. 5%	1° endpoint: NS 2° endpoint p<0.00016 Safety endpoint p=0.01	N/A
Connolly SJ, et al., 2011 (165) 22082198	Assess impact of dronedarone on major vascular events in high-risk permanent AF	Randomized prospective, multicenter, double-blind, PC- controlled trial (3,236)	Dronedarone 400 mg po BID vs. PC	Permanent AF / flutter, age ≥65 y with ≥1 risk factor: CAD, CVA or TIA, CHF, LVEF≤0.40, PAD or age ≥75 y with HTN and DM	Paroxysmal or persistent AF, ICD, heart rate <50 bpm, QT interval corrected >500 ms	Dronedarone vs. PC	Composite of stroke, MI, SE, or CV death Composite of unplanned hospitalization for CV event/ death	N/A	N/A	HR: 2.29; 95% CI: 1.34- 3.94 HR: 1.95; 95% CI: 1.45- 2.62	Stroke HR: 2.32; 95% CI: 1.11-4.88 Unplanned hospitalizati on for CV event HR: 1.81; 95% CI: 1.44-2.70

^{1°} indicates primary; 2°, secondary; AF, atrial fibrillation; BID, twice daily; CAD, coronary artery disease; CHF, congestive heart failure; CV, cardiovascular; CVA, cerebrovascular accident; DM, diabetes mellitus; HR, hazard ratio; HTN, hypertension; ICD, implantable cardioverter defibrillator; IV, intravenous; LVEF, left ventricular ejection fraction; MI, myocardial infarction; N/A, not applicable; NS, not significant; PAD, peripheral artery disease; PC, placebo; po, orally; pts, patients; RR, relative risk; SE systemic embolism; and TIA, transient ischemic attack.

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Data Supplement 10. AV Junction Ablation (Sections 5.2)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient Po	Patient Population		Endpoints Primary Endpoint & Results	P Values, OR: HR: RR: & 95% CI:	Study Limitations
				Inclusion Criteria	Exclusion Criteria				
Ozcan C, et al., 2001 (166) 11287974	Assess effect of radio-frequency ablation of the AV node and implantation of a permanent pacemaker on long-term survival in pts with AF refractory to drug Tx	Observational single site	Comparison to 2 control populations Age/sex matched from minnesota population Consecutive pts with AF who received drug Tx	All pts who underwent AV nodal ablation and pacemaker implantation for medically refractory AF between 1990 and 1998	N/A	AV nodal ablation pacemaker compared to 2 control groups	No difference in survival between ablation/pacemaker group and control group treated with drugs Excess observed death in ablation/pacemaker group relative to age/sex matched population	N/A	Observation, nonrandomized trial

AF indicates atrial fibrillation; AV, atrioventricular; N/A, not applicable; pts, patients; RR, relative risk; and Tx, therapy.

Data Supplement 11. Broad Considerations in Rate Control (Sections 5.3.1)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Patient P	opulation	Study Intervention	•		P Values, OR: HR: RR: & 95% CI:	Adverse Events
				Inclusion Criteria	Exclusion Criteria		Primary Endpoint & Results	Secondary Endpoint & Results		
Van Gelder IC, et al., 2010 (167) 20231232	Lenient rate control is noninferior to strict rate control in permanent AF	Randomized, prospective, multicenter, open label N=614	Lenient rate control (resting heart rate <110) vs. strict rate control (resting heart rate <80)	Age <80 y, permanent AF, oral anticoagulan t or ASA Tx	N/A	N/A	Composite of CV death and morbidity at 12.9% vs. 14.9%	Death, components of 1° endpoint, Sx, and functional status	1° endpoint, 3 y, HR: 0.84; 95% CI: 0.58-1.21	HF (3.8% vs. 4.1%); HR: 0.97; 95% CI: 0.48-1.96 Stroke 1.6% vs. 3.9%, HR: 0.35; 95% CI: 0.13-0.92 CV death 2.9% vs. 3.9%, HR: 0.79; 95% CI: 0.38-1.65

^{1°} indicates primary; AF, atrial fibrillation; ASA, aspirin; CV, cardiovascular; HF, heart failure; HR, hazard ratio; N/A, not applicable; pts, patients; RACE, Rate Control Efficacy in Permanent Atrial Fibrillation; RR, relative risk; Sx, symptom; and Tx, therapy.

Data Supplement 12. Antiarrhythmic Drug Therapy (Section 6.2.1)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs.	Patient Population	Endpoi	nts	Adverse Events	Comments
Author, real		. ,	Comparator (n)		Primary Endpoint & Results	Secondary Endpoint & Results		
ADONIS, Singh BN, et al., 2007 (168) 17804843	To assess the efficacy of dronedarone in maintenance of SR in pts with AF	RCT, double- blind (625)	Dronedarone 400 mg BID (417) PC (208)	Age ≥21 y ≥1 episode AF in previous 3 mo	Time to the 1st recurrence of AF or atrial flutter Dronedarone 158 d PC 59 d (p=0.002)	Ventricular rate after recurrence, dronedarone 104.6 bpm PC 116.6 bpm (p<0.001).	N/A	Dronedarone was more effective than PC in maintaining SR and in reducing ventricular rate during recurrent AF
AFFIRM Substudy, 2003 (169) 12849654	To evaluate the efficacy of antiarrhythmic drugs for AF	RCT, open- label (410)	Amiodarone 200 mg/d vs. class I drug vs. sotalol	Substudy of pts randomized to rhythm control	1° – proportion at 1 y alive, on Tx drug, and in SR 62% amiodarone vs. 23% class I drug (p<0.001) 60% amiodarone vs. 38% sotalol (p=0.002) 34% sotalol vs. 23% class I drug (p=0.488)	N/A	AEs leading to drug discontinuation 12.3% amiodarone 11.1% sotalol 28.1% class I agent Amiodarone pulmonary toxicity 1.3% at 1 y and 2.0% at 2 y 1 case torsade de pointes - quinidine	Amiodarone more effective than sotalol or class I agent for SR without cardioversion AEs were common
Aliot E, et al., 1996 (170) 8607394	To assess the safety and efficacy of flecainide vs. propafenone in PAF or atrial flutter	RCT, open- label (97)	Flecainide 100- 200 mg/d (48) Propafenone 600 mg/d (49)	Inclusion: >18 y with symptomatic PAF or atrial flutter Exclusion: AF last >72 h, Hx of MI or UA, Hx of VT, Hx of HF (NYHA class III or IV), LVEF<35%, PR>280 ms, QRS>150 ms, sick sinus syndrome or AV block in absence of pacemaker	Probability of SR at 1 y 0.619 flecainide 0.469 propafenone (p=0.79)	N/A	8.5% flecainide group had neurologic side effects 16.7% propafenone group GI side effects	Flecainide and propafenone similar efficacy (although small sample size and open-label design) Nonsignificant trend toward higher sideeffects with propafenone

ANDROMEDA, Kober L, et al., 2008 (171) 18565860	To evaluate the efficacy of dronedarone in HF pts	RCT, double- blind (627)	Dronedarone (310) PC (317)	Age >18 y, hospitalized for HF, LVEF<35%, NYHA class III or IV (Did not require AF Dx, Hx of AF 37-40%)	Death from any cause or HF hospitalization 17.1% dronedarone 12.6% PC HR: 1.38; 95% CI: 0.92-2.09; p=0.12	N/A	Death 8.1% dronedarone 3.8% PC HR: 2.13; 95% CI: 1.07-4.25; p=0.03	Dronedarone is associated with increased mortality in pts with severe HF and reduced LVEF related to worsening of HF
ASAP, Page RL, et al., 2003 (172) 12615792	To assess the frequency of asymptomatic AF in pts treated with azimilide	RCT, double- blind (1,380)	Azimilide 35- 125 mg/d (891) PC (489)	Inclusion: Symptomatic AF in SR at time of randomization Exclusion: Rest angina or UA, class IV CHF, Hx of torsade de pointes, QTc >440 ms, resting SR<50 bpm	Time to 1st documented asymptomatic AF – no significant difference 40% reduction in asymptomatic AF episodes in the 100 mg or 125 mg azimilide group vs. PC (p=0.03)	N/A	N/A	N/A
ATHENA, Hohnloser SH, et al., 2009 (173) 19213680	N/A	RCT, double- blind (4,628)	Dronedarone 400 mg BID (2,301) PC (2,327)	Inclusion: AF (paroxysmal or persistent) and ≥1 of these: >70 y, HTN, DM, LVEF<40%, LAD>50 mm, Hx of TIA/stroke/embolism	1° – 1 st hospitalization due to CV event or death 31.9% dronedarone 39.4% PC HR: 0.76; p<0.001	Death due to any cause CV death CV hospitalization	N/A	N/A
Bellandi F, et al., 2001 (174) 11564387	To evaluate the long-term efficacy and safety of propafenone and sotalol for maintaining SR	RCT, double- blind (194)	Propafenone HCL 900 mg/d (102) Sotalol HCL 240 mg/d (106) PC (92)	≥18 y, recurrent AF (≥4 episodes previous 12 mo) and episode of AF at enrollment <48 h	Proportion of pts remaining in SR at 1 y FU 63% propafenone 73% sotalol 35% PC (p=0.001)	N/A	4% ventricular arrhythmia with sotalol Drug discontinuation due to AEs – 9% propafenone, 10% sotalol, 3% PC	Sotalol and propafenone appear to have similar efficacy and are superior to PC at maintaining SR at 1 y
Benditt DG, et al., 1999 (175) 10496434	To evaluate the efficacy of sotalol for maintaining of SR	RCT, double- blind (253)	Sotalol 80 mg BID (59) Sotalol 120 mg BID (63) Sotalol 160 mg	Inclusion: symptomatic AF or atrial flutter and SR at time of randomization Dose reduction in presence of renal dysfunction	Time to first recurrent symptomatic AF or atrial flutter after steady state (intention to treat) 27 d PC	Proportion of pts free of AF 12 mo 28% PC 30% sotalol 80 mg 40% sotalol 120	Bradycardia and fatigue most common AEs No cases of torsade de pointes in this study	Outpatient initiation in 27%

[©] American College of Cardiology Foundation and American Heart Association, Inc.

			BID (62) PC (69)	Exclusion: QT>450 ms, sinus rate <50, other QT prolonging drugs, renal failure (CrCl<40 mL/min), Hx of HF, uncorrected hypokalemia, asymptomatic AF, sick sinus syndrome without pacer, MI<2 mo,	106 d sotalol 80 mg 229 d sotalol 120 mg 175 d sotalol 160 mg	mg 45% sotalol 160 mg		
Byrne-Quinn E, et al., 1970 (176) 4911757	To evaluate the efficacy of quinidine for maintenance of SR	RCT, double- blind (65)	Quinidine 1.2 g/d (28) PC (37)	syncope, TIA/stroke Inclusion: Pts hospitalized for AF with plan for cardioversion Exclusion: digoxin stopped 24 h prior	Percentage of pts at FU in SR 24.3% PC 57% quinidine	N/A	1 death presumed related to quinidine	Small sample size, variable FU period (5-15 mo)
Carunchio A, et al., 1995 (177) 7642012	To evaluate the efficacy and safety of flecainide and sotalol for maintenance of SR	RCT, open- label (66)	Flecainide acetate 200 mg/d (20) Sotalol HCL 240 mg/d (20) PC (26)	N/A	Arrhythmia free survival at 12 mo 70% flecainide 60% sotalol 27% PC p=0.002 AAD vs. PC p=0.163 flecainide vs. sotalol	N/A	N/A	Flecainide and sotalol have similar efficacy in prevention of recurrence of AF Side effects common but serious AE uncommon in this FU period
Channer KS, et al., 2004 (178) 14720531	To evaluate the efficacy of amiodarone to prevent recurrent AF after cardioversion	RCT, double- blind (161)	Amiodarone (short-term) 200 mg/d for 8 wk after DCCV (62) Amiodarone (long-term) 200 mg/d for 52 wk after DCCV (61) PC (38)	Inclusion: Age >18 y and sustained AF>72 h Exclusion: LVEF<20%, significant valve disease, female <50 y, thyroid, lung or liver disease, contraindication to anticoagulation	Percentage in SR at 1 y 49% long-term amiodarone 33% short-term (8 wk after DCCV) amiodarone 5% PC	Spontaneous conversion to SR 21% amiodarone and 0% in PC SR rhythm at 8 wk after DCCV – 16% PC, 47% short-term amiodarone, 56% long-term amiodarone	AEs leading to discontinuation 3% PC 8% short-term amiodarone 18% long-term amiodarone	Amiodarone pre-Tx allows chemical cardioversion in 1/5 of pts with persistent AF and is more effective at maintaining SR after DCCV Given the long-term AEs with amiodarone, 8 wk of adjuvant Tx suggested as option by authors

CTAF, Roy D, et al., 2000 (179) 10738049	Low dose amiodarone would be more efficacious in preventing recurrent AF than sotalol or propafenone	RCT (403)	Amiodarone 200 mg/d (201) Sotalol 160 mg BID (101) Propafenone 150 QID (101)	Symptomatic AF within previous 6 mo but not persistent AF>6mo	Recurrence of AF during FU (mean 16 mo) 35% amiodarone 63% sotalol or propafenone (p<0.001)	N/A	AEs requiring drug discontinuation 18% amiodarone vs. 11% sotalol or propafenone group (p=0.06)	Amiodarone is more effective than sotalol or propafenone in preventing recurrent AF (with a trend toward higher sideeffects)
DAFNE, Touboul P, et al., 2003 (180) 12919771	To determine the most appropriate dose of dronedarone for prevention of AF after DCCV	RCT, double- blind (199)	Dronedarone 800 mg/d (54) Dronedarone 1,200 mg/d (54) Dronedarone 1600 mg/d (43) PC (48)	Inclusion: age 21-85 y, pts with persistent AF (>72 h and <12 mo) scheduled for DCCV Exclusion: Hx of torsade de pointes, QT>500 ms, severe bradycardia, AV block, NYHA class III or IV HF, LVEF<35, ICD, WPW syndrome	Time to first documented AF recurrence at 6 mo 60 d for dronedarone 400 mg BID 5.3 d for PC (p=0.001)	Spontaneous conversion of AF with dronedarone 5.8 to 14.8% pts	Premature discontinuation 22.6% 1600 mg, 3.9% 800 mg	Small sample size, dose-finding study
DIAMOND, Pedersen OD, et al., 2001 (181) 11457747	To evaluate the efficacy of dofetilide to maintain SR in pt with LV dysfunction	RCT, double- blind (506)	Dofetilide 500 mcg/d (249) PC (257)	Inclusion: Persistent AF associated with either HF or recent acute MI Dose reduction for renal insufficiency Exclusion: HR: <50 bpm, QTc>460 ms (500 ms with BBB), K<3.6 or >5.5, CrCI<20 mL/min	Probability of maintaining SR at 1 y 79% dofetilide 42% with PC (p<0.001)	No effect on all- cause mortality Dofetilide associated with reduced rate of rehospitalization	Torsade de pointes occurred in 4 dofetilide pts (1.6%)	N/A
DIONYSOS, Le Heuzey JY, et al., 2010 (182) 20384650	To evaluate the efficacy and safety of amiodarone and dronedarone in pts with persistent AF	RCT, double- blind (504)	Amiodarone 600 mg QD for 28 d then 200 mg QD (255) Dronedarone 400 mg BID (249)	Age ≥21 y with documented AF for >72 h for whom CV and AAD were indicated and oral anticoagulation	Recurrence of AF (including unsuccessful CV) or premature study discontinuation at 12 mo 75.1% dronedarone, 58.8% amiodarone, HR: 1.59; 95% CI: 1.28-1.98; p<0.0001	N/A	Drug discontinuation less frequent with dronedarone (10.4 vs. 13.3%). MSE was 39.3% and 44.5% with dronedarone and amiodarone, respectively, at 12 mo (HR: 0.80;	Dronedarone was less effective than amiodarone in decreasing AF recurrence, but had a better safety profile

_								
Dogan A, et	To evaluate the	RCT, Single-	Propafenone	Recent onset or persistent	Mainly driven by AF recurrence with dronedarone compared with amiodarone (63.5 vs. 42.0%) Percentage of AF	Spontaneous	95% CI: 0.60 to 1.07; p=0.129), and mainly driven by fewer thyroid, neurologic, skin, and ocular events in the dronedarone group Discontinuation due	Propafenone is more
al., 2004 (183) <u>15255456</u>	efficacy of propafenone for maintenance of SR after cardioversion	blind (110)	450 mg/d (58) PC (52)	AF Exclusion: MI, HF, CABG<6 mo, severe COPD, LA thrombus, thyroid disease, inability to consent to DCCV	recurrences at 15 mo 39% propafenone 65% PC	conversion with drug predicted lower chance of recurrence	to side effects: 4 pts on propafenone and 1 PC (p=0.36)	effective than PC for prevention of recurrent AF
EURIDIS, Singh BN, et al., 2007 (168) 17804843	To assess the efficacy of dronedarone in maintenance of SR in pts with AF	RCT, double- blind (612)	Dronedarone 400 mg BID (411) PC (201)	≥1 episode AF in previous 3 mo, Age ≥2y	Time to the 1st recurrence of AF or atrial flutter 96 d dronedarone 41 d in the PC (p=0.01)	After AF recurrence, mean rate=117.5 bpm, PC=102.3 bpm, dronedarone (p<0.001)	N/A	Dronedarone was more effective than PC in maintaining SR and in reducing ventricular rate during recurrent AF
FAPIS, Chimienti M, et al., 1996 (184) 8607393	To compare the safety of flecainide to propafenone for Tx of PAF	RCT, open- label (200)	Flecainide acetate 200 mg/d (97) Propafenone HCL 450-900 mg/d (103)	Paroxysmal AF without structural heart disease	Probability of remaining free of AEs at 12 mo 77% flecainide 75% propafenone 1 VT in propafenone group 2 accelerated ventricular response with flecainide	Drug discontinuation 4 flecainide 5 propafenone	N/A	AEs appear occur at similar rate with propafenone and flecainide in this population with AF and without evidence of structural disease
GEFACA, Galperin J, et al., 2001 (185) 11907636	To evaluate the efficacy of amiodarone for restoration and maintenance of SR	RCT, double- blind (50)	Amiodarone 200 mg/d (47) PC (48)	Persistent AF>2 mo duration Exclusion: paroxysmal AF, age >75 y, HR<50 bpm, LA>60 mm	Recurrent AF in 37% amiodarone and 80% PC group Spontaneous conversion 34% with amiodarone and 0% PC	N/A	AEs 15% of pts on amiodarone	Amiodarone restored SR in 1/3 pts, increased success of DCCV, reduced and delayed recurrence of AF

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Kalusche D, et al., 1994 (186) 7846939	To compare the efficacy of sotalol to a fixed combination of quinidine and verapamil	RCT, open- label (82)	Quinidine sulfate 1000 mg/d Sotalol HCL 240-400 mg/d	N/A	SR at 6 and 12 mo 75.7% and 67.3% quinidine/verapamil 63.4 and 49.9% sotalol p=NS	N/A	5 pts quinidine/verapamil discontinued Tx due to noncardiac AEs, 3 pts in sotalol discontinued due to bradycardia No proarrhythmia noted	N/A
Kochiadakis GE, et al., 2004 (187) 15589019	Compare the efficacy and safety of sotalol and propafenone for prevention of recurrent AF	RCT, single- blind (254)	Propafenone HCL 240 mg/d (86) Sotalol HCL 320 mg/d (85) PC (83)	Symptomatic AF, successful chemical or DCCV if persistent	Percentage recurrence AF during FU 69/85 sotalol 45/86 propafenone 73/83 PC (p<0.001)	N/A	N/A	Long-term results show superiority of propafenone (question methods of comparison)
Kuhlkamp, et al., 2000 (188) 10898425	To evaluate the efficacy of metoprolol XL to reduce AF recurrence after cardioversion	RCT, double- blind (394)	Metoprolol XL 100 mg/d (197) PC (197)	Inclusion: Persistent AF with successful cardioversion (DC or chemical) Exclusion: Concomitant Tx with any class I or class 3 AAD, beta blocker or CCB	Percentage of pts with recurrent AF during FU (up to 6 mo) 48.7% metoprolol XL 59.9% PC (p=0.005)	Mean HR was lower with recurrent AF in pts on metoprolol (107 vs. 98; p=0.015)	SAEs similar with metoprolol or PC	Metoprolol XL prevents recurrent AF after cardioversion Short duration of FU
Naccarelli GV, et al., 1996 (189) 8607392	To compare the efficacy of flecainide to quinidine for PAF	RCT, open- label (239)	Flecainide acetate 200- 300 mg/d (122) Quinidine sulfate 1000- 1500 mg/d (117)	Symptomatic PAF	Percentage of pts with reported episodes of symptomatic AF 72% flecainide 74.3% quinidine (p=0.54)	Combined endpoint efficacy and tolerability at 1 y 70% flecainide vs. 55.4% quinidine (p<0.007)	N/A	Flecainide and quinidine have similar efficacy but flecainide is better tolerated
PAFAC, Fetsch T, et al., 2004 (190) 15302102	To compare the efficacy of quinidine and sotalol to PC for maintenance of SR in pt with persistent AF	RCT, double- blind (848)	Quinidine sulfate 480 mg/d Sotalol HCL 320 mg/d	Persistent AF lasting >7 d (mean duration: 15 mo), N=848, male: 66%, age (mean, SD): 63, ±9, structural heart disease: NS, left anterior descending: 45 mm, LVEF: 60%	At 12 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A

		_	l 50	T	T	T	ī	
DALLAC	To 00000	DCT double	PC Dronedarone	Ago SEE vivith parmanent	Consissant automasi	Lloopitalization	Most common AEs	Dronedarone
PALLAS, Connolly SJ, et al., 2011 (165) 22082198	To assess whether dronedarone would reduce major vascular events in high-risk permanent AF	RCT, double-blind (3236)	PC	Age >65 y with permanent AF or atrial flutter with no plan to restore SR and high risk feature: CAD, previous stroke or TIA, HF class II or III Sx, LVEF<40%, PAD or age >75 y, HTN & DM	Coprimary outcomes: Stroke, MI, SE, or CV death, 43 pts receiving dronedarone and 19 receiving PC (HR: 2.29; 95% CI: 1.34- 3.94; p=0.002 Unplanned CV hospitalization or death, 127 pts receiving dronedarone and 67 pts receiving PC (HR: 1.95; 95% CI: 1.45- 2.62; p<0.001)	Hospitalization for HF occurred in 43 pts in the dronedarone group and 24 in the PC group (HR: 1.81; 95% CI: 1.10- 2.99; p=0.02)	were diarrhea, asthenic condition, nausea and vomiting, dizziness, dyspnea, and bradycardia ALT>3x upper limit normal range occurred in 22 of 1,481 (1.5%) pts receiving dronedarone and in 7 of 1,546 (0.5%) receiving PC p=0.02	increased rates of HF, stroke, and death from CV causes in pts with permanent AF who were at risk for major vascular events.
Piccini JP, et al., 2009 (191) 19744618	To evaluate randomized trials of amiodarone and dronedarone for safety and efficacy in AF	Meta-analysis	4 trials of amiodarone vs. PC 4 trials of dronedarone vs. PC 1 comparison of amiodarone vs. dronedarone	Randomized PC-controlled trials of amiodarone and dronedarone for maintenance of SR in pts with AF	OR: 0.12 amiodarone vs. PC (95% CI: 0.08-0.19) OR: 0.79 dronedarone vs. PC (95% CI: 0.33-1.87)	N/A	Amiodarone trend towards increased mortality Amiodarone greater number AEs than dronedarone	Dronedarone is less effective than amiodarone but has fewer AEs

Plewan A, et al., 2001 (192) 11482924	N/A	RCT, open- label (128)	Sotalol 160 mg/d Bisoprolol fumarate 5 mg/d	Persistent AF (mean duration: 9 mo). N=128 Male: 62%. Age (mean, SD): 59, ±10 Structural heart disease: 72%. LAD: 48 mm. LVEF: 41%	At 8 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
PRODIS, Crijns HJ, et al., 1996 (193) 8842506	N/A	RCT, double- blind (56)	Disopyramide phosphate 750 mg/d Propafenone HCL 900 mg/d	Persistent AF (mean duration: 5 mo). N=56 Male: 68%. Age (mean, SD): 60, ±11 Structural heart disease: 65%. LAD: 46 mm. LVEF: NS	At 6 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
RAFT, Pritchett EL, et al., 2003 (194) 14556870	Assess the efficacy and safety of sustained-released propafenone for maintenance of SR	RCT, double- blind (523)	Propafenone hydrochloride 450-850 mg/d (397) PC (126)	Inclusion: Symptomatic AF (type not specified) SR at time of randomization Exclusion: Permanent AF, NYHA class III or IV HF, cardiac surgery <6 mo, MI<12 mo, WPW syndrome, 2nd or 3rd degree AV block, QRS>160 ms, HR<50 bpm, Hx of VF, VT or ICD	At 9 mo: Mortality Pro-arrhythmia AEs AF recurrence	N/A	N/A	N/A
Reimold SC, et al., 1993 (195) 8438741	To compare the efficacy of propafenone and sotalol for maintenance of SR	RCT, open- label (100)	Propafenone HCL 675 mg/d (50) Sotalol HCL 320 mg/d (50)	Pts with AF with previous AAD failure	Percentage with SR at 3, 6, and 12 mo 46%, 41%, 30% propafenone 49%, 46% sotalol	N/A	N/A	Propafenone and sotalol similar efficacy
Richiardi E, et al., 1992 (196) 1600529	To evaluate the efficacy and safety of oral propafenone vs. quinidine at preventing AF	RCT, open- label (200)	Propafenone 900 mg/d Quinidine 1000 mg/d	≥3 AF episodes in past 6 mo Exclusion: LA size >55 mm, hepatic or renal insufficiency, MI<30 d, pregnant, decompensated HF, thyroid dysfunction	SR at 6 mo 60% propafenone 56% quinidine SR at 1 y 48% propafenone 42% quinidine	p=NS	N/A	10% side effects propafenone 24% side-effects quinidine (p=0.02)
SAFE-T, Singh BN, et	To assess the efficacy of	RCT, double- blind	Amiodarone 300 mg/d	Inclusion: Persistent AF>72 h including at time of	Pharmacological Conversion to SR	Sustained SR improved QOL	NS difference in AEs among the 3 groups	N/A

al., 2005 (197) 15872201	amiodarone and sotalol in converting AF and maintenance of SR	(665)	Sotalol 320 mg/d PC	randomization & on oral anticoagulation Exclusion: Paroxysmal AF or atrial flutter, NYHA class III or IV HF, CrCl<60 mL/min, intolerance to beta blockers, Hx of long QT syndrome	27.1% amiodarone 24.2% sotalol 0.8% PC Median Time to Recurrence AF (intention to treat) 487 d amiodarone 74 d sotalol 6 d PC p<0.001	and exercise capacity		
SAFIRE-D, Singh S, et al., 2000 (198) 11067793	To determine the efficacy and safety of dofetilide in converting AF or atrial flutter to SR and maintaining SR for 1 y	RCT, double- blind (250)	Dofetilide 250- 1000 mcg/d PC	Inclusion: Age 18-85 y with AF or atrial flutter 2-26 wk duration Exclusion: Sinus node dysfunction, QRS>180 ms, QT interval>400 ms (QT>500 ms with BBB), sinus rate<50 bpm, Hx of renal or hepatic disease, use of verapamil, diltiazem, QT prolonging drugs	Pharmacological Conversion Rate 6.1% 125 mcg BID 9.8% 250 mcg BID 29.9% 500 mcg BID 1.2% PC p=0.015 250 mcg and p<0.001 500 mcg (vs. PC) Probability of SR at 1 y 0.40 125 mcg BID 0.37 250 mcg BID 0.58 500 mcg BID 0.25 PC	N/A	2 cases of torsade de pointes during initiation phase (0.8%) 1 sudden death (proarrhythmic) on Day 8 (0.4%)	In-hospital initiation and dosage adjustment based on QTc and CrCl to minimize proarrhythmic risk
SOPAT, Patten M, et al., 2004 (199) 15321697	To assess the effectiveness of 2 AAD on frequency of AF	RCT, double- blind (1033)	High-dose Quinidine sulfate 480 mg/d and verapamil 240 mg/d (263) Low-dose Quinidine sulfate 320 mg/d and	Age 18-80 y, symptomatic PAF Exclusion: cardiogenic shock, LA thrombus, MI or cardiac surgery <3 mo, UA, valve disease requiring surgery, ICD or pacemaker, sick sinus syndrome, 2 nd or 3 rd degree AV block, QTc>440 ms, bradycardia,	Time to 1st recurrence of symptomatic PAF or premature discontinuation 105.7 d PC 150.4 d high-dose quinidine/verapamil 148.9 d low-dose quinidine/verapamil	AF burden (% says with symptomatic AF) 6.1% PC 3.4% high dose 4.5% low dose 2.9% sotalol (p=0.026)	1 death and 1 VT event related to high-dose quinidine/verapamil 2 syncopal events related to sotalol	Quinidine/verapamil fixed combination similar efficacy to sotalol but with risk of SAEs

[©] American College of Cardiology Foundation and American Heart Association, Inc.

			verapamil 160 mg/d (255) Sotalol HCL 320 mg/d (264) PC (251)	renal or liver dysfunction, hypokalemia, bundle branch block Mean time under Tx 233 d	145.6 d sotalol (p<0.001)			
Stroobandt R, et al., 1997 (200) <u>9052343</u>	To assess the efficacy of propafenone at maintaining sinus rhythm	RCT, double- blind (102)	Propafenone HCL 150 mg TID (77) PC (25)	Age >18 y with AF, enrolled in maintenance phase after attempt at pharmacological conversion with IV propafenone (and if unsuccessful DCCV)	Proportion of pts free from recurrent symptomatic AF at 6 mo 67% propafenone 35% PC (p<0.001)	N/A	NS difference in AEs	Evidence for the efficacy of propafenone in maintaining sinus rhythm after cardioversion. Short duration of FU (6 mo)
SVA-3, Pritchett EL, et al., 2000 (201) 10987602	To assess the effectiveness of azimilide in reducing symptomatic AF or atrial flutter	RCT, double- blind (384)	Azimilide 50 mg, 100 mg, or 125 mg PC	Inclusion: Age ≥18 y, Symptomatic AF in SR at time of randomization Exclusion: Rest angina or UA, class IV CHF, Hx of torsade de pointes, QTc>440 ms, resting SR<50 bpm	Time to 1st symptomatic AF recurrence Azimilide 100 mg/125 mg QD vs. PC, HR: 1.58; p=0.005	N/A	2 sudden deaths in azimilide groups and 1 case of torsade de pointes	Initiated in outpatient setting
Villani R, et al., 1992 (202) 1559321	To compare the efficacy of amiodarone to disopyramide	RCT, open- label (76)	Amiodarone 200 mg/d (41) Disopyramide phosphate 500 mg/d (35)		Recurrence of AF at end of FU 57% disopyramide (13 mo) 32% amidarone (14 mo)	N/A	Disopyramide discontinued due to AE 14% <1 wk and another 14% by end of trial 8.5% developed hyperthyroidism	Amiodarone is more effective than disopyramide for prevention of recurrent AF

AAD indicates antiarrhythmic drug; ADONIS, American-Australian-African Trial With Dronedarone in Patients With Atrial Fibrillation or Atrial Flutter for the Maintenance of Sinus Rhythm; AE, adverse event; AF, atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; ALT, alanine aminotransferase; ANDROMEDA, European Trial of Dronedarone in Moderate to Severe Congestive Heart Failure; ASAP, ASA and Plavix; ATHENA, A Trial With Dronedarone to Prevent Hospitalization or Death in Patients With Atrial Fibrillation; AV, atrioventricular; BBB, bundle-branch block; BID, twice daily; CABG, coronary artery bypass graft; CCB, calcium channel blocker; CHF, congestive heart failure; COPD, chronic obstructive pulmonary disorder; CrCl, creatinine clearance; CTA, Canadian Trial of Atrial Fibrillation; CV, cardiovascular; DAFNE, Dronedarone Atrial Fibrillation Study after Electrical Cardioversion; DC, direct current; DCCV, direct current cardioversion; DIAMOND, Danish Investigators of Arrhythmia and Mortality on Dofetilide; DIONYSOS, Efficacy & Safety of Dronedarone Versus Amiodarone for the Maintenance of Sinus Rhythm in Patients With Atrial Fibrillation; DM, diabetes mellitus; Dx, diagnosis; FAPIS, Flecainide and Propafenone Italian Study; FU, follow-up; GEFACA, Grupo de Estudio de Fibrilacion Auricular Con Amiodarona; GI, gastrointestinal; HCL, hydrochloride; HF, heart failure; HR, hazard ratio; HTN, hypertension; Hx, history; ICD, implantable cardioverter defibrillator; K, potassium; LA, left atrial; LAD, left atrial dimension; LV, left ventricular; LVEF, left ventricular ejection fraction; MI, myocardial infarction; MSE, main safety endpoint; N/A, not applicable; NS, not significant; NYHA, New York Heart Association; OR, odds ratio; PAF, paroxysmal atrial fibrillation; PALLAS, Permanent Atrial Fibrillation Outcome Study Using Dronedarone on Top of Standard Therapy; PC, placebo; pts, patients; QD,

once daily; QID, four times a day; QOL, quality of life; RAFT, Rythmol Atrial Fibrillation Trial; RCT, randomized controlled trial; RR, relative risk; SAFE-T, Sotalol Amiodarone Atrial Fibrillation Efficacy Trial; SAFIRE-D, Symptomatic Atrial Fibrillation Investigative Research on Dofetilide; SD, standard deviation; SOPAT, Suppression of Paroxysmal Atrial Tachyarrhythmias; SR, sinus rhythm; SVA, Supraventricular Arrhythmia Program; TIA, transient ischemic attack; TID, three times a day; Tx, therapy; UA, unstable angina; VF, ventricular fibrillation; VT, ventricular tachycardia; and WPW, Wolff-Parkinson-White.

Data Supplement 13. Outpatient Initiation of Antiarrhythmic Drug Therapy (Section 6.2.1.2)

Study Name, Author, Year	Study Type	Intervention (n)	Rhythm at Time of	Place of Initiation	Patient Population	Adverse Events
Benditt D, et	Prospective	Sotalol 80 BID (59)	Initiation SR	50 pts -	Structural heart disease 57%	No cases of VT/VF/torsade
al., 1999 (175) 10496434	dose finding study	Sotalol 120 BID (63) Sotalol 160 BID (62) PC (69)		outpatient 134 pts - inpatient	Exclusion: Hx of torsade de pointes, CHF, QT>450 ms, hypokalemia hypomagnesemia, bradycardia	QT>520 ms in 7 pts (4 in 120 mg BID and 3 in 160 mg BID) Premature discontinuation due to AEs 25% inpatients, but
						6% of outpatients (bradycardia predominantly)
Chung MK, at al., 1998 (203) 9669266	Retrospective	Sotalol	Not documented	Inpatient	120 inpatients admitted for sotalol initiation	7 (5.8%) new or increased ventricular arrhythmias, 2 with torsades de pointes (d 6 in pt with pacemaker and hypokalemia and d 4 in pts with ICD)
					Structural heart disease (80%)	20 (16.7%) with significant bradycardia
						8 (6.7%) excessive QT prolongation
SAFE-T, Singh BN, et al., 2005 (197)	Prospective RCT	Total 665 Amiodarone 267 Sotalol 261	AF	Outpatient	Initiated sotalol or amiodarone in the outpatient setting during AF	1 case torsade in sotalol group (nonfatal, time of occurrence not specified)
15872201		Placebo 137			Excluded CHF class III or IV, Hx of long QT, CrCl<60	13 deaths/267 (6 sudden) amiodarone group 15 deaths/261 (8 sudden) sotalol group 3 deaths/137 (2 sudden) PC group (no significant difference)
Zimetbaum PJ, et al.,	Prospective	172 Amiodarone 66	SR	Outpatient	Pts with AF in sinus at time of initiation started on oral	6 symptomatic AEs (none before d 4)
1999 (204)		(38%)			antiarrhythmic medication	Class Ic
<u>10072241</u>		Flecainide 45 (26%)			Descripted 4 on 2 description of AAD in	3 atrial flutter with 1:1 d 6 or 7
		Sotalol 20 (12%) Disopyramide 16			Received 1 or 2 doses of AAD in hospital or clinic and monitored for	1 symptomatic brady d 4
		(9%)			≤8 h and then 10 d continuous loop	Sotalol
		Propafenone 11 (6%)			event recorder	1 symptomatic bradycardia d 7
		Quinidine 8 (5%)			Eviluaioni OTo>FFO ma NIVLIA alasa	1 QT prolongation 370-520 ms d 4
		Procainamide 6 (4%)			Exlusion: QTc>550 ms, NYHA class III or IV CHF, or pacemaker	

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Hauser TH, et al., 2003 (205) 12804730	Prospective	409 Amiodarone 212 (51.8%) Class Ic 127 (31.1%) Propafenone 64 (15.6%) Flecainide 63 (15.4%) Sotalol 37 (9.0%) Class IA 33 (8.1%) Quinidine 8 (2%) Disopyramide 16 (3.9%) Procainamide 9 (2.2%)	SR	Outpatient	Pts with AF in sinus at time of initiation started on oral AAD with daily 30 s recording or with Sx	Amiodarone 2 Death (sudden) d 7 and d 9 3 Bradycardia requiring pacemaker d 6, 7, and 8 9 Bradycardia requiring dose reduction Class Ic Bradycardia d 7 and d 9 dose reduction Sotalol – none Quinidine Death (sudden) d 3
CTAF, Roy D, et al., 2000 (179) 10738049	Prospective open-label RCT	403 Amiodarone 201 Sotalol 101 Propafenone 101	Sinus≈60%	Outpatient	Exclusion: QTc>480, bradycardia <50 bpm	Arrhythmic deaths – 3 amiodarone group (2 had been off the drug >1 y) and 1 in sotalol/propafenone group Cardiac arrest due to torsade – propafenone Serious bradyarrhythmias – 6 amiodarone 7 in sotalol/propafenone group Time to event after initiation not specified All events occurred beyond 2 d of drug initiation mostly bradyarrhythmias
Kochiadakis GE, et al., 2004 (187) <u>15589019</u>	N/A	254 Sotalol 85 Propafenone 86 PC 83	Sinus	Inpatient	N/A	No torsades noted Sotalol - 3 bradycardia during loading phase Propafenone – 1 bradycardia, 1 QRS widening

AAD indicates antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; BID, twice daily; CHF, congestive heart failure; CrCl, creatinine clearance; CTAF, Canadian Trial of Atrial Fibrillation; Hx, history; ICD, implantable cardioverter-defibrillator; IV, intravenous; NYHA, New York Heart Association; pts, patients; RCT, randomized controlled trial; RR, relative risk; SAFE-T, Sotalol Amiodarone Atrial Fibrillation Efficacy Trial; SR, sinus rhythm; Sx, symptom; VF, ventricular fibrillation; and VT, ventricular tachycardia.

Data Supplement 14. Upsteam Therapy (Section 6.2.2)

Data Gappionio	it i ii opotouiii iiii	oralpy (Goodien (<u> </u>				
Study Name,	Study Aim	Study Type/	Intervention vs.	Patient Population	End	Comments	
Author, Year		Size (N)	Comparator (n)				
					Primary Endpoint & Results	Secondary Endpoint & Results	

ANTIPAF, Goette A, et al., 2012 (206) 22157519	Effect of olmesartan on AF burden in pts with paroxysmal AF and no structural heart disease	Prospective, PC-controlled RCT	Olmesartan 40 mg QD (214) PC (211)	Pts with PAF and no other indication for ACE inhibitor or ARB Tx	No difference in the 1° endpoint of AF burden (p=0.770)	No difference in QOL, time to 1st AF recurrence, time to persistent AF and hospitalizations	In pts with AF (2° prevention) but without structural disease, 1 y of ARB does not appear to decrease AF burden
GISSI-AF, 2009 (207) 20435196	N/A	Prospective, PC-controlled, RCT	Valsartan (722) PC (720)	AF and underlying CV disease, diabetes, or left atrial enlargement	Co-primary endpoints: Time to first recurrence of AF, 295 d valsartan, 271 d PC Proportion of pts who had >1 recurrence of AF>12 mo, 26.9% valsartan, 27.9% PC OR: 0.95; p=0.66	N/A	Tx with valsartan not associated with reduced AF
Healey JS, et al., 2005 (208) 15936615	Systematic review of all RCT evaluating the benefit of trials of ACE inhibitor and ARBs in prevention of AF	Meta-analysis	N/A	11 studies included with 56,308 pts	ACE inhibitor and ARB reduced incidence of AF (RR: 0.28; p=0.0002) Reduction in AF greatest in pts with HF (RR: 0.44; p=0.007) No significant reduction in pts with HTN (RR: 0.12; p=0.4) although 1 study 29% reduction in pts with LVH (RR: 0.29)	N/A	ACE inhibitor and ARBs appear to be effective in prevention of AF probably limited to pts with systolic LV dysfunction or HTN LVH
J-RHYTHM II, Yamashita T, et al., 2011 (208, 209) 21148662	N/A	Open label, RCT	Candesartan Amlodipine	Pts with PAF (2° prevention) and HTN	N/A	N/A	Tx of HTN by candesartan was not superior to amlodipine for reduction in AF frequency
Schneider MP, et al., 2010 (210) 20488299	N/A	Meta-analysis	N/A	23 studies included with 87,048 pts	N/A	N/A	N/A

^{1°} indicates primary; 2°, secondary; ACE, angiotensin-converting enzyme; AF, atrial fibrillation; ANTIPAF, Angiotensin II-Antagonist in Paroxysmal Atrial Fibrillation; ARB, angiotensin-receptor blockers; CV, cardiovascular; GISSI-AF, Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation; HF, heart failure; HTN, hypertension; J-RHYTHM, Japanese Rhythm Management Trial for Atrial Fibrillation; LV, left ventricular; LVH, left ventricular hypertrophy; N/A, not applicable; OR, odds ratio; PAF, paroxysmal atrial fibrillation; PC, placebo; pts, patients; QD, once daily; QOL, quality of life; RCT, randomized controlled trial; RR, relative risk; and Tx, therapy.

Data Supplement 15. AF Catheter Ablation to Maintain Sinus Rhythm (Section 6.3)

Study Name, Author, Year	Study Aim	Study Type/ Size (N)	Intervention vs. Comparator (n)	Type of AF	Ablation Technique	Endpoints	AF Free at 1 y Ablation AAD P val		Rate to RFA		Adverse Events	Study Limitations
						Primary Endpoint & Results			P value			
Krittayaphong R, et al., 2003 (211) <u>12866763</u>	To compare the efficacy of amiodarone to RFA for maintenanc e of SR	RCT (30)	RFA Amiodarone	Paroxysmal and persistent	Circumferen tial PVI with anatomic isolation	Freedom from AF at 12 mo	79%	40%	0.018	Not stated	1 stroke in RFA arm 46.7% AE in amiodarone arm	Small sample size, single center
RAAFT, Wazni OM, et al., 2005 (212) 15928285	To determine whether PVI is feasible as 1st line Tx for symptomatic AF	RCT (70)	RFA (33) AAD (37)	Paroxysmal	Segmental PVI with electrical isolation	Freedom from AF at 12 mo (Any recurrence of symptomatic AF or asymptomatic AF>15 s) 87% RFA 37% AAD	87%	37%	p<0.001	49%	Pulmonary vein stenosis 2 (6%) in RFA group	N/A
CACAF, Stabile G, et al., 2005 (213) 16214831	Compare RFA to AAD for prevention of AF in pts who failed AAD	RCT (137)	RFA (68) AAD – primarily amiodarone (69)	Paroxysmal and persistent	Circumferen tial PVI with anatomic isolation	Freedom from AF at 12 mo 55.9% RFA 8.7% AAD p<0.001	56%	9%	p<0.001	57%	4.4% major complications RFA	N/A

Oral H, et al., 2006 (214) 16908760	Persistent AF Compare RFA to AAD for prevention of AF	RCT (146)	RFA (77) Cardioversio n with short-term amiodarone (69)	Persistent	Circumferen tial PVI with anatomic isolation	Monthly freedom from AF off AAD 74% RFA 58% control (intention to treat) p=0.05 70% RFA 4% control (on-Tx analysis) p<0.001	70% 74%	4% (on-Tx analysis) 58% (intention to treat analysis)	p<0.001 p=0.05	77%	N/A	77% AAD crossed over to RFA
APAF Pappone C, et al., 2006 (128) 14707026	Paroxysmal AF	RCT (198)	RFA (99) AAD (99)	Paroxysmal	Circumferen tial PVI with anatomic isolation	Freedom from AF at: 12 mo 86% RFA 22% AAD	86%	22%	p<0.001	42%	RFA: 1 TIA, 1 pericardial effusion not requiring drainage AAD: 3 proarrhythmia flecainide, 7 thyroid disfunction amiodarone, 11 sexual dysfunction sotalol	Single center, high crossover rate (42 of 99, 42%)
A4 Jais P, et al., 2008 (215) 19029470	Compare RFA to AAD in paroxysmal AF	RCT (112)	RFA (53) AAD (59)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from AF at 12 mo	89%	23%	p<0.001	63%	RFA: (155 ablation procedures, 2 tamponade, 2 groin, hematoma) AAD: 1 hyperthyroidism	N/A
Forleo GB, et al., 2009 (216) 19443515	Compare RFA to AAD in pts with	RCT (70)	RFA (35) AAD (35)	Paroxysmal and persistent	Circumferen tial PVI with electrical	N/A	80%	43%	p=0.001	Not stated	N/A	N/A

[©] American College of Cardiology Foundation and American Heart Association, Inc.

	diabetes	I		ı	isolation	T		<u> </u>	1			1
Thermocool Wilber DJ, et al., 2010 (217) 20103757	Compare RFA to AAD in paroxysmal AF	RCT (167)	RFA (106) AAD (61)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from protocol-defined Tx failure (documented symptomatic AF, repeat ablation >80 d after initial, changes in drug regimen post blanking, absence of entrance block)	66%	16%	p<0.001	59%	4.9% RFA 8.8% AAD	Catheter ablation is more effective than medical Tx alone in preventing recurrent Sx of paroxysmal AF in pts who have already failed Tx with 1 AAD
STOP-AF Packer DL, et al., 2013 (218) 23500312	Assess efficacy of cryoballoon catheter ablation to AAD Tx in PAF	RCT (245)	Cryoballoon ablation (163) AAD (flecainide, propafenone , sotalol) (82)	Paroxysmal	Circumferen tial PVI with electrical isolation	Freedom from CTF (no detected AF, no AF interventions, no use of non-study drugs) 3-mo blanking period 69.9% cryoballoon (57.7% off drug) vs. 7.3% AAD (intention to treat) 60.1% single ablation (n=98)	70%	7.3%	p<0.001	79%	All events: cryoablation 12.3%, AAD 14.6% Procedure event rate 6.3% Phrenic nerve paralysis 11.2% (29) with 86.2% (25) resolved at 12 mo	N/A
RAAFT2 Morillo C, et al., 2014 (219)	Compare RFA to AAD as first-line therapy for pts with AF	RCT (127)	RFA (66) AAD (61)	Paroxysmal (98%%) and Persistent	Circumferen tial PVI with electrical isolation	AF, atrial flutter, or atrial tachycardia >30 s at 24 months	45%	28%	p=0.02	47%	9% RFA 5% AAD	>20% additional ablation
MANTRA-PAF	Compare	RCT (294)	RFA (146)	Symptomati	Circumferen	Cumulative	13%	19%	p=0.10	36%	RFA group – 1	No difference

[©] American College of Cardiology Foundation and American Heart Association, Inc.

Cosedis	RFA to AAD		С	tial PVI with	burden of AF				death due to	in cumulative
Nielsen J, et	as 1 st -line Tx	AAD (class	Paroxysmal	voltage					procedural	burden of AF
al., 2012 (220)	for pts with	Ic or class	AF prior to	abatement	Per visit burden	9% AF	18% AF	p=0.007	stroke and 3	endpoint and
23094720	AF	III) (148)	AAD Tx		at 24 mo	burden	burden		tamponade	no difference
						at 24 mo	at 24	p=0.01		in burden at
					Freedom from		mo71%			3, 6, 12 or 18
					AF at 24 mo	85%				mo

A4 indicates Catheter Ablation Versus Antiarrhythmic Drugs for Atrial Fibrillation; AAD, antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; APAF, Ablate and Pace in Atrial Fibrillation; CACAF, Catheter Ablation for the Cure of Atrial Fibrillation; CTF, chronic treatment failure; N/A, not applicable; PAF, paroxysmal atrial fibrillation; PVI, pulmonary vein isolation; RAAFT, Radiofrequency Ablation for Atrial Fibrillation Trial; RCT, randomized controlled trial; RFA, radiofrequency ablation; RR, relative risk; SR, sinus rhythm; STOP-AF, Sustained Treatment of Paroxysmal Atrial Fibrillation; Sx, symptom; TIA, transient ischemic attack; and Tx, therapy.

Data Supplement 16. Meta-Analyses and Surveys of AF Catheter Ablation (Section 6.3)

Study Name, Author, Year	Study Aim	Study Size (N)	Patient Population	Study Intervention	Endpoints	Follow-Up	Adverse Events
Bonnano C, et al., 2010 (221) 19834326	Systematic review of RCT of RFA vs. AAD	8 studies (844 pts)	N/A	N/A	98 (23.2%) of 421 pts in the Tx group and 324 (76.6%) of 423 pts in the control group had atrial tachyarrhythmia recurrence	N/A	N/A
Calkins H, et al., 2009 (222) 19808490	Systematic review of radiofrequency ablation for AF	63 studies included (8789 pts)	Mean age 55.5 y	N/A	Single-procedure success rate of ablation off AAD Tx was 57% (95% CI: 50% to 64%) Multiple procedure success rate of AAD was 71% (95% CI: 65% to 77%) Multiple procedure success rate on AAD or with unknown AAD usage was 77% (95% CI: 73% to 81%)	Major complication rate 4.9% Stroke/TIA 0.5% Mortality 0.7% Cardiac tamponade 0.8% PV stenosis 1.6% LA/esophageal fistula 0.0%	N/A
Parkash R, et al., 2011 (223) 21332861	Systematic review of RCT to assess optimal technique for RFA of AF	N/A	N/A	N/A	Freedom from AF after a single procedure RFA was found to be favorable in prevention of AF over AADs in either paroxysmal (5 studies, RR: 2.26; 95% CI: 1.74-2.94) or persistent AF (5 studies, RR: 3.20; 95% CI: 1.29-8.41)	Wide-area PVI appeared to offer the most benefit for both paroxysmal (6 studies, RR: 0.78; 95% CI: 0.63-0.97) and persistent AF (3 studies, RR: 0.64; 95% CI: 0.43-0.94)	N/A
Piccini JP, et al., 2009 (224) 20009077	Meta-analysis of all RCTs comparing PVI and medical Tx for the	N/A	N/A	N/A	Freedom from recurrent AF at 12 mo PVI was associated with markedly increased odds of freedom	N/A	Among those randomly assigned to PVI, 17% required a repeat PVI ablation before 12 mo. The

[©] American College of Cardiology Foundation and American Heart Association, Inc.

maintenance of	from AF at 12 mo of FU (n=266/344	rate of major complications
sinus rhythm	[77%] vs. n=102/346 [29%];	was 2.6% (n=9/344) in the
,	OR: 9.74; 95% CI: 3.98-23.87)	catheter ablation group

AAD indicates antiarrhythmic drug; AF, atrial fibrillation; ; FU, follow-up; LA, left atrial; N/A, not applicable; OR, odds ratio; pts, patients; PV, pulmonary vein; PVI, pulmonary vein isolation; RCT, randomized controlled trial; RFA, radiofrequency ablation; RR, relative risk; TIA, transient ischemic attack; and Tx, therapy.

Data Supplement 17. Specific Patient Groups (Section 7)

Study	Aim of study	Study Size	Patient Population / Inclusion & Exclusion Criteria	Endpoint(s)	Statistical Analysis Reported	CI and/or P values	OR/HR/RR/ Other	Study Conclusion
Roy	To investigate	1,376 (682	Inclusion criteria: LVEF≤35% (measured by	1° outcome	The 1° outcome, death from	None of the		The routine strategy of
	maintenance of	in rhythm-	nuclear imaging, echocardiography, or cardiac	was time to	CV causes, occurred in 182 pts	2° outcomes		rhythm control does
	SR (rhythm	control	angiography, with testing performed ≤6 mo	death from	(27%) in the rhythm-control	differed		not reduce the rate of
D, et al.,	control) with	group and	before enrollment); Hx of CHF (defined as	CV causes	group and 175 pts (25%) in the	significantly		death from CV
2008 (225)	ventricular rate	694 in rate-	symptomatic NYHA class II or IV within the		rate-control group	between the		causes, as compared
<u>18565859</u>	control in pts	control	previous 6 mo, asymptomatic condition that pt			Tx groups		with a rate-control
	with LVEF≤35%	group)	had been hospitalized for HF during the previous		Death from any cause (32% in			strategy in pts with AF
	and Sx of CHF,		6 mo, or LVEF≤25%; Hx of AF (with EKG		the rhythm-control group and	95% CI:		and CHF
	and a Hx of AF		documentation), defined as 1 episode lasting for		33% in the rate-control group)	0.86-1.30;	HR: 1.06	
			≥6 h or requiring cardioversion within the			p=0.53		
			previous 6 mo or an episode lasting for ≥10 min		Ischemic or hemorrhagic			
			within the previous 6 mo and previous electrical		stroke 3% and 4%,	95% CI:		
			cardioversion for AF; and eligibility for long-term		respectively	0.80-1.17;	HR: 0.97	
			Tx in either of the 2 study groups			p=0.73		
					Worsening HF (defined as HF			
			Exclusion criteria: Persistent AF for ≥12 mo, a		requiring hospitalization,	95% CI:		
			reversible cause of AF or HF, decompensated		administration of an IV diuretic,	0.40-1.35;	HR: 0.74	
			HF within 48 h prior to intended randomization,		or change in Tx strategy)	p=0.32		
			use of AADs for other arrhythmias, 2 nd degree or					
			3rd degree AVB (bradycardia of <50 bpm), Hx of		Composite outcome of death	95% CI:		
			the long-QT syndrome, previous ablation of an		from CV causes, stroke, or	0.72-1.06;	HR: 0.87	
			AV node, anticipated cardiac transplantation		worsening HF	p=0.17		
			within 6 mo, renal failure requiring dialysis, lack					
			of birth control in women of child-bearing			95% CI:		
			potential, estimated life expectancy of <1 y, and			0.77-1.06;	HR: 0.90	
			an age <18 y			p=0.20		

AFFIRM, Olshansky B, et al., (163) 15063430	To evaluate and compare several drug classes for long-term ventricular rate control	2027	Inclusion criteria: (All criteria must have been met). Episode of AF documented on EKG or rhythm strip within last 6 wk, ≥65 y or <65 y + ≥1 clinical risk factor for stroke (systemic HTN, DM, CHF, TIA, prior cerebral vascular accident, left atrium ≥50 mm by echocardiogram, fractional shortening <25% by echocardiogram (unless paced or LBBB present), or LVEF<0.40 by radionuclide ventriculogram, contrast angiography, or quantitative echocardiography), duration of AF episodes in last 6 mo must total ≥6 h, unless electrical and/or pharmacologic cardioversion was performed prior to 6 h, duration of continuous AF must be <6 mo, unless normal SR can be restored and maintained ≥24 h, in opinion of clinical investigator, pt (based on clinical and laboratory evaluation before randomization) must be eligible for both Tx groups, based on pt Hx, pt must be eligible for ≥2 AADs (or 2 dose levels of amiodarone) and ≥2 rate-controlling drugs Exclusion criteria: Not presented. Based on the judgment that certain therapies are contraindicated or inclusion would confound the result. Criteria included cardiac, other medical, and nonmedical	Overall rate control with various drugs (average FU 3.5±1.3 y)	Overall rate control was met in 70% of pts given beta blockers as the 1st drug (with or without digoxin), vs. 54% with CCBs (with or without digoxin), and 58% with digoxin alone Multivariate analysis revealed a significant association between 1st drug class and several clinical variables, including gender, Hx of CAD, pulmonary disease, CHF, HTN, qualifying episode being the 1st episode of AF, and baseline heart rate	N/A	N/A	In pts with AF, rate control is possible in the majority of pts. In the AFFIRM FU study, beta blockers were most effective. The authors noted frequent medication changes and drug combinations were needed
---	---	------	--	--	--	-----	-----	---

ANDROME DA, Kober L, et al., 2008 (171) 18565860	To evaluate the efficacy of dronedarone in reducing hospitalization due to CHF in pts with symptomatic HF	627	Inclusion criteria: Pts ≥18 y hospitalized with new or worsening HF and who had ≥1 episode of SOB on minimal exertion or at rest (NYHA III or IV) or paroxysmal nocturnal dyspnea within the month before admission Exclusion criteria: LV wall motion index of >1.2 (approximating an EF of >35%), acute MI within 7 d prior to screening, a heart rate <50 bpm, PR interval >0.28 s, sinoatrial block or 2nd or 3rd degree AV block not treated with a pacemaker, Hx of Torsades de pointes, corrected QT interval >500 ms, a serum potassium level <3.5 mmol/L, use of class I or III AADs, drugs known to cause Torsades de pointes, or potent inhibitors of the P450 CYP3A4 cytochrome system, other serious disease, acute myocarditis, constrictive pericarditis, planned or recent (within the preceding mo) cardiac surgery or angioplasty, clinically significant obstructive heart disease, acute pulmonary edema within 12 h before randomization, pregnancy or lactation, expected poor compliance, or participation in another clinical trial	The 1° endpoint was the composite of death from any cause or hospitalizati on for HF	After inclusion of 627 pts, the trial was prematurely terminated for safety reasons. A median FU of 2-mo death occurred in 8.1% of dronedarone group and 3.8% of PC group After additional 6 mo, 42 pts in dronedarone group (13.5%) and 39 pts in PC group (12.3%) died The 1° endpoint did not differ significantly between the 2 groups; there were 53 events in the dronedarone group (17.1%) and 40 events in the PC group (12.6%)	p=0.03; 95% CI: 1.07- 4.25 p=0.60; 95% CI: 0.73- 1.74 p=0.12; 95% CI: 0.92- 2.09	HR: 2.13	Dronedarone increased early mortality in pts recently hospitalized with symptomatic HF and depressed LV function. 96% of deaths were attributed to CV causes, predominantly progressive HF and arrhythmias
--	---	-----	--	--	---	--	----------	--

RACE II Van Gelder IC, et al., 2010 (167) 20231232	To investigate if lenient rate control is not inferior to strict control for preventing CV morbidity and mortality in pts with permanent AF	614	Inclusion criteria: Permanent AF up to 12 mo, age ≤80 y, mean resting heart rate >80 bpm, and current use of oral anticoagulation Tx (or ASA, if no risk factors for thromboembolic complications present) Exclusion Criteria: Paroxysmal AF; contraindications for either strict or lenient rate control (e.g., previous adverse effects on negative chronotrophic drugs); unstable HF defined as NYHA IV HF or HF necessitating hospital admission <3 mo before inclusion; cardiac surgery <3 mo; any stroke; current or foreseen pacemaker, ICD, and/or cardiac resynchronization Tx; signs of sick sinus syndrome or AV conduction disturbances (i.e., symptomatic bradycardia or asystole >3 s or escape rate <40 bpm in awake Sx-free pts; untreated hyperthyroidism or <3 mo euthyroidism; inability to walk or bike	Composite of death from CV causes, hospitalizati on for HF, and stroke, SE, bleeding and life-threatening arrhythmic events. FU duration 2 y, with a maximum of 3 y	1° outcome incidence at 3 y was 12.9% in the lenient-control group and 14.9% in the strict-control group. Absolute difference with respect to the lenient-control group of -2.0 percentage points More pts in the lenient-control group met the heart rate target or targets (304 [97.7%] vs. 203 [67.0%] in the strict-control group) Frequencies of Sx and AEs were similar in the 2 groups	Absolute risk difference, -2.0% Absolute risk difference, CI: -7.6-3.5; p<0.001 90% CI: 0.58-1.21; p=0.001 p<0.001	HR: 0.84	Lenient rate control is as effective as strict rate control and easier to achieve in pts with permanent AF
Gaita F, et al., 2007 (226) 17531584	Assess usefulness and safety of transcatheter ablation of AF in pts with HCM	26	Pts with HCM with paroxysmal (n=13) or permanent (n=13) AF refractory to antiarrhythmic Tx Characteristics: age 58±11 y, time from AF onset 7.3±6.2 y, left atrial volume 170±48 mL, 19±10 mo clinical FU	Pulmonary vein isolation at RFCA plus linear lesions	64% overall success rate 10 of these 16 success pts were off AAD Tx at final evaluation 77% success rate in PAF compared with 50% in the subgroup with permanent AF	NYHA FC in those achieving NSR 1.2±0.5 vs. 1.7±0.7 before the procedure, p=0.003	N/A	RFCA proved a safe and effective therapeutic option for AF, improved functional status, and was able to reduce or postpone the need for long-term pharmacologic Tx

Kilicaslan F, et al., 2006 (227) <u>16500298</u>	The purpose of this study was to report the results and outcome of PV antrum isolation in pts with AF and HOCM	27	27 pts with AF and HOCM who underwent PV antrum isolation between February 2002 and May 2004 Mean age 55±10 y Mean AF duration was 5.4±3.6 y AF was paroxysmal in 14 (52%), persistent in 9 (33%), and permanent in 4 (15%) Mean FU of 341±237 d	Maintenance of sinus rhythm after PV antrum isolation	13 pts (48%) had AF recurrence 5 of the 13 with recurrence maintained sinus rhythm with AADs, 1 of 13 remained in persistent AF, 7 of 13 underwent a second PV antrum isolation. After 2 nd ablation: 5 pts remained in SR Final success rate=70% (19/27) 2 pts had recurrence after 2 nd ablation; 1 maintained SR with AADs and 1 remained in persistent AF	N/A	N/A	AF recurrence after the 1st PV antrum isolation is higher in pts with HOCM. However, after repeated ablation procedures, long-term cure can be achieved in a sizable number of pts. PV antrum isolation is a feasible therapeutic option in pts with AF and HOCM
Bunch TJ, et al., 2008 (228) 18479329	Assess efficacy of RFCA for drug-refractory AF in HCM	32	Consecutive pts (25 male, age 51±11 y) with HCM underwent PV isolation (n=8) or wide area circumferential ablation with additional linear ablation (=25) for drug-refractory AF Paroxysmal AF=21 (64%) pts had paroxysmal AF Persistent/permanent AF=12 (36%) had persistent/permanent AF Duration AF=6.2±5.2 y Average EF=0.63±0.12 Average left atrial volume index was 70±24 mL/m² FU of 1.5±1.2 y	Survival with AF elimination and AF control	N/A	1-y survival with AF elimination was 62% (95% CI: 0.66-0.84) and with AF control was 75% (95% CI: 0.66-0.84)	N/A	AF control was less likely in pts with a persistent/chronic AF, larger left atrial volumes, and more advanced diastolic disease. Additional linear ablation may improve outcomes in pts with severe left atrial enlargement and more advanced diastolic dysfunction. 2 pts had a periprocedureal TIA, 1 PV stenosis, and 1 died after mitral valve replacement from prosthetic valve thrombosis. QOL scores improved from baseline at 3 and 12 mo

Di Donna P, et al., 2010 (229) 20173211	Assess the outcome of a multicentre HCM cohort following RFCA for symptomatic AF refractory to medical Tx	61	Age 54±13 y; Time from AF onset 5.7±5.5 y Paroxysmal AF=35; (57%) Recent persistent AF=15; (25%) Long-standing persistent AF=11; (18%) Ablation scheme: pulmonary vein isolation plus linear lesions 32 of 61 pts, 32 (52%) required redo procedures. Antiarrhythmic Tx was maintained in 22 (54%) FU: 29±16 mo 41 (67%) NSR at FU	N/A	In pts in NSR there was marked improvement in NYHA class (1.2±0.5 vs. 1.9±0.7 at baseline; p<0.001). In pts (33%), with AF recurrence, there was less marked, but still significant, improvement following RFCA (NYHA class 1.8±0.7 vs. 2.3±0.7 at baseline; p=0.002)	Independent predictors of AF recurrence: increased left atrium volume HR per unit increase 1.009, 95% CI: 1.001-1.018; p=0.037, and NYHA class (HR: 2.24; 95% CI: 1.16 to 4.35; p=0.016)	N/A	RFCA was successful in restoring long-term sinus rhythm and improving symptomatic status in most HCM pts with refractory AF, including the subset with proven sarcomere gene mutations, although redo procedures were often necessary. Younger HCM pts with small atrial size and mild Sx proved to be the best RFCA candidates, likely due to lesser degrees of atrial remodelling
---	---	----	--	-----	---	--	-----	---

1° indicates primary; 2, secondary; AAD, antiarrhythmic drug; AE, adverse event; AF, atrial fibrillation; AFFIRM, Atrial Fibrillation Follow-up Investigation of Rhythm Management; ANDROMEDA, European Trial of Dronedarone in Moderate to Severe Congestive Heart Failure; ASA, aspirin; AV, atrioventricular; AVB, atrioventricular block; CAD, coronary artery disease; CCB, calcium channel blocker; CHF, congestive heart failure; CV, cardiovascular; DM, diabetes mellitus; EF, ejection fraction; EKG, electrocardiogram; FU, follow up; HCM, hypertrophic cardiomyopathy; HF, heart failure; HOCM, hypertrophic obstructive cardiomyopathy; HR, hazard ratio; HTN, hypertension; Hx, history; ICD, implantable cardioverter defibrillator; IV, intravenous; LBBB, left bundle branch block; LV, left ventricular; LVEF, left ventricular ejection fraction; N/A, not applicable; NSR, normal sinus rhythm; NYHA, New York Heart Association; pts, patients; PV, pulmonary vein; QOL, quality of life; RACE, Rate Control Efficacy in Permanent Atrial Fibrillation; RFCA, radio frequency catheter ablation; RR, relative risk; SOB, shortness of breath; SR, sinus rhythm; Sx, symptom; TIA, transient ischemic attack; and Tx, therapy.

References

- 1. MOE GK, RHEINBOLDT WC, ABILDSKOV JA. A COMPUTER MODEL OF ATRIAL FIBRILLATION. Am Heart J. 1964:67:200-20.
- Alessie M, Lammers W, Bonke F, et al. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. J Cardiac Electrophysiology and Arrhythmias. 1985;265-76.
- 3. MOE GK, ABILDSKOV JA. Atrial fibrillation as a self-sustaining arrhythmia independent of focal discharge. Am Heart J. 1959;58:59-70.
- 4. Cox JL, Boineau JP, Schuessler RB, et al. Successful surgical treatment of atrial fibrillation. Review and clinical update. JAMA. 1991;266:1976-80.
- 5. Cox JL, Canavan TE, Schuessler RB, et al. The surgical treatment of atrial fibrillation. II. Intraoperative electrophysiologic mapping and description of the electrophysiologic basis of atrial flutter and atrial fibrillation. J Thorac Cardiovasc Surg. 1991;101:406-26.
- 6. Cox JL, Schuessler RB, D'Agostino HJ, Jr., et al. The surgical treatment of atrial fibrillation. III. Development of a definitive surgical procedure. J Thorac Cardiovasc Surg. 1991;101:569-83.
- 7. Konings KT, Kirchhof CJ, Smeets JR, et al. High-density mapping of electrically induced atrial fibrillation in humans. Circulation. 1994;89:1665-80.
- 8. Konings KT, Smeets JL, Penn OC, et al. Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation. 1997;95:1231-41.
- 9. Morillo CA, Klein GJ, Jones DL, et al. Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation. 1995;91:1588-95.
- 10. Nakao K, Seto S, Ueyama C, et al. Extended distribution of prolonged and fractionated right atrial electrograms predicts development of chronic atrial fibrillation in patients with idiopathic paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2002;13:996-1002.
- 11. Ramanna H, Hauer RN, Wittkampf FH, et al. Identification of the substrate of atrial vulnerability in patients with idiopathic atrial fibrillation. Circulation. 2000;101:995-1001.
- 12. Caballero R, de la Fuente MG, Gomez R, et al. In humans, chronic atrial fibrillation decreases the transient outward current and ultrarapid component of the delayed rectifier current differentially on each atria and increases the slow component of the delayed rectifier current in both. J Am Coll Cardiol. 2010;55:2346-54.
- 13. Li Z, Hertervig E, Yuan S, et al. Dispersion of atrial repolarization in patients with paroxysmal atrial fibrillation. Europace. 2001;3:285-91.
- 14. Scherlag BJ, Hou YL, Lin J, et al. An acute model for atrial fibrillation arising from a peripheral atrial site: evidence for primary and secondary triggers. J Cardiovasc Electrophysiol. 2008;19:519-27.
- 15. SCHERF D, SCHAFFER AI, BLUMENFELD S. Mechanism of flutter and fibrillation. AMA Arch Intern Med. 1953;91:333-52.
- 16. Patterson E, Po SS, Scherlag BJ, et al. Triggered firing in pulmonary veins initiated by in vitro autonomic nerve stimulation. Heart Rhythm. 2005;2:624-31.
- 17. SCHERF D, ROMANO FJ, TERRANOVA R. Experimental studies on auricular flutter and auricular fibrillation. Am Heart J. 1948;36:241-51.
- 18. Haissaguerre M, Marcus FI, Fischer B, et al. Radiofrequency catheter ablation in unusual mechanisms of atrial fibrillation: report of three cases. J Cardiovasc Electrophysiol. 1994;5:743-51.
- 19. Haissaguerre M, Jais P, Shah DC, et al. Right and left atrial radiofrequency catheter therapy of paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 1996;7:1132-44.
- 20. Jais P, Haissaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radiofrequency ablation. Circulation. 1997;95:572-6.
- 21. Haissaguerre M, Jais P, Shah DC, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med. 1998;339:659-66.
- 22. Chen YC, Pan NH, Cheng CC, et al. Heterogeneous expression of potassium currents and pacemaker currents potentially regulates arrhythmogenesis of pulmonary vein cardiomyocytes. J Cardiovasc Electrophysiol. 2009;20:1039-45.
- 23. Ehrlich JR, Cha TJ, Zhang L, et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J Physiol. 2003;551:801-13.
- 24. Hocini M, Ho SY, Kawara T, et al. Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation. 2002;105:2442-8.
- 25. Honjo H, Boyett MR, Niwa R, et al. Pacing-induced spontaneous activity in myocardial sleeves of pulmonary veins after treatment with ryanodine. Circulation. 2003;107:1937-43.
- 26. Levin MD, Lu MM, Petrenko NB, et al. Melanocyte-like cells in the heart and pulmonary veins contribute to atrial arrhythmia triggers. J Clin Invest. 2009;119:3420-36.

- 27. Patterson E, Lazzara R, Szabo B, et al. Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol. 2006;47:1196-206.
- 28. Wongcharoen W, Chen YC, Chen YJ, et al. Effects of a Na+/Ca2+ exchanger inhibitor on pulmonary vein electrical activity and ouabain-induced arrhythmogenicity. Cardiovasc Res. 2006;70:497-508.
- 29. Jais P, Hocini M, Macle L, et al. Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation. 2002;106:2479-85.
- 30. Takahashi Y, Iesaka Y, Takahashi A, et al. Reentrant tachycardia in pulmonary veins of patients with paroxysmal atrial fibrillation. J Cardiovasc Electrophysiol. 2003;14:927-32.
- 31. Mandapati R, Skanes A, Chen J, et al. Stable microreentrant sources as a mechanism of atrial fibrillation in the isolated sheep heart. Circulation. 2000;101:194-9.
- 32. Ryu K, Shroff SC, Sahadevan J, et al. Mapping of atrial activation during sustained atrial fibrillation in dogs with rapid ventricular pacing induced heart failure: evidence for a role of driver regions. J Cardiovasc Electrophysiol. 2005;16:1348-58.
- 33. Skanes AC, Mandapati R, Berenfeld O, et al. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation. 1998;98:1236-48.
- 34. Atienza F, Almendral J, Moreno J, et al. Activation of inward rectifier potassium channels accelerates atrial fibrillation in humans: evidence for a reentrant mechanism. Circulation. 2006;114:2434-42.
- 35. Narayan SM, Krummen DE, Rappel WJ. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J Cardiovasc Electrophysiol. 2012;23:447-54.
- 36. Narayan SM, Patel J, Mulpuru S, et al. Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study. Heart Rhythm. 2012;9:1436-9.
- 37. Chen SA, Tai CT, Yu WC, et al. Right atrial focal atrial fibrillation: electrophysiologic characteristics and radiofrequency catheter ablation. J Cardiovasc Electrophysiol. 1999;10:328-35.
- 38. Hsu LF, Jais P, Keane D, et al. Atrial fibrillation originating from persistent left superior vena cava. Circulation. 2004;109:828-32.
- 39. Lin WS, Tai CT, Hsieh MH, et al. Catheter ablation of paroxysmal atrial fibrillation initiated by non-pulmonary vein ectopy. Circulation. 2003;107:3176-83.
- 40. Schmitt C, Ndrepepa G, Weber S, et al. Biatrial multisite mapping of atrial premature complexes triggering onset of atrial fibrillation. Am J Cardiol. 2002;89:1381-7.
- 41. Schwartzman D, Bazaz R, Nosbisch J. Common left pulmonary vein: a consistent source of arrhythmogenic atrial ectopy. J Cardiovasc Electrophysiol. 2004;15:560-6.
- 42. Tsai CF, Tai CT, Hsieh MH, et al. Initiation of atrial fibrillation by ectopic beats originating from the superior vena cava: electrophysiological characteristics and results of radiofrequency ablation. Circulation. 2000;102:67-74.
- 43. Berenfeld O, Mandapati R, Dixit S, et al. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the Langendorff-perfused sheep heart. J Cardiovasc Electrophysiol. 2000;11:869-79.
- 44. Chen J, Mandapati R, Berenfeld O, et al. Dynamics of wavelets and their role in atrial fibrillation in the isolated sheep heart. Cardiovasc Res. 2000;48:220-32.
- 45. Gray RA, Pertsov AM, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature. 1998;392:75-8.
- 46. Kalifa J, Jalife J, Zaitsev AV, et al. Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation. 2003;108:668-71.
- 47. Krummen DE, Peng KA, Bullinga JR, et al. Centrifugal gradients of rate and organization in human atrial fibrillation. Pacing Clin Electrophysiol. 2009;32:1366-78.
- 48. Narayan SM, Krummen DE, Shivkumar K, et al. Treatment of atrial fibrillation by the ablation of localized sources: CONFIRM (Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation) trial. J Am Coll Cardiol. 2012;60:628-36.
- 49. Sahadevan J, Ryu K, Peltz L, et al. Epicardial mapping of chronic atrial fibrillation in patients: preliminary observations. Circulation. 2004;110:3293-9.
- 50. Sanders P, Berenfeld O, Hocini M, et al. Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation. 2005;112:789-97.
- 51. Voigt N, Trausch A, Knaut M, et al. Left-to-right atrial inward rectifier potassium current gradients in patients with paroxysmal versus chronic atrial fibrillation. Circ Arrhythm Electrophysiol. 2010;3:472-80.
- 52. Lazar S, Dixit S, Marchlinski FE, et al. Presence of left-to-right atrial frequency gradient in paroxysmal but not persistent atrial fibrillation in humans. Circulation. 2004;110:3181-6.
- 53. Ausma J, Wijffels M, Thone F, et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation. 1997;96:3157-63.
- 54. Ausma J, Wijffels M, van EG, et al. Dedifferentiation of atrial cardiomyocytes as a result of chronic atrial fibrillation. Am J Pathol. 1997;151:985-97.
- 55. Kato T, Iwasaki YK, Nattel S. Connexins and atrial fibrillation: filling in the gaps. Circulation. 2012;125:203-6.

- 56. Bailey GW, Braniff BA, Hancock EW, et al. Relation of left atrial pathology to atrial fibrillation in mitral valvular disease. Ann Intern Med. 1968;69:13-20.
- 57. Boldt A, Wetzel U, Lauschke J, et al. Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart. 2004;90:400-5.
- 58. Frustaci A, Caldarulo M, Buffon A, et al. Cardiac biopsy in patients with "primary" atrial fibrillation. Histologic evidence of occult myocardial diseases. Chest. 1991;100:303-6.
- 59. Frustaci A, Chimenti C, Bellocci F, et al. Histological substrate of atrial biopsies in patients with lone atrial fibrillation. Circulation. 1997;96:1180-4.
- 60. Kostin S, Klein G, Szalay Z, et al. Structural correlate of atrial fibrillation in human patients. Cardiovasc Res. 2002;54:361-79.
- 61. Polontchouk L, Haefliger JA, Ebelt B, et al. Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol. 2001;38:883-91.
- 62. Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation. 2004;109:363-8.
- 63. Anyukhovsky EP, Sosunov EA, Plotnikov A, et al. Cellular electrophysiologic properties of old canine atria provide a substrate for arrhythmogenesis. Cardiovasc Res. 2002;54:462-9.
- 64. Burstein B, Qi XY, Yeh YH, et al. Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: a novel consideration in atrial remodeling. Cardiovasc Res. 2007;76:442-52.
- 65. Cardin S, Libby E, Pelletier P, et al. Contrasting gene expression profiles in two canine models of atrial fibrillation. Circ Res. 2007;100:425-33.
- 66. Chen CL, Huang SK, Lin JL, et al. Upregulation of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases in rapid atrial pacing-induced atrial fibrillation. J Mol Cell Cardiol. 2008;45:742-53.
- 67. Everett TH, Wilson EE, Verheule S, et al. Structural atrial remodeling alters the substrate and spatiotemporal organization of atrial fibrillation: a comparison in canine models of structural and electrical atrial remodeling. Am J Physiol Heart Circ Physiol. 2006;291:H2911-H2923.
- 68. Hanna N, Cardin S, Leung TK, et al. Differences in atrial versus ventricular remodeling in dogs with ventricular tachypacing-induced congestive heart failure. Cardiovasc Res. 2004;63:236-44.
- 69. Li D, Fareh S, Leung TK, et al. Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation. 1999;100:87-95.
- 70. Pan CH, Lin JL, Lai LP, et al. Downregulation of angiotensin converting enzyme II is associated with pacing-induced sustained atrial fibrillation. FEBS Lett. 2007;581:526-34.
- 71. Barth AS, Merk S, Arnoldi E, et al. Reprogramming of the human atrial transcriptome in permanent atrial fibrillation: expression of a ventricular-like genomic signature. Circ Res. 2005;96:1022-9.
- 72. Boldt A, Wetzel U, Weigl J, et al. Expression of angiotensin II receptors in human left and right atrial tissue in atrial fibrillation with and without underlying mitral valve disease. J Am Coll Cardiol. 2003;42:1785-92.
- 73. Ohtani K, Yutani C, Nagata S, et al. High prevalence of atrial fibrosis in patients with dilated cardiomyopathy. J Am Coll Cardiol. 1995:25:1162-9.
- 74. Dickfeld T, Kato R, Zviman M, et al. Characterization of radiofrequency ablation lesions with gadolinium-enhanced cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2006;47:370-8.
- 75. McGann CJ, Kholmovski EG, Oakes RS, et al. New magnetic resonance imaging-based method for defining the extent of left atrial wall injury after the ablation of atrial fibrillation. J Am Coll Cardiol. 2008;52:1263-71.
- 76. Akoum N, McGann C, Vergara G, et al. Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant. J Cardiovasc Electrophysiol. 2012;23:44-50.
- 77. Daccarett M, Badger TJ, Akoum N, et al. Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation. J Am Coll Cardiol. 2011;57:831-8.
- 78. Oakes RS, Badger TJ, Kholmovski EG, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation. Circulation. 2009;119:1758-67.
- 79. Peters DC, Wylie JV, Hauser TH, et al. Detection of pulmonary vein and left atrial scar after catheter ablation with three-dimensional navigator-gated delayed enhancement MR imaging: initial experience. Radiology. 2007;243:690-5.
- 80. Carnes CA, Chung MK, Nakayama T, et al. Ascorbate attenuates atrial pacing-induced peroxynitrite formation and electrical remodeling and decreases the incidence of postoperative atrial fibrillation. Circ Res. 2001;89:E32-E38.
- 81. Dudley SC, Jr., Hoch NE, McCann LA, et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation. 2005;112:1266-73.
- 82. Rudolph V, Andrie RP, Rudolph TK, et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat Med. 2010;16:470-4.

- 83. Savelieva I, Kakouros N, Kourliouros A, et al. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. Europace. 2011;13:308-28.
- 84. Aviles RJ, Martin DO, Apperson-Hansen C, et al. Inflammation as a risk factor for atrial fibrillation. Circulation. 2003;108:3006-10.
- 85. Bruins P, te VH, Yazdanbakhsh AP, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: postsurgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation. 1997;96:3542-8.
- 86. Chung MK, Martin DO, Sprecher D, et al. C-reactive protein elevation in patients with atrial arrhythmias: inflammatory mechanisms and persistence of atrial fibrillation. Circulation. 2001;104:2886-91.
- 87. Liu T, Li G, Li L, et al. Association between C-reactive protein and recurrence of atrial fibrillation after successful electrical cardioversion: a meta-analysis. J Am Coll Cardiol. 2007;49:1642-8.
- 88. Mihm MJ, Yu F, Carnes CA, et al. Impaired myofibrillar energetics and oxidative injury during human atrial fibrillation. Circulation. 2001;104:174-80.
- 89. Goldstein RN, Ryu K, Khrestian C, et al. Prednisone prevents inducible atrial flutter in the canine sterile pericarditis model. J Cardiovasc Electrophysiol. 2008;19:74-81.
- 90. Ishii Y, Schuessler RB, Gaynor SL, et al. Inflammation of atrium after cardiac surgery is associated with inhomogeneity of atrial conduction and atrial fibrillation. Circulation. 2005;111:2881-8.
- 91. Shiroshita-Takeshita A, Brundel BJ, Lavoie J, et al. Prednisone prevents atrial fibrillation promotion by atrial tachycardia remodeling in dogs. Cardiovasc Res. 2006;69:865-75.
- 92. Kumagai K, Nakashima H, Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res. 2004;62:105-11.
- 93. Shiroshita-Takeshita A, Brundel BJ, Burstein B, et al. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 2007;74:75-84.
- 94. Shiroshita-Takeshita A, Schram G, Lavoie J, et al. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. Circulation. 2004;110:2313-9.
- 95. da Cunha DN, Hamlin RL, Billman GE, et al. n-3 (omega-3) polyunsaturated fatty acids prevent acute atrial electrophysiological remodeling. Br J Pharmacol. 2007;150:281-5.
- 96. Den Ruijter HM, Berecki G, Verkerk AO, et al. Acute administration of fish oil inhibits triggered activity in isolated myocytes from rabbits and patients with heart failure. Circulation. 2008;117:536-44.
- 97. Mayyas F, Sakurai S, Ram R, et al. Dietary omega3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model. Cardiovasc Res. 2011;89:852-61.
- 98. Ramadeen A, Laurent G, dos Santos CC, et al. n-3 Polyunsaturated fatty acids alter expression of fibrotic and hypertrophic genes in a dog model of atrial cardiomyopathy. Heart Rhythm. 2010;7:520-8.
- 99. Sakabe M, Shiroshita-Takeshita A, Maguy A, et al. Omega-3 polyunsaturated fatty acids prevent atrial fibrillation associated with heart failure but not atrial tachycardia remodeling. Circulation. 2007;116:2101-9.
- 100. Sarrazin JF, Comeau G, Daleau P, et al. Reduced incidence of vagally induced atrial fibrillation and expression levels of connexins by n-3 polyunsaturated fatty acids in dogs. J Am Coll Cardiol. 2007;50:1505-12.
- 101. Li GR, Sun HY, Zhang XH, et al. Omega-3 polyunsaturated fatty acids inhibit transient outward and ultra-rapid delayed rectifier K+currents and Na+current in human atrial myocytes. Cardiovasc Res. 2009;81:286-93.
- 102. Mozaffarian D, Psaty BM, Rimm EB, et al. Fish intake and risk of incident atrial fibrillation. Circulation. 2004;110:368-73.
- 103. Virtanen JK, Mursu J, Voutilainen S, et al. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation. 2009;120:2315-21.
- 104. Cardin S, Li D, Thorin-Trescases N, et al. Evolution of the atrial fibrillation substrate in experimental congestive heart failure: angiotensin-dependent and -independent pathways. Cardiovasc Res. 2003;60:315-25.
- 105. Chen YJ, Chen YC, Tai CT, et al. Angiotensin II and angiotensin II receptor blocker modulate the arrhythmogenic activity of pulmonary veins. Br J Pharmacol. 2006;147:12-22.
- 106. Ehrlich JR, Hohnloser SH, Nattel S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: clinical and experimental evidence. Eur Heart J. 2006;27:512-8.
- 107. Inoue N, Ohkusa T, Nao T, et al. Rapid electrical stimulation of contraction modulates gap junction protein in neonatal rat cultured cardiomyocytes: involvement of mitogen-activated protein kinases and effects of angiotensin II-receptor antagonist. J Am Coll Cardiol. 2004;44:914-22.
- 108. Kumagai K, Nakashima H, Urata H, et al. Effects of angiotensin II type 1 receptor antagonist on electrical and structural remodeling in atrial fibrillation. J Am Coll Cardiol. 2003;41:2197-204.
- 109. Li D, Shinagawa K, Pang L, et al. Effects of angiotensin-converting enzyme inhibition on the development of the atrial fibrillation substrate in dogs with ventricular tachypacing-induced congestive heart failure. Circulation. 2001;104:2608-14.

- 110. Moreno I, Caballero R, Gonzalez T, et al. Effects of irbesartan on cloned potassium channels involved in human cardiac repolarization. J Pharmacol Exp Ther. 2003;304:862-73.
- 111. Nakashima H, Kumagai K, Urata H, et al. Angiotensin II antagonist prevents electrical remodeling in atrial fibrillation. Circulation. 2000;101:2612-7.
- 112. Saygili E, Rana OR, Saygili E, et al. Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol Heart Circ Physiol. 2007;292:H2898-H2905.
- 113. Shinagawa K, Mitamura H, Ogawa S, et al. Effects of inhibiting Na(+)/H(+)-exchange or angiotensin converting enzyme on atrial tachycardia-induced remodeling. Cardiovasc Res. 2002;54:438-46.
- 114. Xiao HD, Fuchs S, Campbell DJ, et al. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am J Pathol. 2004;165:1019-32.
- 115. Goette A, Arndt M, Rocken C, et al. Regulation of angiotensin II receptor subtypes during atrial fibrillation in humans. Circulation. 2000;101:2678-81.
- 116. Goette A, Staack T, Rocken C, et al. Increased expression of extracellular signal-regulated kinase and angiotensin-converting enzyme in human atria during atrial fibrillation. J Am Coll Cardiol. 2000;35:1669-77.
- 117. Milliez P, Deangelis N, Rucker-Martin C, et al. Spironolactone reduces fibrosis of dilated atria during heart failure in rats with myocardial infarction. Eur Heart J. 2005;26:2193-9.
- 118. Shroff SC, Ryu K, Martovitz NL, et al. Selective aldosterone blockade suppresses atrial tachyarrhythmias in heart failure. J Cardiovasc Electrophysiol. 2006;17:534-41.
- 119. Goette A, Hoffmanns P, Enayati W, et al. Effect of successful electrical cardioversion on serum aldosterone in patients with persistent atrial fibrillation. Am J Cardiol. 2001;88:906-9, A8.
- 120. Milliez P, Girerd X, Plouin PF, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243-8.
- 121. Ram R, Van Wagoner DR. Aldosterone antagonism as an antiarrhythmic approach for atrial arrhythmias in heart failure. J Cardiovasc Electrophysiol. 2006;17:542-3.
- 122. Nakajima H, Nakajima HO, Salcher O, et al. Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res. 2000;86:571-9.
- 123. Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circ Res. 2004;94:1458-65.
- 124. Hoff HE, Geddes LA, MCCRADY JD. THE MAINTENANCE OF EXPERIMENTAL ATRIAL FIBRILLATION BY CHOLINERGIC FACTORS. Cardiovasc Res Cent Bull. 1965;49:117-29.
- 125. Po SS, Scherlag BJ, Yamanashi WS, et al. Experimental model for paroxysmal atrial fibrillation arising at the pulmonary vein-atrial junctions. Heart Rhythm. 2006;3:201-8.
- 126. Scherlag BJ, Yamanashi W, Patel U, et al. Autonomically induced conversion of pulmonary vein focal firing into atrial fibrillation. J Am Coll Cardiol. 2005;45:1878-86.
- 127. Coumel P, Attuel P, Lavallee J, et al. [The atrial arrhythmia syndrome of vagal origin]. Arch Mal Coeur Vaiss. 1978;71:645-56.
- 128. Pappone C, Santinelli V, Manguso F, et al. Pulmonary vein denervation enhances long-term benefit after circumferential ablation for paroxysmal atrial fibrillation. Circulation. 2004;109:327-34.
- 129. Scanavacca M, Pisani CF, Hachul D, et al. Selective atrial vagal denervation guided by evoked vagal reflex to treat patients with paroxysmal atrial fibrillation. Circulation. 2006;114:876-85.
- 130. Ausma J, van der Velden HM, Lenders MH, et al. Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation. 2003;107:2051-8.
- 131. Dobrev D, Carlsson L, Nattel S. Novel molecular targets for atrial fibrillation therapy. Nat Rev Drug Discov. 2012;11:275-91.
- 132. Everett TH, Li H, Mangrum JM, et al. Electrical, morphological, and ultrastructural remodeling and reverse remodeling in a canine model of chronic atrial fibrillation. Circulation. 2000;102:1454-60.
- 133. Fuster V, Ryden LE, Cannom DS, et al. 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 Guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in partnership with the European Society of Cardiology and in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. J Am Coll Cardiol. 2011;57:e101-e198.
- 134. Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ Arrhythm Electrophysiol. 2008;1:62-73.
- 135. Wijffels MC, Kirchhof CJ, Dorland R, et al. Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation. 1995;92:1954-68.
- 136. Yue L, Feng J, Gaspo R, et al. Ionic remodeling underlying action potential changes in a canine model of atrial fibrillation. Circ Res. 1997;81:512-25.

- 137. Franz MR, Karasik PL, Li C, et al. Electrical remodeling of the human atrium: similar effects in patients with chronic atrial fibrillation and atrial flutter. J Am Coll Cardiol. 1997;30:1785-92.
- 138. Yu WC, Lee SH, Tai CT, et al. Reversal of atrial electrical remodeling following cardioversion of long-standing atrial fibrillation in man. Cardiovasc Res. 1999;42:470-6.
- 139. Chang CM, Wu TJ, Zhou S, et al. Nerve sprouting and sympathetic hyperinnervation in a canine model of atrial fibrillation produced by prolonged right atrial pacing. Circulation. 2001;103:22-5.
- 140. Goette A, Honeycutt C, Langberg JJ. Electrical remodeling in atrial fibrillation. Time course and mechanisms. Circulation. 1996;94:2968-74.
- 141. Jayachandran JV, Sih HJ, Winkle W, et al. Atrial fibrillation produced by prolonged rapid atrial pacing is associated with heterogeneous changes in atrial sympathetic innervation. Circulation. 2000;101:1185-91.
- 142. Shinagawa K, Derakhchan K, Nattel S. Pharmacological prevention of atrial tachycardia induced atrial remodeling as a potential therapeutic strategy. Pacing Clin Electrophysiol. 2003;26:752-64.
- 143. Nattel S, Dobrev D. The multidimensional role of calcium in atrial fibrillation pathophysiology: mechanistic insights and therapeutic opportunities. Eur Heart J. 2012;33:1870-7.
- 144. Sun H, Gaspo R, Leblanc N, et al. Cellular mechanisms of atrial contractile dysfunction caused by sustained atrial tachycardia. Circulation. 1998;98:719-27.
- 145. Vest JA, Wehrens XH, Reiken SR, et al. Defective cardiac ryanodine receptor regulation during atrial fibrillation. Circulation. 2005;111:2025-32.
- 146. Hove-Madsen L, Llach A, Bayes-Genis A, et al. Atrial fibrillation is associated with increased spontaneous calcium release from the sarcoplasmic reticulum in human atrial myocytes. Circulation. 2004;110:1358-63.
- 147. Neef S, Dybkova N, Sossalla S, et al. CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res. 2010;106:1134-44.
- 148. Voigt N, Li N, Wang Q, et al. Enhanced sarcoplasmic reticulum Ca2+ leak and increased Na+-Ca2+ exchanger function underlie delayed afterdepolarizations in patients with chronic atrial fibrillation. Circulation. 2012;125:2059-70.
- 149. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361:1139-51.
- 150. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365:883-91.
- 151. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365:981-92.
- 152. Connolly SJ, Eikelboom J, Joyner C, et al. Apixaban in patients with atrial fibrillation. N Engl J Med. 2011;364:806-17.
- 153. Aguilar MI, Hart R. Oral anticoagulants for preventing stroke in patients with non-valvular atrial fibrillation and no previous history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2005;CD001927.
- 154. Aguilar MI, Hart R, Pearce LA. Oral anticoagulants versus antiplatelet therapy for preventing stroke in patients with non-valvular atrial fibrillation and no history of stroke or transient ischemic attacks. Cochrane Database Syst Rev. 2007;CD006186.
- 155. Saxena R, Koudstall P. Anticoagulants versus antiplatelet therapy for preventing stroke in patients with nonrheumatic atrial fibrillation and a history of stroke or transient ischemic attack. The Cochrane Library. 2004;
- 156. Mant J, Hobbs FD, Fletcher K, et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet. 2007;370:493-503.
- 157. Abrams J, Allen J, Allin D, et al. Efficacy and safety of esmolol vs propranolol in the treatment of supraventricular tachyarrhythmias: a multicenter double-blind clinical trial. Am Heart J. 1985;110:913-22.
- 158. Farshi R, Kistner D, Sarma JS, et al. Ventricular rate control in chronic atrial fibrillation during daily activity and programmed exercise: a crossover open-label study of five drug regimens. J Am Coll Cardiol. 1999;33:304-10.
- 159. Ellenbogen KA, Dias VC, Plumb VJ, et al. A placebo-controlled trial of continuous intravenous diltiazem infusion for 24-hour heart rate control during atrial fibrillation and atrial flutter: a multicenter study. J Am Coll Cardiol. 1991;18:891-7.
- 160. Steinberg JS, Katz RJ, Bren GB, et al. Efficacy of oral diltiazem to control ventricular response in chronic atrial fibrillation at rest and during exercise. J Am Coll Cardiol. 1987;9:405-11.
- 161. Siu CW, Lau CP, Lee WL, et al. Intravenous diltiazem is superior to intravenous amiodarone or digoxin for achieving ventricular rate control in patients with acute uncomplicated atrial fibrillation. Crit Care Med. 2009;37:2174-9.
- 162. Intravenous digoxin in acute atrial fibrillation. Results of a randomized, placebo-controlled multicentre trial in 239 patients. The Digitalis in Acute Atrial Fibrillation (DAAF) Trial Group. Eur Heart J. 1997;18:649-54.
- 163. Olshansky B, Rosenfeld LE, Warner AL, et al. The Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study: approaches to control rate in atrial fibrillation. J Am Coll Cardiol. 2004;43:1201-8.
- 164. Delle KG, Geppert A, Neunteufl T, et al. Amiodarone versus diltiazem for rate control in critically ill patients with atrial tachyarrhythmias. Crit Care Med. 2001;29:1149-53.

- 165. Connolly SJ, Camm AJ, Halperin JL, et al. Dronedarone in high-risk permanent atrial fibrillation. N Engl J Med. 2011;365:2268-76.
- 166. Ozcan C, Jahangir A, Friedman PA, et al. Long-term survival after ablation of the atrioventricular node and implantation of a permanent pacemaker in patients with atrial fibrillation. N Engl J Med. 2001;344:1043-51.
- 167. Van Gelder IC, Groenveld HF, Crijns HJ, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010;362:1363-73.
- 168. Singh BN, Connolly SJ, Crijns HJ, et al. Dronedarone for maintenance of sinus rhythm in atrial fibrillation or flutter. N Engl J Med. 2007;357:987-99.
- 169. Maintenance of sinus rhythm in patients with atrial fibrillation: an AFFIRM substudy of the first antiarrhythmic drug. J Am Coll Cardiol. 2003;42:20-9.
- 170. Aliot E, Denjoy I. Comparison of the safety and efficacy of flecainide versus propafenone in hospital out-patients with symptomatic paroxysmal atrial fibrillation/flutter. The Flecainide AF French Study Group. Am J Cardiol. 1996;77:66A-71A.
- 171. Kober L, Torp-Pedersen C, McMurray JJ, et al. Increased mortality after dronedarone therapy for severe heart failure. N Engl J Med. 2008;358:2678-87.
- 172. Page RL, Tilsch TW, Connolly SJ, et al. Asymptomatic or "silent" atrial fibrillation: frequency in untreated patients and patients receiving azimilide. Circulation. 2003;107:1141-5.
- 173. Hohnloser SH, Crijns HJ, van EM, et al. Effect of dronedarone on cardiovascular events in atrial fibrillation. N Engl J Med. 2009;360:668-78.
- 174. Bellandi F, Simonetti I, Leoncini M, et al. Long-term efficacy and safety of propafenone and sotalol for the maintenance of sinus rhythm after conversion of recurrent symptomatic atrial fibrillation. Am J Cardiol. 2001;88:640-5.
- 175. Benditt DG, Williams JH, Jin J, et al. Maintenance of sinus rhythm with oral d,l-sotalol therapy in patients with symptomatic atrial fibrillation and/or atrial flutter. d,l-Sotalol Atrial Fibrillation/Flutter Study Group. Am J Cardiol. 1999;84:270-7.
- 176. Byrne-Quinn E, Wing AJ. Maintenance of sinus rhythm after DC reversion of atrial fibrilllation. A double-blind controlled trial of long-acting quinidine bisulphate. Br Heart J. 1970;32:370-6.
- 177. Carunchio A, Fera MS, Mazza A, et al. [A comparison between flecainide and sotalol in the prevention of recurrences of paroxysmal atrial fibrillation]. G Ital Cardiol. 1995;25:51-68.
- 178. Channer KS, Birchall A, Steeds RP, et al. A randomized placebo-controlled trial of pre-treatment and short- or long-term maintenance therapy with amiodarone supporting DC cardioversion for persistent atrial fibrillation. Eur Heart J. 2004;25:144-50.
- 179. Roy D, Talajic M, Dorian P, et al. Amiodarone to prevent recurrence of atrial fibrillation. Canadian Trial of Atrial Fibrillation Investigators. N Engl J Med. 2000;342:913-20.
- 180. Touboul P, Brugada J, Capucci A, et al. Dronedarone for prevention of atrial fibrillation: a dose-ranging study. Eur Heart J. 2003;24:1481-7.
- 181. Pedersen OD, Bagger H, Keller N, et al. Efficacy of dofetilide in the treatment of atrial fibrillation-flutter in patients with reduced left ventricular function: a Danish investigations of arrhythmia and mortality on dofetilide (diamond) substudy. Circulation. 2001;104:292-6.
- 182. Le Heuzey JY, De Ferrari GM, Radzik D, et al. A short-term, randomized, double-blind, parallel-group study to evaluate the efficacy and safety of dronedarone versus amiodarone in patients with persistent atrial fibrillation: the DIONYSOS study. J Cardiovasc Electrophysiol. 2010;21:597-605.
- 183. Dogan A, Ergene O, Nazli C, et al. Efficacy of propafenone for maintaining sinus rhythm in patients with recent onset or persistent atrial fibrillation after conversion: a randomized, placebo-controlled study. Acta Cardiol. 2004;59:255-61.
- 184. Chimienti M, Cullen MT, Jr., Casadei G. Safety of long-term flecainide and propafenone in the management of patients with symptomatic paroxysmal atrial fibrillation: report from the Flecainide and Propafenone Italian Study Investigators. Am J Cardiol. 1996;77:60A-75A.
- 185. Galperin J, Elizari MV, Chiale PA, et al. Efficacy of amiodarone for the termination of chronic atrial fibrillation and maintenance of normal sinus rhythm: a prospective, multicenter, randomized, controlled, double blind trial. J Cardiovasc Pharmacol Ther. 2001;6:341-50.
- 186. Kalusche D, Stockinger J, Betz P, et al. [Sotalol and quinidine/verapamil (Cordichin) in chronic atrial fibrillation--conversion and 12-month follow-up--a randomized comparison]. Z Kardiol. 1994;83 Suppl 5:109-16.
- 187. Kochiadakis GE, Igoumenidis NE, Hamilos ME, et al. Sotalol versus propafenone for long-term maintenance of normal sinus rhythm in patients with recurrent symptomatic atrial fibrillation. Am J Cardiol. 2004;94:1563-6.
- 188. Kuhlkamp V, Schirdewan A, Stangl K, et al. Use of metoprolol CR/XL to maintain sinus rhythm after conversion from persistent atrial fibrillation: a randomized, double-blind, placebo-controlled study. J Am Coll Cardiol. 2000;36:139-46.
- 189. Naccarelli GV, Dorian P, Hohnloser SH, et al. Prospective comparison of flecainide versus quinidine for the treatment of paroxysmal atrial fibrillation/flutter. The Flecainide Multicenter Atrial Fibrillation Study Group. Am J Cardiol. 1996;77:53A-9A.

- 190. Fetsch T, Bauer P, Engberding R, et al. Prevention of atrial fibrillation after cardioversion: results of the PAFAC trial. Eur Heart J. 2004;25:1385-94.
- 191. Piccini JP, Hasselblad V, Peterson ED, et al. Comparative efficacy of dronedarone and amiodarone for the maintenance of sinus rhythm in patients with atrial fibrillation. J Am Coll Cardiol. 2009;54:1089-95.
- 192. Plewan A, Lehmann G, Ndrepepa G, et al. Maintenance of sinus rhythm after electrical cardioversion of persistent atrial fibrillation; sotalol vs bisoprolol. Eur Heart J. 2001;22:1504-10.
- 193. Crijns HJ, Gosselink AT, Lie KI. Propafenone versus disopyramide for maintenance of sinus rhythm after electrical cardioversion of chronic atrial fibrillation: a randomized, double-blind study. PRODIS Study Group. Cardiovasc Drugs Ther. 1996;10:145-52.
- 194. Pritchett EL, Page RL, Carlson M, et al. Efficacy and safety of sustained-release propafenone (propafenone SR) for patients with atrial fibrillation. Am J Cardiol. 2003;92:941-6.
- 195. Reimold SC, Cantillon CO, Friedman PL, et al. Propafenone versus sotalol for suppression of recurrent symptomatic atrial fibrillation. Am J Cardiol. 1993;71:558-63.
- 196. Richiardi E, Gaita F, Greco C, et al. [Propafenone versus hydroquinidine in long-term pharmacological prophylaxis of atrial fibrillation]. Cardiologia. 1992;37:123-7.
- 197. Singh BN, Singh SN, Reda DJ, et al. Amiodarone versus sotalol for atrial fibrillation. N Engl J Med. 2005;352:1861-72.
- 198. Singh S, Zoble RG, Yellen L, et al. Efficacy and safety of oral dofetilide in converting to and maintaining sinus rhythm in patients with chronic atrial fibrillation or atrial flutter: the symptomatic atrial fibrillation investigative research on dofetilide (SAFIRE-D) study. Circulation. 2000;102:2385-90.
- 199. Patten M, Maas R, Bauer P, et al. Suppression of paroxysmal atrial tachyarrhythmias--results of the SOPAT trial. Eur Heart J. 2004;25:1395-404.
- 200. Stroobandt R, Stiels B, Hoebrechts R. Propafenone for conversion and prophylaxis of atrial fibrillation. Propafenone Atrial Fibrillation Trial Investigators. Am J Cardiol. 1997;79:418-23.
- 201. Pritchett EL, Page RL, Connolly SJ, et al. Antiarrhythmic effects of azimilide in atrial fibrillation: efficacy and doseresponse. Azimilide Supraventricular Arrhythmia Program 3 (SVA-3) Investigators. J Am Coll Cardiol. 2000;36:794-802.
- 202. Villani R, Zoletti F, Veniani M, et al. [A comparison between amiodarone and disopyramide in a delayed-release formulation in the prevention of recurrences of symptomatic atrial fibrillation]. Clin Ter. 1992;140:35-9.
- 203. Chung MK, Schweikert RA, Wilkoff BL, et al. Is hospital admission for initiation of antiarrhythmic therapy with sotalol for atrial arrhythmias required? Yield of in-hospital monitoring and prediction of risk for significant arrhythmia complications. J Am Coll Cardiol. 1998;32:169-76.
- 204. Zimetbaum PJ, Schreckengost VE, Cohen DJ, et al. Evaluation of outpatient initiation of antiarrhythmic drug therapy in patients reverting to sinus rhythm after an episode of atrial fibrillation. Am J Cardiol. 1999;83:450-2, A9.
- 205. Hauser TH, Pinto DS, Josephson ME, et al. Safety and feasibility of a clinical pathway for the outpatient initiation of antiarrhythmic medications in patients with atrial fibrillation or atrial flutter. Am J Cardiol. 2003;91:1437-41.
- 206. Goette A, Schon N, Kirchhof P, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. Circ Arrhythm Electrophysiol. 2012;5:43-51.
- 207. Disertori M, Lombardi F, Barlera S, et al. Clinical predictors of atrial fibrillation recurrence in the Gruppo Italiano per lo Studio della Sopravvivenza nell'Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. Am Heart J. 2010;159:857-63.
- 208. Healey JS, Baranchuk A, Crystal E, et al. Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: a meta-analysis. J Am Coll Cardiol. 2005;45:1832-9.
- 209. Yamashita T, Inoue H, Okumura K, et al. Randomized trial of angiotensin II-receptor blocker vs. dihydropiridine calcium channel blocker in the treatment of paroxysmal atrial fibrillation with hypertension (J-RHYTHM II study). Europace. 2011;13:473-9.
- 210. Schneider MP, Hua TA, Bohm M, et al. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis. J Am Coll Cardiol. 2010;55:2299-307.
- 211. Krittayaphong R, Raungrattanaamporn O, Bhuripanyo K, et al. A randomized clinical trial of the efficacy of radiofrequency catheter ablation and amiodarone in the treatment of symptomatic atrial fibrillation. J Med Assoc Thai. 2003;86 Suppl 1:S8-16.
- 212. Wazni OM, Marrouche NF, Martin DO, et al. Radiofrequency ablation vs antiarrhythmic drugs as first-line treatment of symptomatic atrial fibrillation: a randomized trial. JAMA. 2005;293:2634-40.
- 213. Stabile G, Bertaglia E, Senatore G, et al. Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation For The Cure Of Atrial Fibrillation Study). Eur Heart J. 2006;27:216-21.
- 214. Oral H, Chugh A, Ozaydin M, et al. Risk of thromboembolic events after percutaneous left atrial radiofrequency ablation of atrial fibrillation. Circulation. 2006;114:759-65.
- 215. Jais P, Cauchemez B, Macle L, et al. Catheter ablation versus antiarrhythmic drugs for atrial fibrillation: the A4 study. Circulation. 2008;118:2498-505.

- 216. Forleo GB, Tondo C. Atrial fibrillation: cure or treat? Ther Adv Cardiovasc Dis. 2009;3:187-96.
- 217. Wilber DJ, Pappone C, Neuzil P, et al. Comparison of antiarrhythmic drug therapy and radiofrequency catheter ablation in patients with paroxysmal atrial fibrillation: a randomized controlled trial. JAMA. 2010;303:333-40.
- 218. Packer DL, Kowal RC, Wheelan KR, et al. Cryoballoon Ablation of Pulmonary Veins for Paroxysmal Atrial Fibrillation: First Results of the North American Arctic Front (STOP AF) Pivotal Trial. J Am Coll Cardiol. 2013;61:1713-23.
- 219. Morillo C, Verma A, Kuck K, et al. Radiofrequency Ablation vs Antiarrhythmic Drugs as First-Line Treatment of Symptomatic Atrial Fibrillation: (RAAFT 2): A randomized trial. (IN PRESS). Heart Rhythm. 2013.
- 220. Cosedis NJ, Johannessen A, Raatikainen P, et al. Radiofrequency ablation as initial therapy in paroxysmal atrial fibrillation. N Engl J Med. 2012;367:1587-95.
- 221. Bonanno C, Paccanaro M, La VL, et al. Efficacy and safety of catheter ablation versus antiarrhythmic drugs for atrial fibrillation: a meta-analysis of randomized trials. J Cardiovasc Med (Hagerstown). 2010;11:408-18.
- 222. Calkins H, Reynolds MR, Spector P, et al. Treatment of atrial fibrillation with antiarrhythmic drugs or radiofrequency ablation: two systematic literature reviews and meta-analyses. Circ Arrhythm Electrophysiol. 2009;2:349-61.
- 223. Parkash R, Tang AS, Sapp JL, et al. Approach to the catheter ablation technique of paroxysmal and persistent atrial fibrillation: a meta-analysis of the randomized controlled trials. J Cardiovasc Electrophysiol. 2011;22:729-38.
- 224. Piccini JP, Lopes RD, Kong MH, et al. Pulmonary vein isolation for the maintenance of sinus rhythm in patients with atrial fibrillation: a meta-analysis of randomized, controlled trials. Circ Arrhythm Electrophysiol. 2009;2:626-33.
- 225. Roy D, Talajic M, Nattel S, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358:2667-77.
- 226. Gaita F, Di DP, Olivotto I, et al. Usefulness and safety of transcatheter ablation of atrial fibrillation in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2007;99:1575-81.
- 227. Kilicaslan F, Verma A, Saad E, et al. Efficacy of catheter ablation of atrial fibrillation in patients with hypertrophic obstructive cardiomyopathy. Heart Rhythm. 2006;3:275-80.
- 228. Bunch TJ, Munger TM, Friedman PA, et al. Substrate and procedural predictors of outcomes after catheter ablation for atrial fibrillation in patients with hypertrophic cardiomyopathy. J Cardiovasc Electrophysiol. 2008;19:1009-14.
- 229. Di DP, Olivotto I, Delcre SD, et al. Efficacy of catheter ablation for atrial fibrillation in hypertrophic cardiomyopathy: impact of age, atrial remodelling, and disease progression. Europace. 2010;12:347-55.