CHEMISTRY A European Journal

Supporting Information

Intramolecular OH···Fluorine Hydrogen Bonding in Saturated, Acyclic Fluorohydrins: The γ -Fluoropropanol Motif

Bruno Linclau,^{*[a]} Florent Peron,^[a] Elena Bogdan,^[b] Neil Wells,^[a] Zhong Wang,^[a] Guillaume Compain,^[a] Clement Q. Fontenelle,^[a] Nicolas Galland,^[b] Jean-Yves Le Questel,^[b] and Jérôme Graton^{*[b]}

chem_201503253_sm_miscellaneous_information.pdf

SUPPORTING INFORMATION 1 Computational studies

Table of Contents

1	Confo	rmational descriptors4
2	Confo	rmational analysis
	2.1 Ene	ergetic distribution of analyzed compounds5
	2.1.1	Table S1. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of syn-4-fluoropentan-2-ol (syn-A)5
	2.1.2	Table S2. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of anti-4-fluoropentan-2-ol (anti-A)6
	2.1.3	Table S3. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 4-fluorobutan-2-ol (B)7
	2.1.4	Table S4. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 2,2-dimethyl-3-fluoropropan-1-ol
	(C)	8
	2.1.5	Table S5. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 3-fluoropropan-1-ol (D)
	2.1.6	Table S6. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 4,4-difluoropentan-2-ol (E)10
	2.1.7	Table S7. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 4,4-difluorobutan-2-ol (F)11
	2.1.8	Table S8. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 3,3-difluoropropan-1-ol (G)
	2.1.9	Table S9. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 4,4,4-trifluorobutan-2-ol (H)
	2.1.10	Table S10. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of 3,3,3-trifluoropropan-1-ol (I) 13
	2.1.11	Table S11. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of syn-4-methoxypentan-2-ol (syn-J)
	and <i>an</i>	ti-4-methoxypentan-2-ol (anti-J)14
	2.1.12	Table S12. Free energy differences (ΔG , kJ mol ⁻¹) and conformational distribution (p_i , %) of syn-2-fluoro-4-methoxypentane
	(syn-K)) and <i>anti</i> -2-fluoro-4-methoxypentane (<i>anti</i> -K)14
	2.2 Dep	piction of the optimized structures at the IEFPCM-MPWB1K/6-31+G(d,p) level of theory

Linclau, Gra	aton Supporting information 1	SI2
2.2.1	syn-4-fluoropentan-2-ol (syn-A)	15
2.2.2	anti-4-fluoropentan-2-ol (anti-A)	16
2.2.3	4-fluorobutan-2-ol (B)	17
2.2.4	2,2-dimethyl-3-fluoropropan-1-ol (C)	
2.2.5	3-fluoropropan-1-ol (D)	
2.2.6	4,4-difluoropentan-2-ol (E)	19
2.2.7	3,3-difluorobutan-2-ol (F)	19
2.2.8	3,3-difluoropropan-1-ol (G)	20
2.2.9	4,4,4-trifluorobutan-2-ol (H)	20
2.2.10	3,3,3-trifluoropropan-1-ol (I)	20
2.2.11	syn-4-methoxypentan-2-ol (syn-J)	21
2.2.12	anti-4-methoxypentan-2-ol (anti-J)	21
2.2.13	syn-2-fluoro-4-methoxypentane (syn-K)	21
2.2.14	anti-2-fluoro-4-methoxypentane (anti-K)	22
2.3 Tal	ble S13. Characteristic properties of the OH•••F IMHB encountered in the relevant conformers of compounds A-l	I. AIM
ele	ectron density (ρ, e bohr·3) at the bond critical points, energy of H-bond (E _{HB} , kJ·mol·1), NCI attractive and repulsi	ve
con	ntributions of the OH•••F interaction (sign(λ_2) ρ , e bohr ⁻³) and NBO interaction energy (E ⁽²⁾ n _{-*} , kJ mol ⁻¹)	23
3 NCI (N	Non-Covalent Interaction) analysis	
3.1 Tal	ble S14. NCI isosurfaces and electron densities features, sign(λ_2) o and reduced density gradient (RDG) on IEFPC	M-
MP	22/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound <i>svn</i> -A.	
3.2 Tal	ble S15. NCI isosurfaces and electron densities features, sign(λ_2)o and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound <i>anti</i> -A.	
3.3 Tal	ble S16. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	22/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound B.	
3.4 Tal	ble S17. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound C	
3.5 Tal	ble S18. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound D.	
3.6 Tal	ble S19. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound E	
3.7 Tal	ble S20. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl ₄ for the main conformers of compound F	
3.8 Tal	ble S21. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl4 for the main conformers of compound G.	
3.9 Tal	ble S22. NCI isosurfaces and electron densities features, sign(λ_2) ρ and reduced density gradient (RDG) on IEFPC	М-
МР	2/6-311++G(2d,p) wavefunctions in CCl4 for the main conformers of compound H.	
3.10 Ta	ble S23. NCI isosurfaces and electron densities features, sign(λ_2) $ ho$ and reduced density gradient (RDG) on IEFPC	:М-
MP	2/6-311++G(2d,p) wavefunctions in CCl4 for the main conformers of compound I	

Lin	clau, Graton	Supporting information 1	SI3
4	Table S24: Calculated NMR coupling cons	stants	

1 Conformational descriptors

For ease of comparison between the different compounds, the following dihedral angles χ , ϕ , ψ are defined as shown in below. For each conformation, these dihedrals are indicated in this order, with the latter between brackets.

For 4,4-difluoropentan-2-ol (**E**), 4,4-difluorobutanol (**F**), and 3,3-difluoropropanol (**G**), the two φ -dihedrals need to be provided (no distinction is necessary). In many cases non-relevant C-O rotamers are grouped together. For the trifluoroderivatives, only two dihedrals are required.

2 Conformational analysis

2.1 Energetic distribution of analyzed compounds

2.1.1 Table S1. Free energy differences (ΔG , kJ mol⁻¹) and conformational distribution (p_i , %) of syn-4-fluoropentan-2-ol (syn-A) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K	CHCl ₃	298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	$oldsymbol{p}_{\mathrm{i}}$	μ (D)	
syn-A1	$g^{-}g^{+}(g^{+})$	0.0	44.7%	0.0	38.9%	0.0	36.0%	0.0	59.0%	4.002	
syn-A2	$tg^{\star}(g^{\star})$	3.4	11.2%	2.7	12.9%	2.4	13.7%	3.4	9.7%	2.132	
syn-A3	$tg^{\dagger}(t)$	3.8	9.5%	3.2	10.6%	2.9	11.0%	3.7	8.0%	1.828	
syn-A4	g ⁻ t(g ⁻)	4.4	7.7%	3.8	8.5%	3.5	8.6%	4.2	6.2%	2.339	
syn-A5	g ⁻ t(t)	4.4	7.6%	4.0	7.7%	3.9	7.6%	4.0	6.8%	4.122	
syn-A6	g g (t)	6.2	3.6%	6.3	3.1%	6.3	2.8%	6.6	1.7%	1.737	
syn-A7	g ⁻ t(g ⁺)	6.2	3.6%	5.2	4.8%	4.6	5.6%	6.0	2.3%	2.625	
syn-A8	tg⁺(g⁻)	6.3	3.5%	5.3	4.6%	4.8	5.3%	5.8	2.6%	3.896	
syn-A9	$g^{\dagger}g^{\dagger}(t)$	6.9	2.7%	7.1	2.2%	7.2	2.0%	7.1	1.3%	1.923	
syn-A10	$g^{\dagger}g^{\dagger}(g^{\cdot})$	7.3	2.3%	7.2	2.2%	7.1	2.0%	8.0	0.8%	0.863	
syn-A11	g ⁻ g ⁻ (g ⁻)	8.7	1.3%	8.3	1.4%	8.1	1.4%	8.8	0.5%	3.427	
syn-A12	$g^{\dagger}g^{\dagger}(g^{\dagger})$	10.1	0.8%	9.4	0.9%	9.1	0.9%	9.2	0.4%	3.498	
syn-A13	g ⁻ g⁺(t)	10.8	0.6%	8.4	1.3%	7.1	2.1%	9.3	0.4%	4.195	
syn-A14	$g^{\dagger}t(g^{\dagger})$	11.3	0.5%	10.8	0.5%	10.6	0.5%	10.8	0.2%	1.932	
syn-A15	tg ⁻ (g ⁻)	11.6	0.4%	10.9	0.5%	10.6	0.5%	10.9	0.2%	1.242	
										μ(D) 3.109	

Supporting information 1

2.1.2 Table S2. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of *anti*-4-fluoropentan-2-ol (*anti*-A) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-

311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K	C	HCl ₃ 298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	p i	μ	(D)
anti-A1	g ⁻ g ⁻ (t)	0.0	49.0%	0.0	45.2%	0.0	42.4%	0.0	60.7%	1.	938
anti-A2	g ⁻ g ⁻ (g ⁻)	3.2	13.3%	2.5	16.2%	2.1	18.2%	2.5	15.7%	3.	840
anti-A3	g [¯] g [¯] (g ⁺)	4.5	8.0%	4.9	6.2%	5.2	5.2%	4.5	5.3%	2.	237
anti-A4	$g^{\scriptscriptstyle -}g^{\scriptscriptstyle +}(g^{\scriptscriptstyle +})$	5.0	6.4%	5.1	5.8%	5.1	5.5%	4.8	4.6%	4.	022
anti-A5	tg ⁻ (t)	5.9	4.6%	5.6	4.7%	5.4	4.8%	5.9	2.5%	1.	636
anti-A6	tt(g⁺)	6.8	3.2%	5.9	4.3%	5.3	5.0%	6.2	2.2%	2.	166
anti-A7	g ⁺ g ⁻ (g ⁻)	7.0	2.9%	7.1	2.6%	7.1	2.4%	6.4	2.0%	3.	945
anti-A8	g ⁻ t(t)	7.2	2.7%	7.2	2.5%	7.2	2.3%	7.2	1.3%	3.	706
anti-A9	tt(t)	7.9	2.0%	6.7	3.0%	6.1	3.6%	6.9	1.5%	4.	215
anti-A10	tg⁻(g⁺)	8.0	1.9%	7.0	2.7%	6.4	3.2%	7.2	1.2%	3.	715
anti-A11	tg ⁻ (g ⁻)	8.0	1.9%	7.5	2.2%	7.3	2.3%	7.8	0.9%	1.	398
anti-A12	tt(g⁻)	8.2	1.8%	7.2	2.5%	6.6	2.9%	7.4	1.1%	2.	335
anti-A13	g ⁻ t(g ⁻)	8.3	1.7%	8.0	1.8%	7.8	1.8%	8.1	0.8%	2.	308
anti-A14	$g^{\dagger}g^{-}(g^{\dagger})$	11.8	0.4%	11.9	0.4%	11.9	0.4%	11.6	0.1%	3.	546
										μ(D) 2.	604

Supporting information 1

2.1.3 Table S3. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 4-fluorobutan-2-ol (B) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCI	298K	CHCl₃	298K	CH2Cl2	298K	CHCl₂	223K	C	HCl₃	298K
		ΔG	p _i	ΔG	<i>p</i> i	ΔG	p i	ΔG	p _i	μ	. (D)	
B1	g ⁻ g ⁻ (t)	0.0	25.2%	0.0	22.5%	0.0	20.7%	0.0	32.7%	2	.126	
B2	g⁻g⁻(g⁺)	1.1	16.0%	1.3	13.3%	1.4	11.8%	1.7	13.0%	1	.570	
B3	$g^{\text{-}}g^{\text{+}}(g^{\text{+}})$	2.0	11.3%	2.0	9.9%	2.0	9.3%	1.6	13.7%	3	.771	
B4	g⁻g⁻(g⁺)	3.1	7.3%	2.4	8.5%	2.0	9.4%	2.4	9.0%	3	.813	
B5	g t(t)	3.1	7.2%	2.8	7.4%	2.6	7.3%	2.8	7.1%	4	.089	
B6	$tg^{\dagger}(t)$	3.5	6.2%	2.9	7.0%	2.6	7.3%	3.2	5.7%	1	.986	
B7	$tg^{+}(g^{+})$	4.2	4.6%	3.6	5.3%	3.2	5.6%	3.9	4.0%	1	.774	
B8	g⁻t(g⁺)	5.4	2.8%	4.4	3.9%	3.7	4.6%	5.2	2.0%	2	.456	
В9	g ⁻ t(g ⁻)	5.5	2.7%	4.9	3.1%	4.6	3.2%	5.0	2.3%	2	.599	
B10	tg⁻(g⁺)	5.7	2.5%	4.7	3.4%	4.1	4.0%	5.2	2.0%	3	.502	
B11	tg⁺(g⁻)	5.9	2.3%	4.9	3.1%	4.3	3.6%	5.3	1.9%	3	.769	
B12	tg ⁻ (t)	6.2	2.0%	5.9	2.0%	5.8	2.0%	6.0	1.3%	1	.636	
B13	tg ⁻ (g ⁻)	6.7	1.7%	6.1	1.9%	5.8	2.0%	6.5	1.0%	1	.098	
B14	g⁺t(t)	7.3	1.3%	6.9	1.4%	6.7	1.4%	7.2	0.7%	4	.174	
B15	$g^{\dagger}g^{\dagger}(t)$	7.8	1.1%	8.0	0.9%	8.1	0.8%	7.6	0.5%	2	.116	
B16	$g^{\dagger}g^{\dagger}(g^{-})$	8.0	1.0%	7.9	0.9%	7.8	0.9%	8.2	0.4%	0	.665	
B17	tt(t)	8.2	0.9%	7.1	1.3%	6.5	1.5%	7.4	0.6%	4	.030	
B18	g ⁺ g ⁻ (g ⁻)	8.4	0.9%	8.4	0.8%	8.4	0.7%	7.7	0.5%	3	.728	
B19	$tt(g^{\star})$	8.6	0.8%	7.7	1.0%	7.1	1.2%	7.8	0.5%	1	.727	
B20	$g^{\star}t(g^{\star})$	8.8	0.7%	8.2	0.8%	7.9	0.8%	8.2	0.4%	2	.299	
B21	tt(g ⁻)	9.8	0.5%	8.7	0.7%	8.1	0.8%	8.9	0.3%	2	.432	
B22	$g^{\dagger}g^{-}(g^{\dagger})$	10.0	0.4%	10.0	0.4%	9.9	0.4%	10.1	0.1%	3	.413	
B23	$g^{\dagger}g^{\dagger}(g^{\dagger})$	11.0	0.3%	10.4	0.3%	10.0	0.4%	9.8	0.2%	3	.495	
B24	g⁺t(g⁻)	12.0	0.2%	10.9	0.3%	10.3	0.3%	11.3	0.1%	2	.980	
										μ(D) 2.	.633	

Supporting information 1

2.1.4 Table S4. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 2,2-dimethyl-3-fluoropropan-1-ol (C) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K	СН	Cl ₃ 298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	p i	μ(D)
C1	g [¯] g [¯] (g ⁺)	0.0	30.1%	0.0	26.5%	0.0	24.3%	0.2	28.1%	1.5	98
C2	g ⁻ g ⁻ (t)	0.2	27.2%	0.1	25.0%	0.1	23.7%	0.0	31.5%	1.9	56
С3	g ⁻ t(t)	2.8	9.9%	2.4	10.0%	2.2	9.9%	2.3	9.0%	3.8	26
C4	$g^{-}g^{+}(g^{+})$	3.4	7.5%	3.1	7.6%	2.9	7.5%	2.5	8.2%	3.6	13
C5	g ⁻ t(g ⁻)	3.8	6.4%	3.1	7.5%	2.8	8.0%	2.9	6.4%	2.4	55
C6	tg⁺(t)	4.8	4.4%	4.5	4.3%	4.4	4.2%	4.2	3.2%	1.6	38
С7	g ⁻ g ⁻ (g ⁻)	5.1	3.8%	4.0	5.3%	3.4	6.3%	3.4	5.0%	3.9	00
C8	$tg^{\dagger}(g^{\dagger})$	5.2	3.7%	4.5	4.4%	4.1	4.7%	4.2	3.2%	1.5	43
С9	g⁻t(g⁺)	6.1	2.5%	4.9	3.6%	4.2	4.4%	5.1	2.0%	2.4	57
C10	tt(t)	6.4	1.1%	5.7	1.3%	5.3	1.4%	5.8	0.7%	3.5	98
C11	tg⁻(g⁺)	6.5	2.2%	5.4	3.0%	4.8	3.6%	5.1	2.0%	3.7	06
C12	tt(g⁺)	8.8	0.9%	7.9	1.1%	7.3	1.3%	7.6	0.5%	1.9	50
C13	$g^{-}g^{+}(t)$	11.8	0.3%	9.7	0.5%	8.5	0.8%	9.9	0.1%	3.9	44
										μ(D) 2.3	85

2.1.5 Table S5. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 3-fluoropropan-1-ol (D) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K	CHCl₃	298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	p i	μ (D)	
D1	g ⁻ g ⁻ (t)	0.0	29.9%	0.0	25.4%	0.0	22.8%	0.0	33.9%	1.986	
D2	g [¯] g [¯] (g ⁺)	1.1	19.1%	1.0	16.8%	1.0	15.4%	1.4	15.7%	1.369	
D3	g ⁻ g ⁻ (g ⁻)	2.8	9.5%	1.9	11.7%	1.4	13.2%	1.9	12.4%	3.881	
D4	$g^{-}g^{+}(g^{+})$	2.9	9.4%	2.7	8.4%	2.6	7.9%	2.3	9.6%	3.778	
D5	tg⁺(t)	3.0	8.9%	2.4	9.7%	2.0	10.0%	2.6	8.4%	1.810	
D6	g t(t)	3.6	7.1%	3.1	7.2%	2.9	7.1%	3.2	6.1%	4.007	
D7	tg ⁻ (g ⁻)	4.3	5.2%	3.5	6.3%	3.0	6.8%	3.6	4.8%	1.692	
D8	g ⁻ t(g ⁻)	4.9	4.2%	4.1	4.8%	3.7	5.1%	4.2	3.6%	2.363	
D9	tg⁺(g⁻)	5.4	3.5%	4.1	4.9%	3.3	5.9%	4.2	3.5%	3.854	
D10	tt(t)	7.0	0.9%	5.8	1.2%	5.1	1.4%	6.2	0.6%	3.880	
D11	tt(g⁻)	8.0	1.2%	6.7	1.7%	6.0	2.0%	7.0	0.8%	1.954	
D12	g⁻t(g⁺)	8.8	0.9%	7.5	1.2%	6.8	1.5%	7.7	0.5%	2.460	
D13	g ⁻ g ⁺ (t)	11.8	0.3%	9.6	0.5%	8.2	0.8%	9.7	0.2%	4.051	
										μ(D) 2.514	

Supporting information 1

2.1.6 Table S6. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 4,4-difluoropentan-2-ol (E) in various solvents (CCl₄, and CHCl₃) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl₄	298K	CHCl₃	298K	CHCl ₃	223K	CH	Cl ₃ 298K
		ΔG	p i	ΔG	p i	ΔG	p i	μ	(D)
E1	g ⁻ g ⁻ t(t)	0.0	49.5%	0.0	48.2%	0.0	47.8%	3.5	594
E2	$g^{\scriptscriptstyle -}g^{\scriptscriptstyle +}g^{\scriptscriptstyle -}(g^{\scriptscriptstyle +})$	1.0	33.0%	1.1	30.6%	0.5	36.9%	3.4	68
E3	$g^{-}g^{+}t(g^{+})$	3.4	12.7%	3.2	13.3%	2.6	12.0%	3.5	526
E4	$g^{-}g^{+}g^{-}(t)$	8.7	1.5%	7.4	2.4%	7.3	0.9%	2.6	539
E5	tg⁺g⁻(t)	9.0	1.3%	8.8	1.4%	8.1	0.6%	1.0)30
E6	g ⁻ g ⁺ t(t)	9.9	0.9%	8.1	1.8%	7.3	0.9%	5.0)74
E7	tg ⁻ t(t)	10.6	0.7%	9.6	1.0%	8.7	0.4%	4.0)73
E8	g [¯] g [≠] g [¯] (g [¯])	11.2	0.5%	9.1	1.2%	9.2	0.3%	4.8	316
								μ(D) 3.5	534

Supporting information 1

2.1.7 Table S7. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 4,4-difluorobutan-2-ol (F) in various solvents (CCl4, and CHCl3) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-

311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CHCl ₃	223K	CHCl₃	298K
		ΔG	p i	ΔG	p i	ΔG	$oldsymbol{p}_{\mathrm{i}}$	μ (D)	
F1	g [¯] g [¯] t(t)	0.0	53.0%	0.0	47.9%	0.0	65.5%	3.899	
F2	g [¯] g [¯] t(g [¯])	3.4	13.6%	2.8	15.6%	2.8	14.7%	3.893	
F3	$g^{T}g^{T}g^{T}(g^{T})$	5.2	6.6%	5.3	5.5%	5.0	4.5%	2.965	
F4	$g^{-}g^{+}t(g^{+})$	5.9	4.8%	5.9	4.5%	5.5	3.4%	2.987	
F5	tg⁺t(t)	6.5	3.8%	5.9	4.5%	6.1	2.5%	3.063	
F6	$g^{\dagger}g^{\dagger}g^{-}(t)$	6.6	3.7%	6.7	3.2%	6.7	1.7%	4.019	
F7	$tg^{\dagger}t(g^{\dagger})$	6.9	3.3%	6.2	3.9%	6.4	2.1%	0.976	
F8	tg ⁻ t(t)	8.0	2.1%	7.5	2.4%	7.9	0.9%	2.820	
F9	g ⁻ g ⁺ t(t)	8.0	2.1%	6.2	3.9%	7.0	1.5%	1.441	
F10	tg⁺t(g⁻)	9.0	1.4%	7.9	2.0%	8.1	0.8%	3.591	
F11	$g^{\dagger}g^{\dagger}g^{-}(g^{\dagger})$	9.4	1.2%	8.8	1.4%	8.6	0.6%	3.425	
F12	tg⁺g⁻(t)	9.5	1.1%	9.4	1.1%	9.5	0.4%	1.043	
F13	tg ⁻ t(g ⁻)	10.1	0.9%	9.3	1.1%	9.7	0.3%	1.441	
F14	g ⁻ g ⁺ g ⁻ (t)	10.1	0.9%	8.7	1.5%	9.3	0.4%	3.174	
F15	tg⁺g⁻(g⁻)	10.8	0.7%	10.3	0.8%	10.6	0.2%	2.669	
F16	tg ⁻ t(g ⁺)	10.8	0.7%	9.6	1.0%	9.9	0.3%	2.875	
								μ(D) 3.437	

2.1.8 Table S8. Free energy differences (ΔG, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 3,3-difluoropropan-1-ol (G) in various solvents (CCl₄, and CHCl₃) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-

311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CHCl ₃	223K	CHCl₃	298K
		ΔG	p i	ΔG	p i	ΔG	$oldsymbol{p}_{\mathrm{i}}$	μ (D)	
G1	g ⁻ g ⁻ t(t)	0.0	51.2%	0.0	43.3%	0.0	58.7%	3.697	
G2	g [¯] g [¯] t(g [¯])	3.4	13.2%	2.5	15.7%	2.4	15.9%	3.734	
G3	tg ⁻ t(t)	4.4	8.6%	3.7	9.9%	4.1	6.6%	3.343	
G4	$g^{-}g^{+}t(g^{+})$	5.8	4.9%	5.5	4.8%	5.1	3.8%	2.919	
G5	tg⁺g⁻(t)	4.3	4.5%	3.9	4.4%	4.2	3.0%	1.000	
G6	$g^{T}g^{T}g^{T}(g^{T})$	6.0	4.6%	6.0	3.9%	5.5	3.1%	2.910	
G7	tg t(g)	6.7	3.4%	5.7	4.3%	5.9	2.5%	1.002	
G8	tg⁺g⁻(g⁻)	6.8	3.3%	5.8	4.1%	6.1	2.2%	3.086	
G9	tg⁻t(g⁺)	7.6	2.3%	6.3	3.5%	6.4	1.8%	3.369	
G10	g ⁻ g ⁺ t(g ⁻)	9.3	1.2%	8.2	1.6%	8.3	0.7%	2.886	
G11	g ⁻ g ⁺ t(t)	9.4	1.2%	7.4	2.2%	7.6	1.0%	4.805	
G12	$g^{-}g^{+}g^{-}(t)$	9.5	1.1%	8.1	1.7%	8.5	0.6%	2.998	
G13	g [¯] g ⁺ g¯(g¯)	12.1	0.4%	10.0	0.8%	10.3	0.2%	4.647	
								μ(D) 3.334	

Supporting information 1

2.1.9 Table S9. Free energy differences (ΔG , kJ mol⁻¹) and conformational distribution (p_i , %) of 4,4,4-trifluorobutan-2-ol (H)

in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K		CHCl₃	298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	$oldsymbol{p}_{\mathrm{i}}$		μ (D)	
H1	$g^{-}(g^{+})$	0.0	61.8%	0.0	47.1%	0.0	39.2%	0.0	60.7%		2.036	
H2	g ⁻ (t)	2.6	21.4%	1.0	31.7%	0.1	37.1%	1.6	25.9%		4.427	
Н3	g ⁻ (g ⁻)	5.8	6.0%	3.8	10.1%	2.8	12.9%	4.1	6.5%		4.339	
H4	t(g⁺)	5.9	5.8%	5.0	6.3%	4.5	6.3%	5.2	3.7%		2.085	
Н5	t(g ⁻)	7.6	2.9%	6.9	3.0%	6.5	2.9%	6.8	1.5%		2.521	
H6	t(t)	8.4	2.1%	8.0	1.8%	7.9	1.6%	6.6	1.7%		2.928	
										μ(D)	3.059	

2.1.10 Table S10. Free energy differences (Δ*G*, kJ mol⁻¹) and conformational distribution (*p_i*, %) of 3,3,3-trifluoropropan-1-ol (I) in various solvents (CCl₄, CHCl₃ and CH₂Cl₂) at various temperatures (298K and 223K) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

		CCl ₄	298K	CHCl₃	298K	CH ₂ Cl ₂	298K	CHCl₃	223K		CHCl₃	298K
		ΔG	p i	ΔG	p i	ΔG	p i	ΔG	p i		μ (D)	
11	t(t)	0.0	34.3%	0.0	30.7%	0.0	28.1%	0.0	33.3%		2.758	
12	$g^{-}(g^{+})$	2.2	28.0%	2.5	22.5%	2.6	19.7%	1.7	26.5%		1.882	
13	t(g⁺)	2.9	21.3%	2.3	24.4%	1.9	25.9%	2.1	21.0%		2.465	
14	g ⁻ (t)	3.6	16.3%	2.5	22.4%	1.9	26.2%	2.3	19.2%		4.136	
										_ μ(D)	2.798	

2.1.11 Table S11. Free energy differences (∆G, kJ mol⁻¹) and conformational distribution (*p_i*, %) of *syn*-4-methoxypentan-2-ol (*syn*-J) and *anti*-4-methoxypentan-2-ol (*anti*-J)

in various solvents (CCl₄, CHCl₃) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

	CCl ₄	298K	CHCl₃	298K		CCl ₄	298K	CHCl₃	298K	
	ΔG	p i	ΔG	$oldsymbol{p}_{\mathrm{i}}$		ΔG	p i	ΔG	p i	
syn-J1	0.0	94.7%	0.0	93.9%	anti-J1	0.0	31.3%	0.0	33.4%	
syn-J2	9.2	2.3%	11.6	0.9%	anti-J2	0.1	29.8%	0.4	28.4%	
syn-J3	9.5	2.0%	11.7	0.8%	anti-J3	0.9	21.9%	1.1	21.2%	
syn-J4	11.4	0.9%	7.6	4.4%	anti-J4	3.3	8.3%	3.7	7.5%	
					anti-J5	3.6	7.3%	3.5	8.1%	
					anti-J6	7.6	1.5%	7.9	1.4%	

2.1.12 Table S12. Free energy differences (ΔG , kJ mol⁻¹) and conformational distribution (p_i , %) of syn-2-fluoro-4-methoxypentane (syn-K) and anti-2-fluoro-4-methoxypentane (anti-K)

in various solvents (CCl₄, CHCl₃) calculated at the IEFPCM-MP2/6-311++G(2d,p)//MPWB1K/6-31+G(d,p) level of theory.

	CCl ₄	298K	CHCl₃	298K		CCl ₄	298K	CHCl₃	298K	
	ΔG	p i	∆G	p i		∆G	p i	ΔG	p i	
syn-K1	0.0	44.7%	0.0	44.3%	anti-K1	0.0	88.3%	0.0	86.6%	
syn-K2	1.9	20.7%	1.8	21.2%	anti-K2	6.9	5.5%	6.8	5.5%	
syn-K3	2.9	14.0%	2.7	15.1%	anti-K3	9.1	2.2%	8.5	2.9%	
syn-K4	3.6	10.3%	4.2	8.2%	anti-K4	9.5	1.9%	9.2	2.1%	
syn-K5	7.0	2.6%	7.4	2.3%	anti-K5	10.7	1.2%	9.7	1.7%	
syn-K6	7.2	2.4%	7.2	2.5%	anti-K6	11.5	0.8%	10.5	1.3%	
syn-K7	7.5	2.2%	7.5	2.2%						
syn-K8	8.0	1.7%	8.0	17%						
syn-K9	8.6	1.4%	7.0	2.6%						

Supporting information 1 Depiction of the optimized structures at the IEFPCM-MPWB1K/6-31+G(d,p) level of theory 2.2

2.2.1 syn-4-fluoropentan-2-ol (syn-A)

B19

B21

B22

B23

2.2.5 3-fluoropropan-1-ol (D)

2.2.7 3,3-difluorobutan-2-ol (F)

2.2.9 4,4,4-trifluorobutan-2-ol (H)

2.2.10 3,3,3-trifluoropropan-1-ol (I)

2.2.11 syn-4-methoxypentan-2-ol (syn-J)

2.2.12 anti-4-methoxypentan-2-ol (anti-J)

2.2.13 syn-2-fluoro-4-methoxypentane (syn-K)

2.3 Table S13. Characteristic properties of the OH•••F IMHB encountered in the relevant conformers of compounds A-I. AIM electron density (ρ, e bohr⁻³) at the bond critical points, energy of H-bond (E_{HB}, kJ·mol⁻¹), NCI attractive and repulsive contributions of the OH•••F interaction (sign(λ₂)ρ, e bohr⁻³) and NBO interaction energy (E⁽²⁾_{n••}, kJ mol⁻¹)

Compound	Conformer	d _(OH•••F) ^{a,b}	ρ ^c	<i>E</i> _{HB} ^c	$\text{sign}(\lambda_2)\rho^{\text{c,d}}$	$sign(\lambda_2) \rho^{c,d}$	E ⁽²⁾ n⊸* ^a
Syn-A	syn-A1	2.000	0.0206	24.4	-0.0206	0.0142	25.1
Anti-A	anti_A4	2.008	0.0202	23.7	-0.0199	0.0139	24.7
	anti_A7	2.056	0.0186	21.6	-0.0186	0.0139	20.1
В	B3	2.037	0.0190	22.0	-0.0188	0.0134	22.3
	B18	2.091	0.0173	19.8			18.2
С	C4	2.065	0.0184	21.4	-0.0182	0.0134	19.2
D	D4	2.074	0.0178	20.4	-0.0178	0.0132	20.0
E	E2	2.062	0.0185	21.7	-0.0182	0.0142	17.8
	E3	2.050	0.0187	21.7	-0.0184	0.0140	19.4
F	F3	2.133	0.0161	18.4	-0.0161	0.0128	13.8
	F4	2.090	0.0173	19.8	-0.0162	0.0146	16.9
G	G4	2.175	0.0148	16.6	-0.0128	0.0121	9.0
	G6	2.201	0.0142	16.1	-0.0132	0.0118	10.5
Н	H1	2.172	0.0151	17.1	-0.0142	0.0126	10.9
<u> </u>	12	2.234	0.0136	15.4	-0.0136	0.0125	8.3

^a At the IEFPCM-MPWB1K/6-31+G(d,p) level. ^b in Å. ^c At the IEFPCM-MP2/6-311++G(2d,p) level. ^d Negative sign(λ_2) ρ values indicate attractive contributions to non-covalent interactions, while positive sign(λ_2) ρ values indicate repulsive contributions

SI24

3 NCI (Non-Covalent Interaction) analysis

3.1 Table S14. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$ and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound *syn*-A.

cup A1						cup A2					
Syll-Al						Syll-AZ					
212	0	$\text{sign}(\lambda_2)\rho$	RDG	$\text{sign}(\lambda_2)\rho$	RDG			sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG
	OH…F	-0.0206	0.0720	0.0142	0.0549		CH…F	-0.0101	0.3014	0.0112	0.2718
							СН…Н	-0.0095	0.0720	0.0098	0.1455
syn-A3						syn-A4					
	CH…F	-0.0106	0.2847	0.0117	0.2751		СН…О	-0.0109	0.2488	0.0121	0.2321
	СН…Н	-0.0096	0.0959	0.0101	0.1061		СН…Н	-0.0094	0.1406	0.0098	0.1145
· ·											
syn-A5						syn-A7					
. 9	СН…О	-0.0113	0.2132	0.0118	0.2140	Ģ	СН…О	-0.0091	0.2627	0.0098	0.2274
	СН…Н	-0.0096	0.1253	0.0098	0.1415		СН…Н	-0.0091	0.1091	0.0096	0.1307
syn-A8											
0 19	CH…F	-0.0104	0.2850	0.0108	0.2843						
	СН…Н	-0.0095	0.1259	0.0098	0.0838						

Supporting information 1

3.2 Table S15. NCI isosurfaces and electron densities features, $sign(\lambda_2)\rho$ and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound *anti*-A.

anti-A1						anti-A2					
		sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG	<u></u>		sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG
	CH…F	-0.0105	0.2834	0.113	0.2638		CH…F	-0.0102	0.3066	0.0117	0.2816
- L	СН…О	-0.0119	0.2126	0.0123	0.1836		СН…О	-0.0116	0.2439	0.0122	0.2094
anti-A3						anti-A4					
	CH…O	-0.0118	0.3111	0.0130	0.2720		OH…F	-0.0199	0.0594	0.0139	0.0726
	OH…F	-0.0085	0.2112	0.0089	0.1965	6 G	СН…Н	-0.0097	0.1025	0.0101	0.0717
anti-A7											
a & a	OH…F	-0.0186	0.0521	0.0139	0.0718						
ୢୖୖୖୄୄୄୄୄୄ	СН…Н	-0.0098	0.1025	0.0101	0.0718						
0											

B1						B2					
9 💑		$\text{sign}(\lambda_2)\rho$	RDG	sign(λ_2) ρ	RDG	912		sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG
	CH…F	-0.0099	0.4455	0.0105	0.4480	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CH…F	-0.0097	0.4073	0.0110	0.3903
	СН…О	-0.0114	0.2511	0.0125	0.2122		СН…О	-0.0104	0.2800	0.0116	0.2321
B3						B4					
<u>6</u>	OH…F	-0.0188	0.0998	0.0134	0.1047	૾ૢૺૢૢૢૢૢૢૢ૽ૡ૾ૢ	CH…F CH…O	-0.0091 -0.0013	0.4844 0.2264	0.0098 0.0119	0.4821 0.2571
B5						B6					
	СН…О	-0.0113	0.2355	0.0117	0.2210		СН…ғ Н…Н	-0.0092 -0.0095	0.1948 0.0965	0.0094 0.0099	0.3389 0.1013

3.4 Table S17. NCI isosurfaces and electron densities features, $sign(\lambda_2)\rho$ and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound C.

C1		sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG	C2		sign(λ_2) ρ	RDG	sign(λ_2) ρ	RDG
~ ~ * <u>~</u>	CHUIE	-0.0082	0.5529	0.0112	0.4344		CHUIE	-0.0108	0.4102	0.0115	0.2872
	CHI	-0.0111	0.3166	0.0142	0.3423		CHI	-0.0102	0.3705	0.0117	0.2997
	CHO	-0.0107	0.3067	0.0129	0.3246	6	CHO	-0.0117	0.2626	0.0136	0.2417
		-0.0097	0.3154	0.0112	0.3160			-0.0114	0.2378	0.0127	0.2050
С3						C4					
~~~~	CHE	-0.0085	0.5168	0.0126	0.3396						
۲ <u>۳۳۶</u> ۳۰	CIT	-0.0102	0.4243	0.0112	0.4023		OH…F	-0.0182	0.1172	0.0134	0.1359
0	CHO	-0.0111	0.2878	0.0116	0.2805	5 5	CH…F/	-0.0121	0.3020	0.0135	0.3348
		-0.0116	0.3039	0.0130	0.2601		СН…О				
C5											
	CHUIE	-0.0081	0.5566	0.0111	0.3329						
	CHI	-0.0105	0.4094	0.0110	0.3908						
- <del>- </del>	CHO	-0.0108	0.2792	0.0111	0.2109						
	CnO	-0.0100	0.2496	0.0111	0.2293						

#### 3.5 Table S18. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$ and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound D.



3.6 Table S19. NCI isosurfaces and electron densities features, sign( $\lambda_2$ ) $\rho$  and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound E.



#### SI29

3.7 Table S20. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$  and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound F.

F1						F2					
<u>° ∰</u> ∎&⊃		sign( $\lambda_2$ ) $\rho$	RDG	sign( $\lambda_2$ ) $\rho$	RDG	e 🎉 🚕		sign( $\lambda_2$ ) $\rho$	RDG	sign( $\lambda_2$ ) $\rho$	RDG
	CH…F	-0.0103	0.5832	0.0122	0.3701	2 9 9 9 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	CH…F	-0.0090	0.5849	0.0103	0.4210
	СН…О	-0.0119	0.3651	0.0123	0.2761		СН…О	-0.0106	0.6768	0.0138	0.4144
F3						F4					
ૻૢૢૢૢૢૢૢ૽ૺૼ૾ૢૢૼ	OH…F	-0.0161	0.1575	0.0128	0.1105	૾ૢૢૢૢૢૢ૽ૺૼૡૢ૾ૺૡૻ	OH…F	-0.0162	0.2283	0.0146	0.2822
	CH…F	-0.0097	0.3333	0.0108	0.2888						
F5						F6					
	CH····E	-0 0082	0 3061	0.0096	0 2586		СНЕ	-0.0103	0 2946	0 0095	0 3889
25° -05'	CHIM	-0.0082	0.3001	0.0090	0.2380		Chim	-0.0105	0.2940	0.0095	0.3889
	Н…Н	-0.0087	0.2807	0.0093	0.1989		СН…О	-0.0106	0.2815	0.0119	0.2689

3.8 Table S21. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$  and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCl₄ for the main conformers of compound G.



3.9 Table S22. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$  and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCl₄ for the main conformers of compound H.

H1						H2					
, 📌		sign( $\lambda_2$ ) $\rho$	RDG	sign( $\lambda_2$ ) $\rho$	RDG	<b>⊶</b> ¶∮ <u>₽</u>		sign( $\lambda_2$ ) $\rho$	RDG	sign( $\lambda_2$ ) $\rho$	RDG
<u> </u>	OH…F	-0.0142	0.1790	0.0126	0.2121	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CF…O	-0.0107	0.3356	0.0104	0.3418
	CH…F	-0.0086	0.6183	0.0126	0.1326		CH…F	-0.0101	0.2742	0.0104	0.1204

3.10 Table S23. NCI isosurfaces and electron densities features, sign $(\lambda_2)\rho$  and reduced density gradient (RDG) on IEFPCM-MP2/6-311++G(2d,p) wavefunctions in CCI₄ for the main conformers of compound I.

11						12					
		sign( $\lambda_2$ ) $\rho$	RDG	sign( $\lambda_2$ ) $\rho$	RDG	<b>* * </b>		$\text{sign}(\lambda_2)\rho$	RDG	$\text{sign}(\lambda_2)\rho$	RDG
· · · ·	CH…F	-0.0082	0.6511	0.0099	0.4866		OH…F	-0.0136	0.0614	0.0125	0.3142
	CH…F	-0.0082	0.6511	0.0099	0.4866	•	CH…F	-0.0093	0.5321	0.0104	0.4239

#### 4 Table S24: Calculated NMR coupling constants

Experimental and theoretical values of coupling constants:

	ex	р	the	90		ex	кр	th	eo
syn_FPentOH	in CE	OCI3	in Cł	HCI3	anti_FPentOH	in Cl	DCI3	in Cl	HCI3
syn_A	+25°C	-50°C	+25°C	-50°C	anti_A	+25°C	-50°C	+25°C	-50°C
OH F	6.6	9.9	-7.9	-11.9	OH F	1.9	1.8	-1.5	-1.2
$OH - H_2$	3.4	2.4	3.4	2.2	$OH - H_2$	4.9	4.7	5.0	4.5
OH – Me	0.3		0.5	0.7	$OH - H_3$	0.5	0.7	0.6	0.8
H ₃ – F	13.6	11.8	10.8	9.6	H ₃ — F	15.7	14.7	14.4	13.8
$H_3 - H_4$	9.0	9.9	9.3	9.9	$H_3 - H_{4a}$	9.3	9.9	9.1	9.7
$H_3 - H_2$	7.9	8.6	7.7	8.2	$H_3 - H_{2g}$	3.0	2.5	3.5	2.6
H ₃ ′ – F	34.7	39.6	35.1	38.8	H ₃ ' — F	36.0	39.1	34.0	36.4
$H_3' - H_4$	4.1	3.3	3.9	3.4	$H_3' - H_{2a}$	9.3	10.0	9.2	10.0
$H_{3}' - H_{2}$	4.1	3.3	4.2	3.2	$H_3' - H_{4g}$	2.7	2.3	2.9	2.2
$H_{3} - H_{3}'$	14.5	14.8	-13.6	-13.8	$H_4 - F$	49.4	49.7	50.3	50.4
$H_4 - F$	49.5	49.8	50.7	51.1					

	ex	p	theo		<b>B,</b> cont'd	+25°C	-50°C	+25°C	-50°C
FBuOH	in CDCl3		in CHCl3		H _{3'} – F	29.3		29.2	32.2
В	+25°C	-50°C	+25°C	-50°C	F – Me	0.5		0.7	0.5
OH F	2.2		-1.8	-2.4	$F - H_4$	47.2		48.0	47.9
$OH - H_2$	4.5		4.5	4.0	$F - H_{4'}$	47.2		48.2	48.2
$OH - H_3'$	0.3		0.0	0.1					
$H_3 - H_3'$	14.8		-13.7	-13.8		exp		theo	
$H_3 - H_2$	4.3		4.2	3.4	Me ₂ FPrOH	in CDCl3		in CHCl3	
$H_{3} - H_{4}$	5.0		5.2	4.8	С	+25°C	-50°C	+25°C	-50°C
$H_3 - H_4'$	7.5		8.0	8.5	OH F	1.7		-1.2	-1.3
$H_3 - F$	25.0		22.7	22.6	$OH - H_1$	5.9		5.9	5.6
$H_{3'} - H_2$	8.1		8.4	9.2	$F - H_1$	1.3		2.3	2.4
$H_{3'} - H_4$	6.0		5.7	5.4	$F - H_3$	47.8		39.8	42.5
$H_{3'} - H_{4'}$	4.6		4.5	3.9	F – Me'	1.8		1.4	1.5

	exp		theo				exp		theo	
FPrOH	in CDCl3		in CHCl3			F₂PentOH	in CDCl3		in CHCl3	
D	+25°C	-50°C	+25°C	-50°C		E	+25°C	-50°C	+25°C	-50°C
OH F	1.4	1.7	-1.2	-1.4		OH F ₁	1.4	1.7	-1.2	-1.0
$H_1 - H_2$	6.0	6.0	6.0	5.8		OH F ₂	3.5	4.7	-4.9	-5.9
$H_1 - OH$	5.3	5.2	5.5	5.1		$OH - H_2$	3.5		1.4	1.2
$H_2 - F$	27.0	28.4	26.5	27.5		$H_3 - H_2$	3.0	2.4	1.2	1.0
$H_2 - H_3$	5.8	5.5	5.7	5.5		$H_{3} - H_{3}'$	15.0	15.0	-14.1	-14.1
H ₃ – F	47.0	47.1	48.0	48.0	_	$H_3 - F_1$	13.7	13.7	14.0	13.3
						$H_3 - F_2$	20.0	21.7	16.6	17.6
	ex	р	the	eo		$H_{3}' - H_{2}$	8.6	9.2	9.7	9.8
F₂BuOH	in CI	DCI3	in Cł	HCI3		$H_3' - F_2a$	19.3	21.1	17.7	17.2
F	+25°C	-50°C	+25°C	-50°C		$H_3' - F_1g$	13.3	11.6	13.4	14.2
OH F ₁	0.6		-0.2	-0.3						
OH F ₂	0.6		-0.4	-0.2			ex	кр	th	ео
$OH - H_2$	4.5		4.0	3.6		$F_2$ PrOH	in Cl	DCI3	in Cl	HCI3
$H_2 - H_3$	8.4		9.0	9.9		G	+25°C	-50°C	+25°C	-50°C
$H_2 - H_3'$	4.4		3.6	3.0		OH F ₁	0.4		-0.3	-0.2
H ₃ - H ₃ '	14.5		-13.5	-13.4		OH F ₂	0.4		0.1	0.1
$F_1 - H_3$	14.5		8.8	6.3		$H_1 - OH$	5.1		4.2	3.6
F ₁ - H ₃ '	14.5		11.1	10.3		$H_1 - H_2$	6.0		6.2	5.9
F ₂ - H ₃	20.9		30.1	32.9		$H_2 - F_1$	17.0		23.0	23.8
F ₂ - H ₃ '	16.3		16.5	15.2		$H_2 - F_2$	17.0		10.0	8.5
H ₄ - H ₃	3.6		2.3	1.9		$H_2 - H_3$	4.6		4.8	5.0
H ₄ - H ₃ '	5.5		7.3	8.0		$H_3 - F_1$	57.0		57.9	58.2
$H_4 - F_1$	56.8		56.8	57.0		$H_3 - F_2$	57.0		56.7	56.8
$H_4 - F_2$	56.8		58.1	58.4						

Linclau, Grator	า		Supporting information 1							SI34
F₂BuOH	exp in CDCl3		theo in CHCl3			F₂PrOH	exp in CDCl3		theo in CHCl3	
H	+25°C	-50°C	+25°C	-50°C		<b>I</b>	+25°C	-50°C	+25°C	-50°C
OH F ₁	0.7		-4.5	-5.8		OH F ₁	0.3		1.3	1.3
OH F ₂	0.7		0.2	0.3		OH F ₂	0.3		0.0	0.0
OH F₃	0.7		0.4	0.3		OH F₃	0.3		-1.5	-1.9
$OH - H_2$	4.2		3.7	3.0		$F - H_2$	10.8		9.9	9.9
$H_2 - H_3$	4.0		2.2	1.7		$OH - H_1$	5.8		5.0	5.0
$H_2 - H_3'$	8.0		9.5	9.7						
H ₃ – F	11.2		10.6	10.7						
$H_3' - F$	10.8		9.5	9.6						

## SUPPORTING INFORMATION 2

### NMR investigations of the fluorohydrins A-I

### **Table of Contents**

5 D	etailed NMR analysis of all fluorohydrins	
5.1	Experimental procedure for sprectra acquisition and FID reprocessing	
5.2	(±)-syn-4-Fluoropentan-2-ol (syn-A)	
5.	.2.1 ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	
5.	.2.2 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) ( <i>syn</i> -A)	
5.	.2.3 Comparison of ¹ H NMR of OH, H-3 and H-3' signals at 25 °C and -50 °C (CDCl ₃ , 500 MHz) ( <i>syn</i> -A)	
5.	.2.4 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals at -50 °C (CDCl ₃ , 500 MHz) ( <i>syn-A</i> )	
5.	.2.5 ¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) ( <i>syn-</i> A)	
5.	.2.6 ¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, –50 °C) ( <i>syn-</i> A)	
5.3	(±)- <i>anti</i> -4-fluoropentan-2-ol ( <i>anti</i> -A)	
5.	.3.1 ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	45
5.	.3.2 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) (anti-A)	46
5.	.3.3 Comparison of ¹ H NMR of OH, H-3 and H-3' signals at 25 °C and -50 °C (CDCl ₃ , 500 MHz) (anti-A)	
5.	.3.4 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals at -50 °C (CDCl ₃ , 500 MHz) (anti-A)	
5.	.3.5 ¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) ( <i>anti</i> -A)	
5.	.3.6 ¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, –50 °C) ( <i>anti</i> -A)	50
5.4	4-fluorobutan-2-ol (B)	
5.	.4.1 ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	51
5.	.4.2 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) (B)	52
5.	.4.3 ¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (B)	53
5.5	3-fluoro-2,2-dimethylpropan-1-ol (C)	
5.	.5.1 ¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	54
5.	.5.2 Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) l (C)	55
5.5.3	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (C)	
--------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------	----
5.6 3-1	fluoropropan-1-ol (D)	
5.6.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	
5.6.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (D)	
5.6.3	Comparison of ¹ H NMR of OH signal at 25 °C and -50 °C (CDCl ₃ , 500 MHz) (D)	59
5.6.4	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signals at -50 °C (CDCl ₃ , 500 MHz) (D).	60
5.6.5	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (D)	
5.6.6	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, –50 °C) (D)	
5.6.7	¹ H NMR spectrum (CD ₂ Cl ₂ , 500 MHz, 25 °C) (D)	63
5.6.8	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CD ₂ Cl ₂ , 500 MHz, 25 °C) (D)	64
5.6.9	¹⁹ F NMR spectrum (CD ₂ Cl ₂ , 470 MHz, 25 °C) (D)	65
5.7 4,4	4-difluoropentan-2-ol (E)	
5.7.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	
5.7.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) (E)	67
5.7.3	Homodecoupling of H-2 (CDCl ₃ , 500 MHz, 25 °C) (E)	
5.7.4	Comparison of ¹ H NMR of OH, H-3' and H-3 signal at 25 °C and -50 °C (CDCl ₃ , 500 MHz) (E)	69
5.7.5	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3' and H-3 signals at -50 °C (CDCl ₃ , 500 MHz) (E)	70
5.7.6	Homodecoupling of H-2 (CDCl ₃ , 500 MHz, -50 °C) (E)	71
5.7.7	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (E)	72
5.7.8	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, –50 °C) (E)	73
5.8 4,4-difluorobutan-2-ol (F)		74
5.8.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	74
5.8.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) (F)	75
5.8.3	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (F)	76
5.8.4	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (F)	77
5.9 3,3	3-difluoropropan-1-ol (G)	78
5.9.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	
5.9.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (G)	79
5.9.3	Detail of ¹ H (enhanced resolution spectra) and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (G)	80
5.9.4	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (G)	
5.10 4	-,4,4-trifluorobutan-2-ol (H)	82
5.10.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	
5.10.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH, H-3 and H-3' signals (CDCl ₃ , 500 MHz, 25 °C) (H)	
5.10.3	Detail of enhanced resolution spectra of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (H)	
5.10.4	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (H)	
5.11 3	,3,3-trifluoropropan-1-ol (I)	
5.11.1	¹ H NMR spectrum (CDCl ₃ , 500 MHz, 25 °C)	86
5.11.2	Detail of ¹ H and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (I)	

5.11.3	Detail of ¹ H (enhanced resolution spectra) and ¹ H[ ¹⁹ F] NMR of OH signal (CDCl ₃ , 500 MHz, 25 °C) (I)	88
5.11.4	¹⁹ F NMR spectrum (CDCl ₃ , 470 MHz, 25 °C) (I)	89

#### 5 Detailed NMR analysis of all fluorohydrins

#### 5.1 Experimental procedure for sample preparation, sprectra acquisition and FID reprocessing

Molecular sieves 3Å (2g, beads 4-8 mesh) were activated by heating at 160 °C under reduced pressure (0.15 mmHg) for 16 hours. After cooling, the activated molecular sieves (3 spatulas) were placed under argon atmosphere and then added to a dry solution of fluorohydrin (**A-I**) in CDCl₃ (1.2 mg/mL, (0.009M-0.015M)). The resulting solution was left standing for 40 minutes under argon and then 0.6 mL of the supernatant solution was added to the NMR tube which was previously flame-dried under reduced pressure and placed under argon. The NMR tube was closed with a valve and immediately submitted for data acquisition.

NMR data were collected on a Bruker AVIII HD 500 MHz NMR spectrometer. Samples were shimmed until  $w_{1/2}$  for residual CDCl₃ solvent signal was 0.5 Hz or better through a combination of sequential iterations of "TopShim" gradient shimming with additional manual intervention as required. ¹H spectra were collected with TD = 131,072 points (zero-filled to 262,144) and SW = 14 ppm (o1p = 5.0 ppm). ¹⁹F spectra were collected with TD = 262,144 points (zero-filled to 524,288) and SW = 50 ppm (o1p proximal to ¹⁹F signal). ¹⁹F(¹H) spectra were collected with TD = 262,144 points (zero-filled to 524,288) and SW = 200 ppm (o1p proximal to ¹⁹F signal; inverse-gated decoupling with o2p = 5.0 ppm). ¹H(¹⁹F) spectra were collected with TD = 65,536 points (zero-filled to 196,608) and SW = 14 ppm (o1p = 5.0 ppm; adiabatic inverse-gated decoupling with o2p proximal to ¹⁹F signal).



5.2.1 ¹H NMR spectrum (CDCI₃, 500 MHz, 25 °C)



# 5.2.2 Detail of ¹H and ¹H[¹⁹F] NMR of OH, H-3 and H-3' signals (CDCI₃, 500 MHz, 25 °C) (*syn-*A)





## 5.2.3 Comparison of ¹H NMR of OH, H-3 and H-3' signals at 25 °C and -50 °C (CDCI₃, 500 MHz) (*syn-A*)



## 5.2.4 Detail of ¹H and ¹H[¹⁹F] NMR of OH, H-3 and H-3' signals at -50 °C (CDCl₃, 500 MHz) (*syn-A*)



¹H NMR, -50 °C







## 5.2.6 ¹⁹F NMR spectrum (CDCI₃, 470 MHz, -50 °C) (*syn*-A)



- 5.3 (±)-anti-4-fluoropentan-2-ol (anti-A)
- 5.3.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)



## 5.3.2 Detail of ¹H and ¹H[¹⁹F] NMR of OH, H-3 and H-3' signals (CDCl₃, 500 MHz, 25 °C) (*anti*-A)

¹H[¹⁹F] NMR





### 5.3.3 Comparison of ¹H NMR of OH, H-3 and H-3' signals at 25 °C and -50 °C (CDCI₃, 500 MHz) (*anti-*A)

## 5.3.4 Detail of ¹H and ¹H[¹⁹F] NMR of OH, H-3 and H-3' signals at -50 °C (CDCI₃, 500 MHz) (*anti-*A)



## 5.3.5 ¹⁹F NMR spectrum (CDCl₃, 470 MHz, 25 °C) (*anti-*A)



Chemical Shift (ppm)



-150 -152 -154 -156 -168 -160 -162 -166 -168 -170 -172 -174 -176 -178 -180 -182 -184 -186 -188 -190 -192 -194 Chemical Shift (ppm)

- 5.4 4-fluorobutan-2-ol (B)
- 5.4.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)



OH





## 5.4.3 ¹⁹F NMR spectrum (CDCI₃, 470 MHz, 25 °C) (B)





5.5.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)





¹H NMR



## 5.5.3 19 F NMR spectrum (CDCI₃, 470 MHz, 25 °C) (C)



- 5.6 3-fluoropropan-1-ol (D)
- 5.6.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)



#### SI58

# 5.6.2 Detail of ¹H and ¹H[¹⁹F] NMR of OH signal (CDCl₃, 500 MHz, 25 °C) (D)



## 5.6.3 Comparison of ¹H NMR of OH signal at 25 °C and -50 °C (CDCl₃, 500 MHz) (D)

#### ¹H NMR, -50 °C









# 5.6.4 Detail of ¹H and ¹H[¹⁹F] NMR of OH signals at -50 $^{\circ}$ C (CDCl₃, 500 MHz) (D)







1.745 1.740 1.735 1.730 1.725 1.720 1.715 1.710 1.705 1.700 1.695 1.690 1.685 1.680 1.675 1.670 1.665 1.660 1.655 1.650 1.645 1.640 1.635 1.630 1.625 1.620 1.615 1.610 1.605 1.600

¹H NMR, -50 °C





### 5.6.6 ¹⁹F NMR spectrum (CDCI₃, 470 MHz, -50 °C) (D)



5.6.7 ¹H NMR spectrum (CD₂CI₂, 500 MHz, 25 °C) (D)



# 5.6.8 Detail of ¹H and ¹H[¹⁹F] NMR of OH signal ( $CD_2CI_2$ , 500 MHz, 25 °C) (D)



## 5.6.9 19 F NMR spectrum (CD₂Cl₂, 470 MHz, 25 °C) (D)



- 5.7 4,4-difluoropentan-2-ol (E)
- 5.7.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)





# 5.7.2 Detail of ¹H and ¹H[¹⁹F] NMR of OH, H-3 and H-3' signals (CDCl₃, 500 MHz, 25 °C) (E)



## 5.7.3 Homodecoupling of H-2 (CDCI₃, 500 MHz, 25 °C) (E)





#### 5.7.4 Comparison of ¹H NMR of OH, H-3' and H-3 signal at 25 °C and -50 °C (CDCI₃, 500 MHz) (E)



### 5.7.6 Homodecoupling of H-2 (CDCI₃, 500 MHz, -50 °C) (E)


## 5.7.7 ¹⁹F NMR spectrum (CDCI₃, 470 MHz, 25 °C) (E)





SI74



5.8.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)







SI75







### 5.8.4 ¹⁹F NMR spectrum (CDCl₃, 470 MHz, 25 °C) (F)



Chemical Shift (ppm)

- 5.9 3,3-difluoropropan-1-ol (G)
- 5.9.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)





## 5.9.3 Detail of ¹H (enhanced resolution spectra) and ¹H[¹⁹F] NMR of OH signal (CDCl₃, 500 MHz, 25 °C) (G)





-115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -126 -127 -128 -129 -130 -131 -132 -133 -134 -135 -136 Chemical Shift (ppm)

## 5.10 4,4,4-trifluorobutan-2-ol (H)

5.10.1 ¹H NMR spectrum (CDCl₃, 500 MHz, 25 °C)







## 5.10.3 Detail of enhanced resolution spectra of ¹H and ¹H[¹⁹F] NMR of OH signal (CDCI₃, 500 MHz, 25 °C) (H)



# 5.10.4 19 F NMR spectrum (CDCI₃, 470 MHz, 25 °C) (H)



- 5.11 3,3,3-trifluoropropan-1-ol (I)
- 5.11.1 ¹H NMR spectrum (CDCI₃, 500 MHz, 25 °C)



# 5.11.2 Detail of ¹H and ¹H[¹⁹F] NMR of OH signal (CDCI₃, 500 MHz, 25 °C) (I)



¹H NMR



## 5.11.3 Detail of ¹H (enhanced resolution spectra) and ¹H[¹⁹F] NMR of OH signal (CDCI₃, 500 MHz, 25 °C) (I)





## SI90

# SUPPORTING INFORMATION 3 Synthesis of the fluorohydrins

6	Synth	Synthesis of the fluorohydrins		
6	.1	Synthesis of (±)-syn and (±)-anti-4-fluoropentan-2-ol ((±)-syn-A and (±)-anti-A)	92	
	6.1.1 mixtu	Isolation of <i>meso</i> -2,4-pentanediol ( <i>meso</i> -SI-1) and (±)-2,4-pentanediol ((±)-SI-2) from a commentation of <i>meso</i> and <i>racemic</i> isomers	rcial 92	
	6.1	1.1.1 meso-2,4-pentanediol (meso-SI-1)	92	
	6.1	1.1.2 (±)-2,4-pentanediol ((±)-SI-2)	92	
	6.1.2	Synthesis of (±)-anti and (±)-syn-2-(3'-methylbenzoyloxy)-4-fluoropentane ((±)-anti-SI-3 and (±)-syn-SI-4	4) 92	
	6.1	.2.1 General procedure for the mono-deoxyfluorination of diols using DFMBA in diglyme	92	
	6.1	.2.2 (±)-syn-2-(3'-methylbenzoyloxy)-4-fluoropentane (±)-syn-SI-4	93	
	6.1	.2.3 (±)-anti-2-(3'-methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3	93	
	6.1.3	Synthesis of fluorohydrins (±)- <i>syn</i> -A and (±)- <i>anti</i> -A	93	
	6.1	I.3.1 General procedure for the deprotection of (±)-anti-SI-3 and (±)-syn-SI-4	93	
	6.1	I.3.2 (±)-syn-4-fluoropentan-2-ol (±)-syn-A	94	
	6.1	.3.3 (±)-anti-4-fluoropentan-2-ol (±)-anti-A	95	
6	.2	Synthesis of (±)-4-fluorobutan-2-ol (±)-B	96	
	6.2.1	Synthesis of 3-fluoropropanal SI-5	96	
	6.2.2	Synthesis of (±)-4-fluorobutan-2-ol (±)-B	96	
6	.3	Synthesis of 3-fluoro-2,2-dimethylpropan1-ol C	. 97	
	6.3.1	Synthesis of 3-fluoro-2,2-dimethyl-1-( <i>meta</i> -methylbenzoyloxy)-propane SI-6	. 97	
	6.3.2	Synthesis of 3-fluoro-2,2-dimethylpropan1-ol C	. 97	
6	.4	Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E	98	
	6.4.1	Synthesis of 4,6-dimethyl-2-phenyl-1,3-dioxane meso-SI-7 and (±)-SI-8	98	
	6.4.2 <i>anti</i> -S	Synthesis of (2 <i>S</i> *,4 <i>R</i> *)-4-benzyloxypentan-2-ol (±)- <i>syn</i> -SI-9 and (2 <i>R</i> *,4 <i>R</i> *)-4-benzyloxypentan-2-ol SI-10	(±)- 98	
	6.4.3	Synthesis of (±)-4-benzyloxypentan-2-one (±)-SI-11	99	
	6.4.4	Synthesis of (±)-2-benzyloxy-4,4-difluoropentane (±)-SI-12	99	
	6.4.5	Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E	99	
6	.5	Synthesis of (±)-4,4-difluorobutan-2-ol (±)-F	100	
	6.5.1	Synthesis of (±)-(2S,4R)-2,4-dimethyl-1,3-dioxane (±)-SI-13	100	
	6.5.2	Synthesis of (±)-3-benzyloxy-butan-1-ol (±)-SI-14	101	
	6.5.3	Synthesis of (±)-3-benzyloxy-butanal (±)-SI-15	101	
	6.5.4	Synthesis of (±)-2-benzyloxy-4,4-difluorobutane (±)-SI-16	101	
	6.5.5	Synthesis of (±)-4,4-difluorobutan-2-ol (±)-F	102	
6	.6	Synthesis of 3,3-difluoropropan-1-ol G	102	
	6.6.1	Synthesis of 1-benzyloxy-3,3-difluoropropane SI-17	102	

6.6.2	Synthesis of 3,3-difluoropropan-1-ol G	103
-------	----------------------------------------	-----

#### Synthesis of the fluorohydrins 6

- Synthesis of (±)-syn and (±)-anti-4-fluoropentan-2-ol ((±)-syn-A and (±)-anti-A) 6.1
- Isolation of meso-2,4-pentanediol (meso-SI-1) and (±)-2,4-pentanediol ((±)-SI-2) from a commer-6.1.1 cial mixture of meso and racemic isomers

meso-SI-1 and (±)-SI-2 were separated from a commercial mixture of meso- and racemic-2,4-pentanediols (10 q, 96.0 mmol) by flash chromatography (5 to 50% of ethyl acetate in hexane). meso-SI-1 was obtained in pure form as a colorless oil (3.90 g, 37.4 mmol, 39%). The racemic isomer (±)-SI-2 was contaminated with meso-SI-1 (3.93 g, ratio (±)-SI-2/meso-SI-1 97:3). To remove traces of meso-SI-1, the corresponding mixture (3.93 g, 37.7 mmol, 1 equiv.) was treated with thionyl chloride (0.41 mL, 5.66 mmol, 0.15 equiv.) in dichloromethane (100 mL).¹ This mixture was stirred at 0 °C for 1 h and then the solvent was evaporated. As meso-SI-1 reacted with thionyl chloride faster than (±)-SI-2 to form the cyclic sulfite, after flash chromatography (10 to 50% of ethyl acetate in hexane), (±)-SI-2 was isolated in pure form as a colorless oil (2.83 g, 27.2 mmol, 29%).

#### 6.1.1.1 meso-2,4-pentanediol (meso-SI-1)



meso-SI-1

**IR** (neat) 3329(br,m), 2967(s), 2931(m), 1455(w), 1374(w), 1121(s), 919 (m) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 4.14–3.91 (m, 2H, H-2, H-4), 3.32 (s, 2H, OH), 1.56 (dt, J = 14.4, 3.2 Hz, 1H, H-3), 1.49 (dd, J = 14.5, 9.5 Hz, 1H, H-3), 1.20 (d, J = 6.2 Hz, 6H, H-1, H-5) ppm. ¹³C NMR (101 MHz, CDCl₃, 25 °C) δ 68.6 (2C, C-2, C-4), 46.2 (C-3), 23.9 (2C, C-1, C-5) ppm. MS (ESI+) m/z 105  $[M+H]^{+}$ . **HRMS** (EI) calcd for C₅H₁₂O₂  $[M]^{+}$  104.0832, found 104.0792. The NMR signals correspond to the literature.²

#### 6.1.1.2 (±)-2,4-pentanediol ((±)-SI-2)

ΟН **IR** (neat) 3325(br,m), 2966(s), 2931(m), 1456(w), 1374(w), 1117(s), 1042(s), 919(m) cm⁻¹. ¹H ΟН **NMR** (400 MHz, CDCl₃, 25 °C)  $\delta$  4.16 (qdd, J = 6.1, 6.1, 5.2 Hz, 2H, H-2, H-4), 2.81 (s, 2H, OH), 1.60 (dd, J = 6.1, 5.2 Hz, 2H, H-3), 1.23 (d, J = 6.2 Hz, 6H, H-1, H-5) ppm. ¹³C NMR (101 MHz, 3 CDCl₃, 25 °C) δ 64.7 (2C, C-2, C-4), 45.9 (C-3), 23.2 (2C, C-1, C-5) ppm. MS (ESI+) m/z 105 (±)-SI-2

 $[M+H]^{\dagger}$ . **HRMS** (ESI+) calcd for C₅H₁₂O₂Na  $[M+Na]^{\dagger}$  127.0730, found 127.0733. The NMR signals correspond to the literature.²

#### 6.1.2 Synthesis of $(\pm)$ -anti and $(\pm)$ -syn-2-(3'-methylbenzoyloxy)-4-fluoropentane $((\pm)$ -anti-SI-3 and (±)-syn-SI-4)

#### 6.1.2.1 General procedure for the mono-deoxyfluorination of diols using DFMBA in dialyme



To diol **meso-SI-1** or (±)-SI-2 (1 equiv.) was added a solution of N, N-diethyl- $\alpha, \alpha$ -difluoro(metamethylbenzyl)amine (DFMBA, 2 equiv.) in diglyme (0.4 mL/mmol of diol) at room temperature under argon. The reaction mixture was stirred and heated at 100 °C for 5 h under argon. After cooling, the reaction was guenched with an aqueous saturated solution of NaHCO₃ (1.1 mL/mmol) and stirred for 20 minutes. Subsequently, water (1.1 mL/mmol) was added to the reaction and the mixture was extracted with diethyl ether three times (2.1

mL/mmol). The combined organic phases were washed with brine (3.5 mL/mmol), dried over MgSO₄ and concentrated. The crude mixture was purified by flash chromatography (gradient 0 to 3% of ethyl acetate in hexane) and preparative HPLC (1.5% of ethyl acetate in hexane).

### 6.1.2.2 (±)-syn-2-(3'-methylbenzoyloxy)-4-fluoropentane (±)-syn-SI-4



Starting from (±)-SI-2 (2.01 g, 19.3 mmol) using general procedure described above, (±)-*syn*-SI-4 was obtained as a colorless oil (3.72 g, 16.6 mmol, 86%).

**IR** (neat) 3022(w), 2978(s), 2938(m), 1712(s), 1457(w), 1299(s), 1199(s),1100(s), 744(s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C)  $\delta$  7.92–7.89 (m, 2H, H_{Ar}), 7.40–7.30 (m, 2H, H_{Ar}), 5.36–5.28 (m, 1H, H-2), 4.96–4.76 (m, ²J_{H4-F} = 48.5 Hz, 1H, H-4), 2.42 (s, 3H,

(±)-syn-SI-4 2H, H_{Ar}), 5.36–5.28 (m, 1H, H-2), 4.96–4.76 (m,  ${}^{2}J_{H4-F}$  = 48.5 Hz, 1H, H-4), 2.42 (s, 3H, CH_{3-Ar}), 2.28–2.17 (m, 1H, H-3), 1.85 (ddt, *J* = 26.4, 14.4, 5.3 Hz, 1H, H-3'), 1.42 (d, *J* = 6.1 Hz, 3H, H-1), 1.39 (dd, *J* = 24.1, 6.1 Hz, 3H, H-5) ppm.  13 C NMR (101 MHz, CDCl₃, 25 °C)  $\delta$  166.1 (C-6), 138.1 (C_{qAr}), 133.6 (CH_{Ar}), 130.4 (C_{qAr}), 130.0 (CH_{Ar}), 128.2 (CH_{Ar}), 126.7 (CH_{Ar}), 88.0 (d, *J* = 164 Hz, C-4), 68.5 (d, *J* = 5.1 Hz, C-2), 42.8 (d, *J* = 20.5 Hz, C-3), 21.2 (CH_{3-Ar}), 21.1 (d, *J* = 22.7 Hz, C-5), 20.1 (C-1) ppm.  19 F NMR (376 MHz, CDCl₃, 25 °C)  ${}^{\circ}$ C) –173.3– –172.9 (m) ppm. MS (ESI+) *m*/z 225 [M+H]⁺. HRMS (ESI+) calcd for C₁₃H₁₇FO₂Na [M+Na]⁺ 247.1105, found 247.1109. The NMR signals correspond to the literature.³

#### 6.1.2.3 (±)-anti-2-(3'-methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3



Starting from *meso-SI-1* (3.01 g, 28.9 mmol), using general procedure described above, (±)-*anti-SI-3* was obtained as a colorless oil (4.91 g, 21.9 mmol, 76%).

**IR** (neat) 3025(w), 2980(s), 2935(m), 1712(s), 1456(w), 1272(s), 1198(s),1101(s), 744(s) cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃, 25 °C)  $\delta$  7.87–7.82 (m, 2H, H_{Ar}), 7.39–7.31 (m, 2H, H_{Ar}), 5.39–5.31 (m, 1H, H-2), 4.92–4.72 (m, ²J_{H4-F} = 49.4 Hz, 1H, H-4), 2.42 (s, 3H,

CH_{3-Ar}), 2.05–1.88 (m, 2H, H-3), 1.40 (d, J = 6.2 Hz, 3H, H-1), 1.38 (dd, J = 23.7, 6.2 Hz, 3H, H-5) ppm. ¹³C NMR (101 MHz, CDCl₃, 25 °C)  $\delta$  166.1 (C-6), 138.1 (C_{qAr}), 133.6 (CH_{Ar}), 130.5 (C_{qAr}), 130.0 (CH_{Ar}), 128.2 (CH_{Ar}), 126.6 (CH_{Ar}), 87.5 (d, J=166 Hz, C-4), 68.3 (d, J=3.7 Hz, C-2), 43.5 (d, J=20.5 Hz, C-3), 21.4 (d, J=22.0 Hz, C-5), 21.2 (CH_{3-Ar}), 20.6 (C-1) ppm. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C) –174.8– –174.3 (m) ppm. MS (ESI+) m/z225 [M+H]⁺. HRMS (ESI+) calcd for C₁₃H₁₇FO₂Na [M+Na]⁺ 247.1105, found 247.1104.

#### 6.1.3 Synthesis of fluorohydrins (±)-syn-A and (±)-anti-A

#### 6.1.3.1 General procedure for the deprotection of $(\pm)$ -anti-SI-3 and $(\pm)$ -syn-SI-4



To a solution of (±)-*anti*-SI-3 or (±)-*syn*-SI-4 (1 equiv.) in dry diethyl ether (2.2 mL/mmol) was added a solution of sodium methoxide in methanol (25 wt. %, 2 equiv.) at 0 °C under argon. The reaction mixture was stirred at room temperature for 16 hours and then neutralized with Amberlite[®] CG-50. The resin was filtered off and rinsed with diethyl ether (4 mL/mmol). The filtrate was washed two times with an aqueous saturated solution of potassium carbonate (4 mL/mmol), then with brine (4 mL/mmol), dried over MgSO₄ and concentrated in vacuo (P>700 mbar). The crude mixture was purified by flash chromatography (gradient 0 to 25% of diethyl ether in pentane).

#### 6.1.3.2 (±)-syn-4-fluoropentan-2-ol (±)-syn-A



Starting from (±)-*syn*-SI-4 (3.67 g, 16.3 mmol), using general procedure described above, (±)-*syn*-A was obtained as a colorless oil (0.861 g, 8.11 mmol, 50%).

**IR** (neat) 3364(br), 2977(s), 2938(m), 1457(w), 1386(s), 1116(s),1037(s), 918(s), 820(s) cm⁻¹.

^{(L)-Syn-A} ¹H NMR (500 MHz, CDCl₃, 25 °C)  $\delta$  4.89 (ddqdd, ²J_{H4-F} = 49.5 Hz, ³J_{H4-H3} = 9.0 Hz, ³J_{H4-H5} = 6.1 Hz, ³J_{H4-H3} = 4.0 Hz, J = 0.3 Hz, 1H, H-4), 4.05 (dqdd, ³J_{H2-H3} = 7.9 Hz, ³J_{H2-H1} = 6.3 Hz, ³J_{H2-H3} = 4.0 Hz, ³J_{H2-OH} = 3.4 Hz, 1H, H-2), 1.91 (dddd, ²J_{H3-H3} = 14.6 Hz, ³J_{H3-F} = 13.6 Hz, ³J_{H3-H4} = 9.0 Hz, ³J_{H3-H2} = 7.9 Hz, 1H, H-3), 1.88 (dd, ^{1h}J_{OH-H2} = 6.6 Hz, ³J_{OH-H2} = 3.4 Hz, 1H, OH), 1.64 (ddt, ³J_{H3-F} = 34.7 Hz, ²J_{H3'-H3} = 14.6 Hz, ³J_{H3'-H2} = 4.0 Hz, ³J_{H3'-H2} = 4.0 Hz, ³J_{H3'-H2} = 6.3 Hz, 3H, H-1) ppm.

¹**H**{¹⁹**F**} **NMR** (500 MHz, CDCl₃, 25 °C)  $\delta$  4.89 (dqd, ³*J*_{H4-H3} = 9.0 Hz, ³*J*_{H4-H5} = 6.1 Hz, ³*J*_{H4-H3} = 4.0 Hz, 1H, H-4), 4.05 (dqdd, ³*J*_{H2-H3} = 7.7 Hz, ³*J*_{H2-H1} = 6.2 Hz, ³*J*_{H2-H3} = 4.3 Hz, ³*J*_{H2-OH} = 3.4 Hz, 1H, H-2), 1.91 (ddd, ²*J*_{H3-H3} = 14.6 Hz, ³*J*_{H3-H4} = 9.0 Hz, ³*J*_{H3-H2} = 7.9 Hz, 1H, H-3), 1.88 (d, ³*J*_{OH-H2} = 3.4 Hz, 1H, OH), 1.64 (dt, ²*J*_{H3'-H3} = 14.6 Hz, ³*J*_{H3'-H2} = 4.0 Hz, 1H, H-3'), 1.38 (d, ³*J*_{H5-H4} = 6.1 Hz, 3H, H-5), 1.25 (d, ³*J*_{H1-H2} = 6.2 Hz, 3H, H-1) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25 °C) δ 90.8 (d, *J* = 162 Hz, C-4), 66.2 (d, *J* = 4.4 Hz, C-2), 45.8 (d, *J* = 19.1 Hz, C-3), 23.4 (C-1), 21.4 (d, *J* = 22.7 Hz, C-5) ppm.

¹⁹**F NMR** (470 MHz, CDCl₃, 25 °C) –173.6 (ddqdd,  ${}^{2}J_{F-H4}$  = 49.5 Hz,  ${}^{3}J_{F-H3}$  = 34.7 Hz,  ${}^{3}J_{F-H5}$  = 24.5 Hz,  ${}^{3}J_{F-H3}$  = 13.6 Hz,  ${}^{1h}J_{F-HOH}$  = 6.6 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C) δ –173.4 (s, 1F) ppm.

¹**H NMR** (500 MHz, CDCl₃, -50 °C)  $\delta$  4.94 (ddqd, ²*J*_{H4-F} = 49.8 Hz, ³*J*_{H4-H3} = 9.9 Hz, ³*J*_{H4-H5} = 6.2 Hz, ³*J*_{H4-H3} = 3.3 Hz, 1H, H-4), 4.09 (dqdd, ³*J*_{H2-H3} = 8.6 Hz, ³*J*_{H2-H1} = 6.2 Hz, ³*J*_{H2-H3} = 3.3 Hz, ³*J*_{H2-OH} = 2.4 Hz, 1H, H-2), 2.32 (dd, ^{1h}*J*_{OH-HF} = 9.9 Hz, ³*J*_{OH-H2} = 2.4 Hz, 1H, OH), 1.89 (dddd, ²*J*_{H3-H3} = 14.8 Hz, ³*J*_{H3-F} = 11.8 Hz, ³*J*_{H3-H4} = 9.9 Hz, ³*J*_{H3-H4} = 9.9 Hz, ³*J*_{H3-H4} = 9.9 Hz, ³*J*_{H3-H4} = 9.9 Hz, ³*J*_{H3-H4} = 3.3 Hz, 1H, H-3), 1.65 (ddt, ³*J*_{H3'-F} = 39.6 Hz, ²*J*_{H3'-H3} = 14.8 Hz, ³*J*_{H3'-H2} = 3.3 Hz, ³*J*_{H3'-H4} = 3.3 Hz, 1H, H-3'), 1.39 (dd, ³*J*_{H5-F} = 25.2 Hz, ³*J*_{H5-H4} = 6.2 Hz, 3H, H-5), 1.23 (d, ³*J*_{H1-H2} = 6.2 Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, -50 °C) δ 4.94 (dqd,  ${}^{3}J_{H4-H3} = 9.6$  Hz,  ${}^{3}J_{H4-H5} = 6.3$  Hz,  ${}^{3}J_{H4-H3'} = 3.2$  Hz, 1H, H-4), 4.09 (dqdd,  ${}^{3}J_{H2-H3} = 8.8$  Hz,  ${}^{3}J_{H2-H1} = 6.2$  Hz,  ${}^{3}J_{H2-H3'} = 3.4$  Hz,  ${}^{3}J_{H2-OH} = 2.6$  Hz, 1H, H-2), 2.32 (d,  ${}^{3}J_{OH-H2} = 2.4$  Hz, 1H, OH), 1.89 (ddd,  ${}^{2}J_{H3-H3'} = 14.7$  Hz,  ${}^{3}J_{H3-H4} = 9.8$  Hz,  ${}^{3}J_{H3-H2} = 8.5$  Hz, 1H, H-3), 1.65 (dt,  ${}^{2}J_{H3'H3} = 14.7$  Hz,  ${}^{3}J_{H3'-H4} = 3.3$  Hz,  ${}^{3}J_{H3'-H4} = 3.3$  Hz, 1H, H-3'), 1.39 (d,  ${}^{3}J_{H5-H4} = 6.2$  Hz, 3H, H-5), 1.23 (d,  ${}^{3}J_{H1-H2} = 6.2$  Hz, 3H, H-1) ppm.

¹⁹**F** NMR (470 MHz, CDCl₃, -50 °C) -173.7 (ddqdd,  ${}^{2}J_{F-H4}$  = 49.8 Hz,  ${}^{3}J_{F-H3}$  = 39.6 Hz,  ${}^{3}J_{F-H5}$  = 25.2 Hz,  ${}^{3}J_{F-H3}$  = 11.8 Hz,  ${}^{1h}J_{F-HOH}$  = 9.9 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, –50 °C) δ –173.7 (s, 1F) ppm.

**HRMS** (EI) calcd for  $C_5H_{11}OF[M]^{+}$  106.0788, found 106.0743.

#### 6.1.3.3 (±)-anti-4-fluoropentan-2-ol (±)-anti-A



Starting from (±)-*anti*-SI-3 (1.99 g, 8.87 mmol), using general procedure described above, (±)-*anti*-A was obtained as a colorless oil (0.545 g, 5.13 mmol, 58%).

**IR** (neat) 3357(br), 2976(m), 2936(m), 1457(w), 1378(s), 1145(s), 1044(s), 912(m), 816(s) cm⁻¹.

¹H NMR (500 MHz, CDCl₃, 25 °C)  $\delta$  4.95 (ddqdd, ²J_{H4-F} = 49.4 Hz, ³J_{H4-H3} = 9.3 Hz, ³J_{H4-H5} = 6.2 Hz, ³J_{H4-H3'} = 2.7 Hz, J = 0.3 Hz, 1H, H-4), 4.09 (dqddd, ³J_{H2-H3'} = 9.3 Hz, ³J_{H2-H1} = 6.3 Hz, ³J_{H2-OH} = 4.9 Hz, ³J_{H2-H3} = 3.1 Hz, J = 0.3 Hz, 1H, H-2), 1.77 (ddddd, ³J_{H3-F} = 15.7 Hz, ²J_{H3-H3'} = 14.7 Hz, ³J_{H3-H4} = 9.3 Hz, ³J_{H3-H2} = 3.1 Hz, ⁴J_{H3-OH} = 0.5 Hz, 1H, H-3), 1.62 (dddd, ³J_{H3-F} = 36.0 Hz, ²J_{H3'H3} = 14.7 Hz, ³J_{H3'H2} = 9.4 Hz, ³J_{H3'H4} = 2.7 Hz, 1H, H-3'), 1.56 (ddd, ³J_{OH-H2} = 4.9 Hz, ^{1h}J_{OH-H5} = 1.9 Hz, ⁴J_{OH-H3} = 0.5 Hz, 1H, OH), 1.37 (dd, ³J_{H5-F} = 24.0 Hz, ³J_{H5-H4} = 6.2 Hz, 3H, H-5), 1.25 (dd, ³J_{H1-H2} = 6.3 Hz, ⁵J_{H1-F} = 0.4 Hz, 3H, H-1) ppm.

¹H{¹⁹F}NMR (500 MHz, CDCl₃, 25 °C) δ 4.95 (dqdd,  ${}^{3}J_{H4-H3} = 9.0$  Hz,  ${}^{3}J_{H4-H5} = 6.2$  Hz,  ${}^{3}J_{H4-H3'} = 2.6$  Hz, J = 0.3 Hz, 1H, H-4), 4.09 (dqdd,  ${}^{3}J_{H2-H3'} = 9.3$  Hz,  ${}^{3}J_{H2-H1} = 6.3$  Hz,  ${}^{3}J_{H2-OH} = 4.9$  Hz,  ${}^{3}J_{H2-H3} = 3.0$  Hz, 1H, H-2), 1.77 (dddd,  ${}^{2}J_{H3-H3'} = 14.7$  Hz,  ${}^{3}J_{H3-H4} = 9.4$  Hz,  ${}^{3}J_{H3-H2} = 3.0$  Hz,  ${}^{4}J_{H3-OH} = 0.5$  Hz, 1H, H-3), 1.62 (ddd,  ${}^{2}J_{H3'-H3} = 14.7$  Hz,  ${}^{3}J_{H3'-H2} = 9.3$  Hz,  ${}^{3}J_{H3'-H2} = 4.9$  Hz,  ${}^{4}J_{OH-H3} = 0.5$  Hz, 1H, OH), 1.37 (d,  ${}^{3}J_{H5-H4} = 6.2$  Hz, 3H, H-5), 1.25 (d,  ${}^{3}J_{H1-H2} = 6.3$  Hz, 3H, H-1) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25 °C) δ 88.3 (d, *J* = 163 Hz, C-4), 64.3 (d, *J* = 2.9 Hz, C-2), 45.9 (d, *J* = 19.8 Hz, C-3), 24.0 (C-1), 21.3 (d, *J* = 22.7 Hz, C-5) ppm.

¹⁹**F** NMR (470 MHz, CDCl₃, 25 °C) –175.4 (ddqdd,  ${}^{2}J_{F-H4}$  = 49.4 Hz,  ${}^{3}J_{F-H3}$  = 36.0 Hz,  ${}^{3}J_{F-H5}$  = 24.0 Hz,  ${}^{3}J_{F-H3}$  = 15.7 Hz,  ${}^{1h}J_{F-H0H}$  = 1.9 Hz, ( ${}^{5}J_{F-H1}$  = 0.40 Hz not resolved)) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25 °C) δ –175.4 (s, 1F) ppm.

¹**H NMR** (500 MHz, CDCl₃, -50 °C) δ 4.95 (ddqd,  ${}^{2}J_{H4-F} = 49.7$  Hz,  ${}^{3}J_{H4-H3} = 9.9$  Hz,  ${}^{3}J_{H4-H5} = 6.3$  Hz,  ${}^{3}J_{H4-H3'} = 2.3$  Hz, H-4), 4.10 (dqdd,  ${}^{3}J_{H2-H3'} = 10.0$  Hz,  ${}^{3}J_{H2-H1} = 6.3$  Hz,  ${}^{3}J_{H2-OH} = 4.7$  Hz,  ${}^{3}J_{H2-H3} = 2.5$  Hz, 1H, H-2), 1.78 (ddd,  ${}^{3}J_{OH-H2} = 4.7$  Hz,  ${}^{1h}J_{OH-HF} = 1.8$  Hz,  ${}^{4}J_{OH-H3} = 0.7$  Hz, 1H, OH),1.76 (ddddd appears as tddd,  ${}^{3}J_{H3-F} = 14.7$  Hz,  ${}^{2}J_{H3-H3} = 14.7$  Hz,  ${}^{3}J_{H3-H4} = 9.9$  Hz,  ${}^{3}J_{H3-H2} = 2.5$  Hz, 1H, OH),1.76 (dddd appears as tddd,  ${}^{3}J_{H3-F} = 39.1$  Hz,  ${}^{2}J_{H3-H3} = 14.9$  Hz,  ${}^{3}J_{H3-H4} = 9.9$  Hz,  ${}^{3}J_{H3-H2} = 2.5$  Hz,  ${}^{4}J_{H3-OH} = 0.7$  Hz, 1H, H-3), 1.60 (dddd,  ${}^{3}J_{H3'-F} = 39.1$  Hz,  ${}^{2}J_{H3'-H3} = 14.9$  Hz,  ${}^{3}J_{H3'-H2} = 10.0$  Hz,  ${}^{3}J_{H3'-H4} = 2.3$  Hz, 1H, H-3'), 1.37 (dd,  ${}^{3}J_{H5-F} = 24.5$  Hz,  ${}^{3}J_{H5-H4} = 6.3$  Hz, 3H, H-5), 1.24 (d,  ${}^{3}J_{H1-H2} = 6.3$  Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, -50 °C) δ 4.98 (dqd,  ${}^{3}J_{H4-H3} = 10.0$  Hz,  ${}^{3}J_{H4-H5} = 6.2$  Hz,  ${}^{3}J_{H4-H3'} = 2.1$  Hz, H-4), 4.11 (dqdd,  ${}^{3}J_{H2-H3'} = 10.0$  Hz,  ${}^{3}J_{H2-H1} = 6.3$  Hz,  ${}^{3}J_{H2-OH} = 4.7$  Hz,  ${}^{3}J_{H2-H3} = 2.5$  Hz, 1H, H-2), 1.78 (dd,  ${}^{3}J_{OH-H2} = 4.7$  Hz,  ${}^{4}J_{OH-H3} = 0.7$  Hz, 1H, OH),1.76 (dddd,  ${}^{2}J_{H3-H3'} = 14.6$  Hz,  ${}^{3}J_{H3-H4} = 9.9$  Hz,  ${}^{3}J_{H3-H2} = 2.6$  Hz,  ${}^{4}J_{H3-OH} = 0.7$  Hz, 1H, H-3), 1.60 (ddd,  ${}^{2}J_{H3'-H3} = 14.8$  Hz,  ${}^{3}J_{H3'-H2} = 10.0$  Hz,  ${}^{3}J_{H3'-H4} = 2.4$  Hz, 1H, H-3'), 1.37 (d,  ${}^{3}J_{H5-H4} = 6.4$  Hz, 3H, H-5), 1.24 (d,  ${}^{3}J_{H1-H2} = 6.2$  Hz, 3H, H-1) ppm.

¹⁹**F NMR** (470 MHz, CDCl₃, -50 °C) -176.4 (ddqdd,  ${}^{2}J_{F-H4}$  = 49.7 Hz,  ${}^{3}J_{F-H3}$  = 39.1 Hz,  ${}^{3}J_{F-H5}$  = 24.5 Hz,  ${}^{3}J_{F-H3}$  = 14.7 Hz,  ${}^{1h}J_{F-H0}$  = 1.8 Hz) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, –50 °C) δ –176.4 (s, 1F) ppm.

**HRMS** (EI) calcd for  $C_5H_{11}OF[M]^{+}$  106.0788, found 106.0745.

#### Linclau, Graton

#### 6.2 Synthesis of (±)-4-fluorobutan-2-ol (±)-B

#### 6.2.1 Synthesis of 3-fluoropropanal SI-5

O 1 2 3 SI-5 Trichloroisocyanuric acid (4.58 g, 19.7 mmol, 0.37 equiv) was added to a vigorously stirred mixture of 3-fluoropropan-1-ol (4.0 mL, 53.3 mmol, 1 equiv), NaHCO₃ (4.46 g, 53.3 mmol, 1 equiv), and TEMPO (0.091 g, 0.586 mmol, 1.1 mol%) in CH₂Cl₂ (80 mL) and water (2.7 mL). The temperature was kept at 20~25  0 C (water bath). After completion of the addition, stirring was continued until the orange color faded to a pale yellow (± 30 min). The resulting solution was decanted from the gummy

white residue, filtered through a pad of silica gel (1.33 g), and dried over MgSO₄ (2.66 g) for 30 min. This provided a solution of 3-fluoropropanal in CH₂Cl₂, the concentration of which was determined by ¹H-NMR using the formula: [3-fluoropropanal] = (integral of  $\delta$  9.83)/(integral of  $\delta$  5.28)*32. This procedure provided an approximately 0.4 M solution of 3-fluoropropanal **SI-5** in CH₂Cl₂, which was used without further purification.

¹**H NMR** (400 MHz, CDCl₃) δ 9.84 (td,  ${}^{3}J_{HH}$  = 1.5,  ${}^{4}J_{HF}$  = 1.2 Hz, 1H, H-1), 4.81 (dt,  ${}^{2}J_{HF}$  = 46.5,  ${}^{3}J_{HH}$  = 5.9 Hz, 2H, H-3), 2.86 (dtd,  ${}^{3}J_{HF}$  = 25.7,  ${}^{3}J_{HH}$  = 5.9,  ${}^{3}J_{HH}$  = 1.5 Hz, 2H, H-2) ppm. The spectral data matched with the literature.⁴ ¹⁹**F NMR** (376 MHz, CDCl₃) δ –221.2 (tt,  ${}^{2}J_{HF}$  = 46.5,  ${}^{3}J_{HF}$  = 25.7 Hz, 1F) ppm ( ${}^{4}J_{HF}$  not visible).

#### 6.2.2 Synthesis of (±)-4-fluorobutan-2-ol (±)-B

F OH ⁴ ³ ² ¹ H₃' H₃ (±)-B To a solution of **SI-5** in CH₂Cl₂ (0.4 M, 20 mL, 8 mmol, 1 equiv) at -78 °C was added dropwise a solution of MeMgBr in Et₂O (3 M, 2.8 mL, 8.4 mmol, 1.05 equiv) and the resulting mixture was stirred at -78 °C for 1.5 h. The reaction mixture was then quenched with sat. aq. NH₄Cl (15 mL) and allowed to warm to room temperature. Et₂O (25 mL) was added and layers were separated. The aqueous phase was extracted with Et₂O (2 × 45 mL) then the combined organic layers were

dried (MgSO₄), filtered and evaporated at 31 °C for  $\approx$ 670 mbar. The crude product was purified by column chromatography on silica gel eluting with pentane/Et₂O (80:20 to 70:30) to give after evaporation (±)-4-fluorobutan-2-ol (±)-B together with pentane and Et₂O. The mass of product was calculated by ¹H NMR to give  $\approx$ 460 mg (4.99 mmol, 62%). This fraction was combined with another fraction obtained similarly from a 25.7 mmol scale reaction and pentane and Et₂O were distilled off to give 663 mg (7.20 mmol, 21%) of pure (±)-4-fluorobutan-2-ol (±)-B as a pale yellow oil.

**R**_f 0.13 (CH₂Cl₂). **IR** (neat) 3355 (br m), 2971 (m), 1377 (w), 1137 (m), 1041 (s) cm⁻¹.

¹**H NMR** (500 MHz, CDCl₃, 25 °C) δ 4.66 (ddddd,  ${}^{2}J_{H4-F} = 47.2$ ,  ${}^{2}J_{H4-H4'} = 9.3$ ,  ${}^{3}J_{H4-H3} = 7.5$ ,  ${}^{3}J_{H4-H3'} = 4.6$ ,  $J_{HH} = 0.3$  Hz, 1H, H-4), 4.59 (ddddd,  ${}^{2}J_{H4'-F} = 47.2$ ,  ${}^{2}J_{H4'-H4} = 9.3$ ,  ${}^{3}J_{H4'-H3'} = 6.0$ ,  ${}^{3}J_{H4'-H3} = 5.0$ ,  $J_{HH} = 0.3$  Hz, 1H, H-4'), 4.10 – 4.02 (m, 1H, H-2), 1.88 (dddddd,  ${}^{3}J_{H3'-F} = 25.0$ ,  ${}^{2}J_{H3'-H3} = 14.8$ ,  ${}^{3}J_{H3'-H4} = 7.5$ ,  ${}^{3}J_{H3'-H4'} = 5.0$ ,  ${}^{3}J_{H3'-H2} = 4.3$ ,  ${}^{4}J_{H3'-H0} = 0.3$  Hz, 1H, H-3'), 1.82 (ddddd,  ${}^{3}J_{H3-F} = 29.3$ ,  ${}^{2}J_{H3-H3'} = 14.8$ ,  ${}^{3}J_{H3-H2} = 8.1$ ,  ${}^{3}J_{H3-H4'} = 6.0$ ,  ${}^{3}J_{H3-H4} = 4.6$  Hz, 1H, H-3), 1.54 (ddd,  ${}^{3}J_{OH-H2} = 4.5$ ,  ${}^{1h}J_{OH-H5'} = 2.2$ ,  ${}^{4}J_{OH-H3'} = 0.3$  Hz, 1H, OH), 1.27 (dd,  ${}^{3}J_{H1-H2} = 6.3$ ,  ${}^{5}J_{H1-F} = 0.5$  Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, 25 °C) δ 4.66 (dddd,  ${}^{2}J_{H4-H4'} = 9.3$ ,  ${}^{3}J_{H4-H3} = 7.5$ ,  ${}^{3}J_{H4-H3'} = 4.6$ ,  $J_{HH} = 0.3$  Hz, 1H, H-4), 4.59 (dddd,  ${}^{2}J_{H4'-H4} = 9.3$ ,  ${}^{3}J_{H4'-H3'} = 6.0$ ,  ${}^{3}J_{H4'-H3'} = 5.0$ ,  $J_{HH} = 0.3$  Hz, 1H, H-4'), 4.10 – 4.02 (m, 1H, H-2), 1.88 (ddddd,  ${}^{2}J_{H3'-H3} = 14.8$ ,  ${}^{3}J_{H3'-H4} = 7.5$ ,  ${}^{3}J_{H3'-H4'} = 5.0$ ,  ${}^{3}J_{H3'-H2} = 4.3$ ,  $J_{H3'-H0} = 0.3$  Hz, 1H, H-3'), 1.82 (dddd,  ${}^{2}J_{H3-H3'} = 14.8$ ,  ${}^{3}J_{H3-H4'} = 6.0$ ,  ${}^{3}J_{H3'-H4'} = 5.0$ ,  ${}^{3}J_{H3'-H2} = 4.3$ ,  $J_{H3'-H0} = 0.3$  Hz, 1H, H-3'), 1.82 (dddd,  ${}^{2}J_{H3-H3'} = 14.8$ ,  ${}^{3}J_{H3-H4'} = 6.0$ ,  ${}^{3}J_{H3-H4'} = 4.6$  Hz, 1H, H-3), 1.54 (dd,  ${}^{3}J_{H2-OH} = 4.5$ ,  $J_{OH-H3'} = 0.3$  Hz, 1H, OH), 1.27 (d,  ${}^{3}J_{H1-H2} = 6.3$ , 3H, H-1) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25 °C)  $\delta$  81.9 (d, ¹*J*_{CF} = 162.1 Hz, C-4), 65.0 (d, ³*J*_{CF} = 4.4 Hz, C-2), 39.3 (d, ²*J*_{CF} = 19.1 Hz, C-3), 23.7 (s, C-1) ppm.

¹⁹**F NMR** (470 MHz, CDCl₃, 25°C) δ –220.8 (tdddq,  ${}^{2}J_{F-H4}$  = 47.2,  ${}^{2}J_{F-H3}$  = 29.3,  ${}^{2}J_{F-H3}$  = 25.0,  ${}^{1h}J_{F-H0}$  = 2.2,  ${}^{5}J_{F-H1}$  = 0.5 Hz, 1F) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25°C) δ –220.8 (s, 1F) ppm.

#### 6.3.1 Synthesis of 3-fluoro-2,2-dimethyl-1-(meta-methylbenzoyloxy)-propane SI-6



In a microwave tube under argon was placed neopentyl glycol (208 mg, 2.0 mmol, 1 equiv) and dry diglyme (2.5 mL) and the mixture was gently heated until complete dissolution. DFMBA (852 mg, 4.0 mmol, 2 equiv) and NaF (84 mg, 2.0 mmol, 1 equiv) were then added and the resulting mixture was heated at 200 °C under microwave irradiation for 5 min. The mixture was then diluted with Et₂O (60 mL), washed successively with sat. aq. Na-HCO₃ (20 mL), 1 M aq. HCl (20 mL) and sat. aq. NaHCO₃ (10 mL) then dried (MgSO₄), filtered and concentrated. Column chromatography eluting with petroleum ether 40-60 °C/Et₂O (99:1 to 98:2) afforded 387 mg (1.73 mmol, 86%) of the desired fluoroester

**SI-6** as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃, 25°C) δ 7.89 – 7.81 (m, 2H, H_{Ar}), 7.43 – 7.30 (m, 2H, H_{Ar}), 4.30 (d,  ${}^{2}J_{H3-F}$  = 47.7 Hz, 2H, H-3), 4.18 (d,  ${}^{4}J_{H1-F}$  = 1.0 Hz, 2H, H-1), 2.42 (s, 3H, H-6), 1.08 (d,  ${}^{4}J_{H4-F}$  = 1.7 Hz, 6H, H-4) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 25°C) δ 166.5 (C-5), 138.2 (C_{q,Ar}), 133.8 (CH_{Ar}), 130.11 (C_{q,Ar}), 130.06 (CH_{Ar}), 128.3 (CH_{Ar}), 126.6 (CH_{Ar}), 88.2 (d,  ${}^{1}J_{C3-F}$  = 173.9 Hz, C-3), 68.9 (d,  ${}^{3}J_{C1-F}$  = 3.7 Hz, C-1), 36.0 (d,  ${}^{2}J_{C2-F}$  = 16.9 Hz, C-2), 21.3 (C-6), 20.8 (d,  ${}^{3}J_{C4-F}$  = 5.1 Hz, C-4) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃, 25°C) δ -226.5 (br t,  ${}^{2}J_{F-H3}$  = 47.7 Hz) ppm. The spectral data matched with the literature.³

#### 6.3.2 Synthesis of 3-fluoro-2,2-dimethylpropan1-ol C



To a solution of **SI-6** (900 mg, 4.01 mmol, 1 equiv) in dry  $Et_2O$  (8 mL) was added a solution of MeONa (25% wt, 1.84 mL, 8.02 mmol, 2 equiv). After being stirred at room temperature for 22.5 h, the reaction was neutralized with aq. HCl (1.0 M, 8 mL) and extracted with  $Et_2O$  (3 × 24 mL). The combined organic phases were dried and filtered. The  $Et_2O$  was distilled off at 50 °C and the crude product was purified by column chromatography on silica gel eluting with  $CH_2Cl_2$  to give after evaporation at ≈ 750 mbar and 28 °C, 290 mg (2.73 mmol, 68%) of the desired product **C** as a

white solid.

 $R_{f} 0.21 (CH_{2}CI_{2})$ 

¹**H NMR** (500 MHz, CDCl₃, 25°C) δ 4.24 (d,  ${}^{2}J_{H_{3-F}}$  = 47.8 Hz, 2H, H-3), 3.48 (dd,  ${}^{3}J_{H_{1-OH}}$  = 5.9,  ${}^{4}J_{H_{1-F}}$  = 1.3 Hz, 2H, H-1), 1.45 (td,  ${}^{3}J_{OH-H_{1}}$  = 5.9,  ${}^{1h}J_{OH-H_{2}}$  = 1.7 Hz, 1H, OH), 0.95 (d,  ${}^{4}J_{H_{4-F}}$  = 1.8 Hz, 6H, H-4) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, 25°C) δ 4.24 (s, 2H, H-3), 3.48 (d,  ${}^{3}J_{H1-OH}$  = 5.9 Hz, 2H, H-1), 1.45 (t,  ${}^{3}J_{OH-H1}$  = 5.9 Hz, 1H, OH), 0.95 (s, 6H, H-4) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25°C)  $\delta$  89.0 (d, ¹ $J_{C3-F}$  = 171.7 Hz, C-3), 68.4 (d, ³ $J_{C1-F}$  = 3.7 Hz, C-1), 36.9 (d, ² $J_{C2-F}$  = 16.9 Hz, C-2), 20.3 (d, ³ $J_{C4-F}$  = 5.1 Hz, C-4) ppm.

¹⁹**F NMR** (470 MHz, CDCl₃, 25°C) δ –226.4 – –226.6(m, ²*J*_{F-H3} = 47.8, 1F) ppm.

¹⁹F{¹H} NMR (470 MHz, CDCl₃, 25°C) δ –226.5 (s, 1F) ppm.

#### 6.4 Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E

#### 6.4.1 Synthesis of 4,6-dimethyl-2-phenyl-1,3-dioxane meso-SI-7 and (±)-SI-8



A solution of benzaldehyde (10.1 g, 96.0 mmol, 1 equiv), a mixture of the 2,4-pentanediol diastereomers (10.0 g, 96.0 mmol, 1 equiv), and *p*-toluenesulfonic acid monohydrate (193 mg, 0.96 mmol, 1 mol%) in dry toluene (200 mL) was heated at reflux with a Dean-Stark trap for 6 h. After cooling, the solution was diluted with 80 mL of Et₂O and washed with sat. aq. NaHCO₃ (80 mL). The aqueous layer was extracted with Et₂O (2 × 80 mL), and the combined organic extracts were dried over

 $MgSO_4$ , filtered, and concentrated under vacuum to give 19.0 g of the crude acetal mixture together with 7% of toluene which was used without further purification.

**R**_f 0.76 (petroleum ether 40–60 °C/Et₂O 80:20). ¹**H NMR** (400 MHz, CDCl₃)  $\delta$  7.48 – 7.56 (m, 4H, H_{Ar}), 7.40 – 7.29 (m, 6H, H_{Ar}), 5.84 (s, 1H, H-2 (±)), 5.54 (s, 1H, H-2 meso), 4.48 (app. quin, *J* = 6.8 Hz, 1H, H-4 (±)), 4.20 (dqd, *J* = 11.9, 6.1, 2.4 Hz, 1H, H-6 (±)), 3.96 (dqd, *J* = 11.3, 6.1, 2.4 Hz, 2H, H-4 + H-6 meso), 2.01 (ddd, *J* = 13.2, 12.0, 6.1 Hz, 1H, H-5_{ax} (±)), 1.63 (dt, *J* = 13.2, 2.4 Hz, 1H, H-5_{eq} meso), 1.50 (d, *J* = 6.8 Hz, 3H, H-8 (±)), 1.45 (ddd, *J* = 13.2, 2.4, 1 Hz, 1H, H-5_{eq} (±)), 1.41 (dt, *J* = 13.2, 11.3 Hz, H-5_{ax} meso), 1.32 (d, *J* = 6.1 Hz, 6H, H-7 + H-8 meso), 1.30 (d, *J* = 6.1 Hz, 3H, H-7 (±)) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 25°C)  $\delta$  139.1 (C_{q,Ar} (±)), 138.9 (C_{q,Ar} meso), 128.6 (2 × CH_{Ar}), 128.2 (4 × CH_{Ar}), 126.22 (2 × CH_{Ar}), 126.17 (2 × CH_{Ar}), 100.9 (C-2 meso), 94.0 (C-2 (±)), 73.0 (2C, C-4 + C-6 meso), 68.6 (C-6 (±)), 68.0 (C-4 (±)), 40.3 (C-5 meso), 36.7 (C-5 (±)), 21.9 (C-8 (±)), 21.6 (2C, C-7 + C-8 meso), 17.2 (C-7 (±)) ppm. The spectral data matched with the literature.⁵

# 6.4.2 Synthesis of (2*S**,4*R**)-4-benzyloxypentan-2-ol (±)-*syn*-SI-9 and (2*R**,4*R**)-4-benzyloxypentan-2-ol (±)-*anti*-SI-10



Diisobutylaluminium hydride (1.0 M in hexane, 52 mL, 52 mmol, 2 equiv) was added dropwise to a solution of the crude mixture of **meso-SI-7** and (±)-SI-8 obtained above in dry  $CH_2CI_2$  at 0 °C. After stirring at 0 °C for 2 h and then at room temperature for 17 h, EtOAc (150 mL) was added at 0 °C. After stirring for 0.5 h, aq. NaOH (3 M, 300 mL) and Et₂O (125 mL) were added. The phases were separated and the aqueous phase was extracted with Et₂O (3 × 125 mL). The combined organic phases were

washed with brine (150 mL), dried (MgSO₄) and concentrated. Column chromatography on silica gel (pentane/Et₂O 80:20 to 40:60) gave 1.17 g (6.02 mmol, 23%) of a mixture of the desired alcohols as a colorless oil. A second fraction consisting of 2.73 g of the corresponding 2-O-acetylated products was treated with a catalytic amount of MeONa in dry MeOH for 21.5 h. The reaction mixture was neutralized with Amberlite IR120 and evaporated to give 2.29 g (11.6 mmol, 44%) of a mixture of the desired alcohols (±)-syn-SI-9 and (±)-anti-SI-10 as a colorless oil leading to a combined yield of 67%.

**R**_f 0.12 (petroleum ether 40–60 °C/Et₂O 80:20). ¹**H NMR** (400 MHz, CDCl₃, 25°C)  $\delta$  7.40 – 7.28 (m, 10H, H_{Ar}), 4.68 (d, *J* = 11.5 Hz, 1H, H-6 **SI-9**), 4.64 (d, *J* = 11.5 Hz, 1H, H-6 **SI-10**), 4.47 (d, *J* = 11.5 Hz, 1H, H-6' **SI-10**), 4.44 (d, *J* = 11.5 Hz, 1H, H-6 **SI-9**), 4.19 – 4.08 (m, 1H, H-2 or H-4 **SI-10**), 4.04 – 3.95 (m, 1H, H-2 or H-4 **SI-9**), 3.92 – 3.77 (m, 2H, H-2 or H-4, **SI-9** + **SI-10**), 3.64 (br. s, 1H, OH **SI-9**), 2.71 (dd, *J*=3.4, 2.0 Hz, 1H, OH **SI-10**), 1.76 – 1.53 (m, 4H, 2 × H-3, **SI-9** + **SI-10**), 1.28 (d, *J* = 6.1 Hz, 3H, H-1 or H-5, **SI-10**), 1.25 (d, *J* = 6.1 Hz, 3H, H-1 or H-5, **SI-9**), 1.19 (d, *J* = 6.4 Hz, 3H, H-1 or H-5, **SI-10**), 1.16 (d, *J* = 6.1 Hz, 3H, H-1 or H-5, **SI-9**) ppm. ¹³C **NMR** (101 MHz, CDCl₃, 25°C)  $\delta$  138.4 (C_{q,Ar} **SI-10**), 138.0 (C_{q,Ar} **SI-9**), 128.5 (CH_{Ar}), 128.4 (CH_{Ar}), 127.8 (CH_{Ar}), 127.75 (CH_{Ar}), 127.73 (CH_{Ar}), 127.67 (CH_{Ar}), 76.0 (C-2 or C-4, **SI-9**), 72.7 (C-2 or C-4, **SI-10**), 70.6 (C-6 **SI-10**), 70.3 (C-6 **SI-9**), 67.8 (C-2 or C-4, **SI-9**), 64.6 (C-2 or C-4, **SI-10**), 45.7 (C-3 **SI-9**), 44.4 (C-3 **SI-10**), 23.5 (2C, C-1, **SI-9** + **SI-10**), 19.6 (C-5, **SI-9**), 19.1 (C-5, **SI-10**) ppm. The spectral data matched with the literature.⁶

#### 6.4.3 Synthesis of (±)-4-benzyloxypentan-2-one (±)-SI-11



To a solution of a mixture of alcohols (±)-syn-SI-9 and (±)-anti-SI-10 (290 mg, 1.49 mmol, 1 equiv) in  $CH_2CI_2$  was added Dess-Martin periodinane (760 mg, 1.79 mmol, 1.2 equiv). The reaction mixture was stirred at room temperature for 1.5 h then quenched with sat. aq. Na₂SO₃ (1.5 mL), followed by sat. aq. NaHCO₃ (6.5 mL). Et₂O (9 mL) was added and the phases were separated. The aqueous phase was extracted with Et₂O (2 × 16 mL) then the combined organic phases were dried (MgSO₄) and concentrated. Column chromatography on silica gel eluting with petroleum ether 40–60 °C/Et₂O (80:20 to 70:30) gave 240 mg (1.25 mmol, 84%) of the desired product (±)-SI-11 as a colorless oil.

**R**_f 0.41 (petroleum ether 40–60 °C/Et₂O 70:30). ¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ 7.37 – 7.25 (m, 5H, H_{Ar}), 4.58 (d, ²*J*_{H6-H6'} = 11.5 Hz, 1H, H-6), 4.46 (d, ²*J*_{H6-H6'} = 11.5 Hz, 1H, H-6'), 4.05 (dqd, ³*J*_{H4-H3} = 7.3, ³*J*_{H4-H5} = 6.1, ³*J*_{H4-H3'} = 5.4 Hz, 1H, H-4), 2.81 (dd, ²*J*_{H3-H3'} = 15.9, ³*J*_{H3-H4} = 7.3 Hz, 1H, H-3), 2.49 (dd, ²*J*_{H3'H3} = 15.9, ³*J*_{H3'H4} = 5.4 Hz, 1H, H-3'), 2.17 (s, 3H, H-1), 1.25 (d, ³*J*_{H5-H4} = 6.1 Hz, 3H, H-5) ppm. ¹³C NMR (101 MHz, CDCl₃, 25 °C) δ 207.4 (C-2), 138.5 (C_{q,Ar}), 128.3 (2 × CH_{Ar}), 127.7 (2 × CH_{Ar}), 127.6 (CH_{Ar}), 71.6 (C-4), 70.8 (C-6), 50.8 (C-3), 31.0 (C-1), 19.8 (C-5) ppm. The spectral data matched with the literature.⁷

#### 6.4.4 Synthesis of (±)-2-benzyloxy-4,4-difluoropentane (±)-SI-12



To a solution of (±)-SI-11 (230 mg, 1.20 mmol, 1 equiv) in  $CH_2CI_2$  (1.5 mL) was added diethylaminosulfur trifluoride (0.47 mL, 3.59 mmol, 3 equiv) at 0 °C and the resulting mixture was stirred at room temperature for 23 h then at 40 °C for 8 h after which some starting material could still be observed by TLC. HF-pyridine complex (3 drops) was added and the reaction mixture was stirred at 40 °C for 14 h then diluted with  $CH_2CI_2$  (25 mL) and quenched with sat. aq. NaHCO₃ (12 mL). The phases were separated and the aqueous phase was extracted with

(±)-SI-12  $CH_2CI_2$  (2 × 25 mL). The combined organic phases were dried (MgSO₄) and concentrated. Column chromatography on silica gel eluting with petroleum ether 40–60 °C/Et₂O (98:2 to 70:30) gave 127 mg (0.59 mmol, 49%) of desired product (±)-SI-12 as a pale yellow oil followed by 85 mg (0.44 mmol, 37%) of starting material.

**R**_f 0.89 (petroleum ether 40–60 °C/Et₂O 70:30). **IR** (neat) 2973 (w), 2935 (w), 2871 (w), 1392(m), 1376 (m), 1235 (m), 1148 (s), 1129 (s), 917 (s). ¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ 7.39 – 7.28 (m, 5H, H_{Ar}), 4.59 (d, ²J_{H6-H6'} = 11.5 Hz, 1H, H-6), 4.47 (d, ²J_{H6-H6'} = 11.5 Hz, 1H, H-6'), 3.90 – 3.80 (m, 1H, H-2), 2.22 (dddd, ³J_{H3-F} = 19.8, ²J_{H3-H3'} = 14.7, ³J_{H3-F} = 14.7, ³J_{H3-H2} = 7.1 Hz, 1H, H-3'), 2.09 – 1.94 (m, 1H, H-3'), 1.65 (t, ³J_{H5-F} = 19.0 Hz, 3H, H-5), 1.30 (d, ³J_{H1-H2} = 6.1 Hz, 3H, H-1) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 25 °C) δ 138.4 (C_{q,Ar}), 128.4 (2 × CH_{Ar}), 127.7 (2 × CH_{Ar}), 127.6 (CH_{Ar}), 123.5 (t, ¹J_{C4-F} = 237.7 Hz, C-4), 70.53 (C-6), 70.5 (dd, ²J_{C2-F} = 7.3, 3.7 Hz, C-2), 44.9 (t, ²J_{C3-F} = 24.9 Hz, C-3), 24.1 (t, ²J_{C5-F} = 27.5 Hz, C-5), 20.4 (d, ⁴J_{C1-F} = 1.5 Hz, C-1) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃, 25 °C) δ -85.0 (dqdd, ²J_{F-F'} = 242.3, ³J_{F-H5} = 19.0, ³J_{F-H3/H3'} = 14.7, ³J_{F-H3/H3'} = 13.0 Hz, 1F, F), -90.2 (m, ²J_{F'-F} = 242.3, Hz, 1F, F') ppm.

#### 6.4.5 Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E



To a solution of benzyl ether (±)-SI-12 (790 mg, 3.69 mmol, 1 equiv) in  $CH_2CI_2/H_2O$  (9:1, 50 mL) was added DDQ (1.67 g, 7.37 mmol, 2 equiv). The resulting mixture was refluxed for 14 h then diluted with  $CH_2CI_2$  (110 mL), washed successively with sat. aq. NaHCO₃ (80 mL) and brine (40 mL), dried (MgSO₄), filtered and evaporated carefully. The product was purified by column chromatography on silica gel eluting with pentane/Et₂O (80:20 to 70:30) then distilled (kugelrohr) to give 79 mg (0.64 mmol, 17%) of pure (±)-E as a colorless oil.

**R**_f 0.37 (pentane/Et₂O 70:30).

.

**Bp** 150–160 °C

**IR** (neat) 3376 (br, w), 2974 (w), 2932 (w), 1392 (m), 1233 (m), 1142 (s), 919 (s).

¹**H NMR** (500 MHz, CDCI₃, 25 °C)  $\delta$  4.22 (dqdd, ³*J*_{H2-H3} = 8.6, ³*J*_{H2-H1} = 6.3, ³*J*_{H2-OH} = 3.5, ³*J*_{H2-H3'} = 3.0 Hz, 1H, H-2), 2.07 (dddd, ³*J*_{H3-F} = 19.3, ²*J*_{H3-H3'} = 15.0, ³*J*_{H3-F1} = 13.3, ³*J*_{H3-H2} = 8.6 Hz, 1H, H-3), 1.99 (dddd, ³*J*_{H3'-F1} = 20.0, ²*J*_{H3'-H3} = 15.0, ³*J*_{H3'-F1} = 13.7, ³*J*_{H3'-H2} = 3.0 Hz, 1H, H-3'), 1.84 (ddd, appears as td, ³*J*_{OH-H2} = 3.5, ^{1h}*J*_{OH-F1} = 1.4 Hz, 1H, OH), 1.68 (t, ³*J*_{H5-F1} = 18.9 Hz, 3H, H-5), 1.27 (d, ³*J*_{H1-H2} = 6.3 Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, 25 °C) δ 4.22 (dqdd,  ${}^{3}J_{H2-H3} = 8.6$ ,  ${}^{3}J_{H2-H1} = 6.3$ ,  ${}^{3}J_{H2-OH} = 3.5$ ,  ${}^{3}J_{H2-H3'} = 3.0$  Hz, 1H, H-2), 2.07 (dddd,  ${}^{2}J_{H3-H3'} = 15.0$ ,  ${}^{3}J_{H3-H2} = 8.6$  Hz, 1H, H-3), 1.99 (dddd,  ${}^{2}J_{H3'-H3} = 15.0$ ,  ${}^{3}J_{H3'-H2} = 3.0$  Hz, 1H, H-3'), 1.84 (d,  ${}^{3}J_{OH-H2} = 3.5$  Hz, 1H, OH), 1.68 (s, 3H, H-5), 1.27 (d,  ${}^{3}J_{H1-H2} = 6.3$  Hz, 3H, H-1) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25 °C) δ 124.2 (t, ¹*J*_{C4-F/F'} = 237.7 Hz, C-4), 63.3 (t, ³*J*_{C2-F/F'} = 4.4 Hz, C-2), 46.4 (t, ²*J*_{C3-F/F'} = 23.5 Hz, C-3), 24.1 (t, ²*J*_{C1-F/F'} = 27.5 Hz, C-5), 23.9 (C-1) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C) δ –88.2 (ddqdd, appears as dquind,  ${}^{2}J_{F-F'}$  = 242.5,  ${}^{3}J_{F-H3}$  = 19.3,  ${}^{3}J_{F-H5}$  = 18.9,  ${}^{3}J_{F-H3'}$  = 13.8 Hz, 1F, F ( ${}^{1h}J_{F-HO}$  = 1.5 Hz not resolved)), –89.7 (ddqdd,  ${}^{2}J_{F'-F}$  = 242.5,  ${}^{3}J_{F'-H3'}$  = 20.0,  ${}^{3}J_{F'-H5}$  = 18.9,  ${}^{3}J_{F'-H3}$  = 13.2,  ${}^{1h}J_{F'-HO}$  = 3.5 Hz, 1F, F') ppm.

¹⁹F{¹H} **NMR** (471 MHz, CDCl₃, 25 °C)  $\delta$  –88.2 (d, ²J_{F-F'} = 242.5 Hz, 1F, F), –89.7 (d, ²J_{F-F'} = 242.5 Hz, 1F, F') ppm.

¹**H NMR** (500 MHz, CDCl₃, -50 °C) δ 4.26 (dqdd,  ${}^{3}J_{H2-H3} = 9.2$ ,  ${}^{3}J_{H2-H1} = 6.3$ ,  ${}^{3}J_{H2-OH} = 2.8$ ,  ${}^{3}J_{H2-H3'} = 2.4$  Hz, 1H, H-2), 2.16 (m, upon homodecoupling of H-2 simplifies as dd,  ${}^{1h}J_{OH\cdots F'} = 4.7$ ,  ${}^{1h}J_{OH\cdots F} = 1.7$  Hz, upon  ${}^{19}F$  decoupling simplifies as d,  ${}^{3}J_{OH-H2} = 2.8$  Hz, 1H, OH), 2.07 (dddd,  ${}^{3}J_{H3-F} = 21.1$ ,  ${}^{2}J_{H3-H3'} = 15.0$ ,  ${}^{3}J_{H3-F'} = 11.6$ ,  ${}^{3}J_{H3-H2} = 9.2$  Hz, 1H, H-3), 1.99 (dddd,  ${}^{3}J_{H3'-F'} = 21.7$ ,  ${}^{2}J_{H3'-H3} = 15.0$ ,  ${}^{3}J_{H3'-H2} = 2.4$  Hz, 1H, H-3'), 1.68 (t,  ${}^{3}J_{H5-F'} = 19.2$  Hz, 3H, H-5), 1.25 (d,  ${}^{3}J_{H1-H2} = 6.3$  Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, -50 °C)  $\delta$  4.26 (dqdd, ³*J*_{H2-H3} = 9.2, ³*J*_{H2-H1} = 6.4, ³*J*_{H2-OH} = 2.8, ³*J*_{H2-H3'} = 2.4 Hz, 1H, H-2), 2.15 (d, ³*J*_{OH-H2} = 2.8 Hz, 1H, OH), 2.07 (dd, ²*J*_{H3-H3'} = 15.1, ³*J*_{H3-H2} = 9.2 Hz, 1H, H-3), 1.99 (dd, ²*J*_{H3'-H3} = 15.1, ³*J*_{H3'-H2} = 2.4 Hz, 1H, H-3'), 1.68 (s, 3H, H-5), 1.25 (d, ³*J*_{H1-H2} = 6.4 Hz, 3H, H-1) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, -50 °C) δ -89.4 (m, 1F, F), -90.3 (ddqdd,  ${}^{2}J_{F'-F}$  = 239.6,  ${}^{3}J_{F'-H3'}$  = 21.7,  ${}^{3}J_{F'-H5}$  = 19.2,  ${}^{3}J_{F'-H3}$  = 11.6,  ${}^{1h}J_{F'-HO}$  = 4.7 Hz, 1F, F') ppm.

¹⁹F{¹H} NMR (471 MHz, CDCl₃, -50 °C) δ -89.5 (d,  ${}^{2}J_{F-F'}$  = 239.6 Hz, 1F, F), -90.3 (d,  ${}^{2}J_{F-F'}$  = 239.6 Hz, 1F, F') ppm.

#### 6.5 Synthesis of (±)-4,4-difluorobutan-2-ol (±)-F

#### 6.5.1 Synthesis of (±)-(2S,4R)-2,4-dimethyl-1,3-dioxane (±)-SI-13

Ph ÷ O O ······· A mixture of 1,3-butanediol (10 g, 111 mmol), benzaldehyde (13.5 mL, 133 mmol, 1.2 equiv), *p*-toluenesulfonic acid monohydrate (2.11 g, 11 mmol, 0.1 equiv) and MgSO₄ (26.7 g, 222 mmol, 2 equiv) in 100 mL of  $CH_2Cl_2$  was stirred for 5 hours at room temperature after which the reaction mixture was filtered. The organic layer was washed with a sat. aq. NaHCO₃ followed by sat. aq. Na₂S₂O₃. The organic layer was dried over MgSO₄, filtered and evaporated to give 20.5 g (colorless

(±)-SI-13 oil) of a mixture consisting of the desired benzylidene actetal (±)-SI-13 and benzaldehyde ( 1 H NMR ratio: 92/8) which was used without further purification. The NMR data matched with the literature.⁸

#### 6.5.2 Synthesis of (±)-3-benzyloxy-butan-1-ol (±)-SI-14



To the mixture of benzylidene acetal (±)-SI-13 obtained above (8.47 g, 47.5 mmol) in 42 mL of freshly distilled toluene at 0 °C was added DIBAL (1.0 M in hexane, 57 mL, 57 mmol,1.2 equiv) using a dropping funnel over a period of 30 minutes. After stirring for 5 hours at 0 °C, the reaction mixture was stirred overnight at room temperature then quenched by adding MeOH and NaOH (10% aq., 200 mL). The resulting solution was extracted three times with  $Et_2O$ . The combined organic layers were dried over MgSO₄, filtered and evaporated. The crude mixture was purified by flash chromatography (petroleum ether 40-60 °C/EtOAc, 90:10 to 70:30) afforded 7.03 g (39.0

mmol, 85% over two steps) (±)-SI-14 as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃, 25 °C) δ 7.40–7.27 (m, 5H, H_{Ar}), 4.65 (d,  ${}^{2}J_{H5-H5'}$  = 11.6 Hz, 1H, H-5), 4.45 (d,  ${}^{2}J_{H5'-H5}$  = 11.6 Hz, 1H, H-5), 3.79 (m, 3H, H-1 + H-3), 2.47 (dd,  ${}^{3}J_{OH-H1}$  = 6.4 Hz,  ${}^{3}J_{OH-H1'}$  = 4.5 Hz, 1H, OH), 1.79 (m, 2H, H-2), 1.27 (d,  ${}^{3}J_{H4-H3}$  = 6.2 Hz, 3H, H-4) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 25 °C) δ 138.4 (C_{q,Ar}), 128.5 (2 × CH_{Ar}), 127.7 (2 × CH_{Ar}), 74.7 (C-3), 70.5 (CH₂, C-5), 60.9 (C-1), 38.8 (C-2), 19.4 (C-4) ppm. The NMR data matched with the literature.⁹

#### 6.5.3 Synthesis of (±)-3-benzyloxy-butanal (±)-SI-15



To a solution of the alcohol (±)-SI-14 (6.86 g, 38.2 mmol, 1 equiv) in  $CH_2CI_2$  (40 mL) were added TEMPO (604 mg, 3.87mmol, 0.1 equiv) and (diacetoxyiodo)benzene (13.7 g, 42.5 mmol, 1.1 equiv). The reaction mixture was stirred at room temperature for 1.5 h and was then quenched with sat. aq.  $Na_2S_2O_3$ . The layers were separated and the aqueous layer was extracted with  $CH_2CI_2$ . The combined organic phases were dried over  $MgSO_4$ , filtered and evaporated. The crude mixture was purified by flash chromatography (petroleum ether 40-60 °C/Et₂O, 90:10 to 85:15) which afforded 6.40 g (35.9 mmol, 94%) of (±)-SI-15 as a colorless oil.

**IR** (neat) 2972 (m), 2929 (m), 2866 (m), 2835 (m), 2722 (m), 1723 (s). ¹**H NMR** (400 MHz, CDCl₃, 25 °C)  $\delta$  9.81 (app. t, ³*J*_{H1-H2} = 2.0 Hz, 1H, H-1), 7.39–7.28 (m, 5H, H_{Ar}), 4.62 (d, ²*J*_{H5-H5} = 11.6 Hz, 1H, H-5), 4.49 (d, ²*J*_{H5-H5} = 11.6 Hz, 1H, H-5'), 4.10 (dqd, ³*J*_{H3-H2} = 7.4 Hz, ³*J*_{H3-H4} = 6.2 Hz, ³*J*_{H3-H2} = 5.0 Hz, 1H, H-3), 2.72 (ddd, ²*J*_{H2-H2} = 16.4 Hz, ³*J*_{H2-H3} = 7.4 Hz, ³*J*_{H2-H1} = 2.5 Hz, 1H, H-2), 2.54 (ddd, ²*J*_{H2'-H2} = 16.4 Hz, ³*J*_{H2'-H3} = 5.0 Hz, ³*J*_{H2'-H1} = 1.8 Hz, 1H, H-2'), 1.31 (d, ³*J*_{H4-H3} = 6.2 Hz, 3H, H-4) ppm. ¹³**C NMR** (101 MHz, CDCl₃, 25 °C)  $\delta$  201.4 (C-1), 138.2 (C_{q,Ar}), 128.4 (2 × CH_{Ar}), 127.7 (CH_{Ar}), 127.6 (2 × CH_{Ar}), 70.6 (C-5), 70.2 (C-3), 50.5 (C-2), 19.8 (C-4) ppm. **HRMS** (MS+) for C₁₁H₁₄O₂ calcd 178.0988, found 178.0986. The ¹H NMR data matched with the literature.¹⁰

#### 6.5.4 Synthesis of (±)-2-benzyloxy-4,4-difluorobutane (±)-SI-16



To a solution of the aldehyde (±)-SI-15 (5.00 g, 28.4 mmol, 1 equiv) dissolved in 100 mL of dry  $CH_2CI_2$  was added diethylaminosulfur trifluoride (7.50 mL, 56.7 mmol, 2 equiv). The mixture was stirred at room temperature for 45 min and was then poured in a saturated aqueous solution of Na₂CO₃. The layers were separated and the aqueous layer was extracted three times with  $CH_2CI_2$ . The combined organic phases were dried over MgSO₄, filtered and evaporated. The crude mixture was purified by flash chromatography (petroleum ether 40-60 °C/Et₂O 99:1) which afforded 5.21 g (26.0 mmol, 93%) of (±)-SI-16 as a colorless oil.

**IR** (neat) 3032 (w), 2976 (w), 2935 (w), 2359 (w). ¹**H NMR** (400 MHz, CDCI₃, 25 °C)  $\delta$  7.40–7.28 (m, 5H, H_{Ar}), 6.00 (tdd, ²J_{H4-F} = 57.0 Hz, ³J_{H4-H3} = 6.6 Hz, ³J_{H4-H3'} = 3.1 Hz, 1H, H-4), 4.62 (d, ²J_{H5-H5'} = 11.5 Hz, 1H, H-5), 4.43 (d, ²J_{H5'-H5} = 11.5 Hz, 1H, H-5'), 3.79 (m, 1H, H-2), 2.21–1.90 (m, 2H, H-3 + H-3'), 1.28 (d, ³J_{H1-H2} = 6.2 Hz, 3H, H-1) ppm. ¹³C NMR (101 MHz, CDCI₃, 25 °C)  $\delta$ : 138.2 (C_{q,Ar}), 128.4 (2 × CH_{Ar}), 127.7 (CH_{Ar}), 127.6 (2 × CH_{Ar}), 116.0 (t, ¹J_{C4-F} = 238 Hz, C-4), 70.6 (C-5), 70.1 (dd, ³J_{C2-F} = 9 Hz, ³J_{C2-F'} = 4 Hz, C-2), 41.6 (t, ²J_{C3-F} = 21 Hz,

C-3), 19.7 (C-1) ppm. ¹⁹**F NMR** (376 MHz, CDCl₃, 25 °C)  $\delta$  –116.7 (dddd appears as ddt, ²*J*_{F-F} = 284.4 Hz, ²*J*_{F-H4} = 55.5 Hz, ⁴*J*_{F-H3} = 10.4 Hz, 1F, F), –117.88 (dddd, ²*J*_{F-F} = 284.4 Hz, ²*J*_{F'-H4} = 57.2 Hz, ⁴*J*_{F'-H3} = 26.0 Hz, ⁴*J*_{F'-H3} = 13.9 Hz, 1F, F'). **HRMS** (MS+) for C₁₁H₁₄F₂O calcd 200.0994, found 200.0998.

#### 6.5.5 Synthesis of (±)-4,4-difluorobutan-2-ol (±)-F



To a mixture of the benzylated compound (±)-SI-16 (15.0mmol, 3.01g) in 180mL of dichloromethane and 18mL of water was added 2,3-Dichloro-5,6-dicyano-*p*-benzoquinone (30mmol, 6.81g). The mixture was heated at reflux and stirred for 24h and was then poured into a saturated aqueous solution of NaHCO₃ (1L). The aqueous layer was extracted with dichloromethane several times until the product is no longer detectable on TLC from the organic layer.

**IR :** 3356.4 (br), 2976.7 (m), 2933.5 (m), 1401.5 (m), 1378.3 (m), 1104.5 (s).

¹**H NMR** (500 MHz, CDCl₃, 25 °C) δ 6.01 (tdd, ²*J*_{H4-F} = 56.8 Hz, ³*J*_{H4-H3'} = 5.5 Hz, ³*J*_{H4-H3} = 3.6 Hz, 1H, H-4), 4.12 (dqdd, ³*J*_{H2-H3} = 8.4 Hz, ³*J*_{H2-H1} = 6.3 Hz, ³*J*_{H2-OH} = 4.5 Hz, ³*J*_{H2-H3'} = 4.4 Hz, 1H, H-2), 2.08 – 1.95 (ddddd appears as dtdd, ³*J*_{H3-F'} = 20.9 Hz, ³*J*_{H3-H3'} = 14.5 Hz, ³*J*_{H3-F2} = 14.5 Hz, ³*J*_{H3-H2} = 8.4 Hz, ³*J*_{H3-H4} = 3.6 Hz, 1H, H-3), 1.97 (dddddd appears as dtddd, ³*J*_{H3'-F'} = 16.3 Hz, ³*J*_{H3'-F} = 14.5 Hz, ²*J*_{H3'-H3} = 14.5 Hz, ³*J*_{H3'-H4} = 5.5 Hz, ³*J*_{H3'-H2} = 4.4 Hz, ⁴*J*_{H3'-OH} = 0.5 Hz, 1H, H-3'), 1.52 (1H, dddd appears as dq, ³*J*_{OH-H2} = 4.5 Hz, ⁴*J*_{OH-H3'} = 0.6 Hz, ^{1h}*J*_{OH-H5} = 0.6 Hz, OH), 1.39 (dt, ³*J*_{H1-H2} = 6.2 Hz, ⁵*J*_{H1-F} = 0.6 Hz, 3H, H-1) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, 25 °C) δ 6.01 (dd,  ${}^{3}J_{H4-H3'} = 5.5$  Hz,  ${}^{3}J_{H4-H3} = 3.7$  Hz, 1H, H-4), 4.12 (dqdd,  ${}^{3}J_{H2-H3} = 8.4$  Hz,  ${}^{3}J_{H2-H1} = 6.3$  Hz,  ${}^{3}J_{H2-OH} = 4.5$  Hz,  ${}^{3}J_{H2-H3'} = 4.4$  Hz, 1H, H-2), 2.01 (ddd,  ${}^{3}J_{H3-H3'} = 14.5$  Hz,  ${}^{3}J_{H3-H2} = 8.3$  Hz,  ${}^{3}J_{H3-H4} = 3.6$  Hz, 1H, H-3), 1.97 (dddd,  ${}^{2}J_{H3'-H3} = 14.5$  Hz,  ${}^{3}J_{H3'-H4} = 5.6$  Hz,  ${}^{3}J_{H3'-H2} = 4.4$  Hz,  ${}^{4}J_{H3'-OH} = 0.5$  Hz, 1H, H-3'), 1.52 (dd,  ${}^{3}J_{OH+H2} = 4.5$  Hz,  ${}^{4}J_{OH-H3'} = 0.5$  Hz, 1H, OH), 1.29 (d,  ${}^{3}J_{H1-H2} = 6.3$  Hz, 3H, H-1) ppm.

¹³**C NMR** (101 MHz, CDCl₃, 25 °C)  $\delta$  116.3 (t, ¹*J*_{C4-F} = 238 Hz, C-4), 63.2 (dd, ³*J*_{C2-F} = 7, 5 Hz, C-2), 42.9 (t, ²*J*_{C3-F} = 20 Hz, C-3), 24.0 (C-1) ppm.

¹⁹**F NMR** (471 MHz, CDCl₃, 25 °C) δ –116.4 (ddtm,  ${}^{2}J_{F-F'}$  = 286.1 Hz,  ${}^{2}J_{F-H4}$  = 56.7 Hz,  ${}^{3}J_{F-H3}$  = 14.7 Hz (^{1h}*J*_{F···H0} and  ${}^{5}J_{F-H1}$  not resolved), 1F, F), –117.5 (ddddm,  ${}^{2}J_{F'-F}$  = 286.1 Hz,  ${}^{2}J_{F'-H4}$  = 57.0 Hz,  ${}^{3}J_{F'-H3}$  = 21.1 Hz,  ${}^{3}J_{F'-H3}$  = 16.4 Hz, (^{1h}*J*_{F···H0} and  ${}^{5}J_{F-H1}$  not resolved), 1F, F') ppm.

¹⁹**F**{¹**H**} **NMR** (471 MHz, CDCl₃, 25 °C)  $\delta$  –116.4 (d, ²*J*_{F-F'} = 286.1 Hz, 1F, F), –117.1 (d, ²*J*_{F-F'} = 286.1 Hz, 1F, F') ppm.

**HRMS** (MS+) for  $C_4H_8F_2O$  calcd 110.0538, found 110.0509.

#### 6.6 Synthesis of 3,3-difluoropropan-1-ol G

#### 6.6.1 Synthesis of 1-benzyloxy-3,3-difluoropropane SI-17



To a round-bottom flask were added 3-benzyloxypropanal (1.00 g, 6.09 mmol, 1.0 equiv),  $CH_2CI_2$  (20 mL) and diethylaminosulfur trifluoride (1.61 mL, 12.2 mmol, 2.0 equiv). The resulting solution was stirred at room temperature overnight. The reaction mixture was quenched with sat. aq. NaHCO₃ solution (40 mL) and extracted with  $CH_2CI_2$  (3 × 60 mL). The combined organic layers were washed with brine (100 mL), dried over MgSO₄, filtered and concentrated. The crude was purified by flash chromatography (pentane/Et₂O 97:3 to 90:10) to afford 1.02 g (5.48 mmol, 90%) of **SI-17** as a colorless oil.

**IR** (neat) 3087 (w), 3059 (w), 3028 (w), 2970 (w), 2939 (w), 2866 (w), 2798 (w), 1492 (w), 1454 (m), 1395 (m), 1364 (m), 1095 (s), 1023 (s), 975 (s), 906 (m), 733 (s) cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.42–7.28 (m, 102

5H, H_Ar), 6.02 (tt,  ${}^{2}J_{H3-F}$  = 56.9 Hz,  ${}^{3}J_{H3-H2}$  = 4.8 Hz, 1H, H-3), 4.53 (s, 2H, H-4), 3.64 (t,  ${}^{3}J_{H1-H2}$  = 6.1 Hz, 2H, H-1), 2.15 (ttd,  ${}^{3}J_{H2-F}$  = 16.7 Hz,  ${}^{3}J_{H2-H1}$  = 6.1 Hz,  ${}^{3}J_{H2-H3}$  = 4.9 Hz, 2H, H-2) ppm. ¹³C NMR (101 MHz, CDCl₃, 25 °C)  $\delta$ 137.8 (C_{q,A}r), 128.4 (2 × CH_Ar), 127.8 (CH_Ar), 127.6 (2 × CH_Ar), 115.9 (t,  ${}^{1}J_{C3-F}$  = 237.7 Hz, C-3), 73.2 (C-4), 64.0 (t,  ${}^{3}J_{C1-F}$  = 6.9 Hz, C-1), 34.8 (t,  ${}^{2}J_{C2-F}$  = 21.8 Hz, C-2) ppm. ¹⁹F NMR (376 MHz, CDCl₃, 25 °C)  $\delta$  –117.8 (dt,  ${}^{2}J_{F-H3}$ = 57.2 Hz,  ${}^{3}J_{F-H2}$  = 16.5 Hz, 2F) ppm. MS (EI) *m/z* 186.2 (M⁺⁺, 8%). HRMS (MS+) for C₁₀H₁₂F₂O calcd 186.0851, found 186.0848.

#### 6.6.2 Synthesis of 3,3-difluoropropan-1-ol G

F OH  $J_2$   $J_1$  To a round-bottom flask were added **SI-17** (360 mg, 1.93 mmol, 1 equiv), CH₂Cl₂ (22.5 mL), water (2.50 mL) and 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (1.74 g, 7.72 mmol, 4 equiv). The resulting mixture was refluxed overnight. After completion was reached, indicated by TLC analysis, the reaction mixture was directly purified by flash chromatography (pentane/Et₂O, 70:30) followed by a

second column chromatography (CH₂Cl₂, 100%) to afford 30 mg (0.31 mmol, 16%) of **G** as a colorless oil.

**IR** (neat) 3350 (br, w), 2958 (w), 2913 (m), 2852 (w), 1430 (w), 1401 (w), 1381 (w), 1119 (s), 1070 (s), 1054 (s), 964 (s), 805 (w) cm⁻¹;

¹**H** NMR (500 MHz, CDCl₃, 25 °C)  $\delta$  6.03 (tt, ²J_{H3-F} = 57.0 Hz, ³J_{H3-H2} = 4.6 Hz, 1H, H-3), 3.87 (td, ³J_{H1-H2} = 6.0 Hz, ³J_{H1-OH} = 5.1 Hz, 2H, H-1), 2.12 (ttd, ³J_{H2-F} = 17.0 Hz, ³J_{H2-H1} = 6.0 Hz, ³J_{H2-H3} = 4.6 Hz, 2H, H-2), 1.45 (1H, tt, ³J_{OH-H1} = 5.1, ^{1h}J_{OH-F} = 0.4 Hz, OH) ppm.

¹H{¹⁹F} NMR (500 MHz, CDCl₃, 25 °C) δ 6.03 (t,  ${}^{3}J_{H3-H2}$  = 4.6 Hz, 1H, H-3), 3.87 (td,  ${}^{3}J_{H1-H2}$  = 5.9 Hz,  ${}^{3}J_{H1-OH}$  = 5.2 Hz, 2H, H-1), 2.12 (td,  ${}^{3}J_{H2-H1}$  = 6.0 Hz,  ${}^{3}J_{H2-H3}$  = 4.6 Hz, 2H, H-2), 1.45 (t,  ${}^{3}J_{OH-H1}$  = 5.1 Hz, 1H, OH) ppm.

¹³**C NMR** (126 MHz, CDCl₃, 25 °C)  $\delta$  116.1 (t, ¹*J*_{C3-F} = 239.4 Hz, C-3), 56.8 (t, ³*J*_{C1-F} = 6.8 Hz, C-1), 36.9 (t, ²*J*_{C2-F} = 20.3 Hz, C-2) ppm.

¹⁹**F NMR** (376 MHz, CDCl₃, 25 °C)  $\delta$  –117.8 (dt, ²*J*_{F-H3} = 56.8 Hz, ³*J*_{F-H2} = 16.9 Hz, 2F) ppm (^{1h}*J*_{F···H0} not resolved).

¹⁹F{¹H} NMR (376 MHz, CDCl₃, 25 °C) δ –117.6 (s, 2F) ppm.

HRMS (MS+) for C₃H₆F₂O calcd 96.0381, found 96.0381.

- 1. Caron, G.; Kazlauskas, R. J., *Tetrahedron: Asymmetry* **1994**, *5* (4), 657-664.
- 2. Ikeda, H.; Sato, E.; Sugai, T.; Ohta, H., *Tetrahedron* **1996**, *52* (24), 8113-8122.
- 3. Yoneda, A.; Fukuhara, T.; Hara, S., Chem. Commun. (Cambridge, U. K.) 2005, (28), 3589-3590.

4. Ashley, G. W.; Burlingame, M.; Desai, R.; Fu, H.; Leaf, T.; Licari, P. J.; Tran, C.; Abbanat, D.;

Bush, K.; Macielag, M., J. Antibiot. 2006, 59 (7), 392-401.

5. Denmark, S. E.; Almstead, N. G., J. Am. Chem. Soc. **1991**, 113 (21), 8089-8110.

6. Hoffmann, R. W.; Stenkamp, D.; Trieselmann, T.; Göttlich, R., *Eur. J. Org. Chem.* **1999**, *1999* (11), 2915-2927.

7. Zou, H.; Zhou, L.; Li, Y.; Cui, Y.; Zhong, H.; Pan, Z.; Yang, Z.; Quan, J., *J. Med. Chem.* **2010**, *53* (3), 994-1003.

8. Soderquist, J. A.; Kock, I.; Estrella, M. E., Org. Process Res. Dev. 2006, 10 (5), 1076-1079.

9. Shie, C.-R.; Tzeng, Z.-H.; Kulkarni, S. S.; Uang, B.-J.; Hsu, C.-Y.; Hung, S.-C., *Angew. Chem., Int. Ed.* **2005**, *44* (11), 1665-1668.

10. Bianchi, O.; Cesti, P.; Golini, P., *Tetrahedron* **1989**, *45* (3), 869-876.

# SUPPORTING INFORMATION 4 COPIES OF SPECTRA (INTERMEDIATES) COPIES OF ¹³C OF NOVEL FLUOROHYDRINS

7 Copies of all spectra107					
7.1 Synthesis of (±)-syn and (±)-anti-4-fluoropentan-2-ol ((±)-syn-A and (±)-anti-A)	107				
7.1.1 Isolation of <i>meso</i> -2,4-pentanediol ( <i>meso</i> -SI-1) and (±)-2,4-pentanediol ((±)-SI-2) from a commercial mixture of <i>meso</i> and isomers	<i>racemic</i> 107				
7.1.1.1 meso-2,4-Pentanediol (meso-SI-1)	107				
7.1.1.2 (±)-2,4-Pentanediol ((±)-SI-2)	109				
7.1.2 (±)-anti and (±)-syn-2-(3'-Methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3 and (±)-syn-SI-4	111				
7.1.2.1 (±)-anti-2-(3'-Methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3	111				
7.1.2.2 (±)-syn-2-(3'-Methylbenzoyloxy)-4-fluoropentane (±)-syn-SI-4	114				
7.1.3 Fluorohydrins (±)- <i>anti</i> -A and (±)- <i>syn</i> -A	117				
7.1.3.1 (±)-anti-4-Fluoropentan-2-ol (±)-anti-A	117				
7.1.3.2 (±)-syn-4-Fluoropentan-2-ol (±)-syn-A	118				
7.2 Synthesis of 4-fluorobutan-2-ol (±)-B	119				
7.2.1 3-Fluoropropanal SI-5	119				
7.2.2 4-Fluorobutan-2-ol (±)-B	121				
7.3 Synthesis of 3-fluoro-2,2-dimethylpropan1-ol C	122				
7.3.1 3-Fluoro-2,2-dimethyl-1-( <i>meta</i> -methylbenzoyloxy)-propane SI-6	122				
7.3.2 3-Fluoro-2,2-dimethylpropan1-ol C	125				
7.4 Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E	126				
7.4.1 4,6-Dimethyl-2-phenyl-1,3-dioxane meso-SI-7 and (±)-SI-8	126				
7.4.2 (2S*,4R*)-4-Benzyloxypentan-2-ol (±)-syn-SI-9 and (2R*,4R*)-4-benzyloxypentan-2-ol (±)-anti-SI-10	128				
7.4.3 (±)-4-Benzyloxypentan-2-one (±)-SI-11	130				

Linclau, Graton		Supporting Information 4	SI106
7.4.4 (±)-2-Benzylo	bxy-4,4-difluoropentane (±)-SI-12	¥	
7.4.5 (±)-4,4-difluo	ropentan-2-ol (±)-E		135
7.5 Synthesis of (±)-4	I,4-difluorobutan-2-ol (±)-F		136
7.5.1 (±)-3-Benzyld	oxy-butanal (±)-SI-15		136
7.5.2 (±)-2-Benzylo	oxy-4,4-difluorobutane (±)-SI-16		138
7.5.3 (±)-4,4-Difluo	robutan-2-ol (±)-F		142
7.6 Synthesis of 3,3-	difluoropropan-1-ol G		143
7.6.1 1-Benzyloxy-	3,3-difluoropropane SI-17		143
7.6.2 3,3-Difluorop	ropan-1-ol G		146

#### 7 Copies of all spectra

- 7.1 Synthesis of (±)-syn and (±)-anti-4-fluoropentan-2-ol ((±)-syn-A and (±)-anti-A)
- 7.1.1 Isolation of *meso-*2,4-pentanediol (*meso-*SI-1) and (±)-2,4-pentanediol ((±)-SI-2) from a commercial mixture of *meso* and *racemic* isomers
- 7.1.1.1 meso-2,4-Pentanediol (meso-SI-1)

¹H NMR, CDCI₃, 400 MHz




176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 8 0 -8 Chemical Shift (ppm)

#### 7.1.1.2 (±)-2,4-Pentanediol ((±)-SI-2)





Supporting Information 4

# 7.1.2 (±)-anti and (±)-syn-2-(3'-Methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3 and (±)-syn-SI-4

#### 7.1.2.1 (±)-anti-2-(3'-Methylbenzoyloxy)-4-fluoropentane (±)-anti-SI-3



¹H NMR, CDCI₃, 400 MHz















#### SI117

## 7.1.3 Fluorohydrins (±)-anti-A and (±)-syn-A

#### 7.1.3.1 (±)-anti-4-Fluoropentan-2-ol (±)-anti-A



72 64 56 -8 - T Chemical Shift (ppm)

#### 7.1.3.2 (±)-syn-4-Fluoropentan-2-ol (±)-syn-A



### 7.2 Synthesis of 4-fluorobutan-2-ol (±)-B

7.2.1 3-Fluoropropanal SI-5



¹H NMR, CDCI₃, 400 MHz



### 7.2.2 4-Fluorobutan-2-ol (±)-B

¹³C NMR, CDCI₃, 101 MHz



176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm)

- 7.3 Synthesis of 3-fluoro-2,2-dimethylpropan1-ol C
- 7.3.1 3-Fluoro-2,2-dimethyl-1-(meta-methylbenzoyloxy)-propane SI-6











### 7.3.2 3-Fluoro-2,2-dimethylpropan1-ol C





Linclau, Graton

### 7.4 Synthesis of (±)-4,4-difluoropentan-2-ol (±)-E

7.4.1 4,6-Dimethyl-2-phenyl-1,3-dioxane meso-SI-7 and (±)-SI-8

¹H NMR, CDCI₃, 400 MHz



 $^{\rm 13}\text{C}$  NMR, CDCI₃, 101 MHz







¹³C NMR, CDCI₃, 101 MHz



### 7.4.3 (±)-4-Benzyloxypentan-2-one (±)-SI-11







### 7.4.4 (±)-2-Benzyloxy-4,4-difluoropentane (±)-SI-12



¹H NMR, CDCI₃, 400 MHz

 $^{\rm 13}\text{C}$  NMR, CDCI₃, 101 MHz



¹⁹F, CDCI₃, 376 MHz



### 7.4.5 (±)-4,4-difluoropentan-2-ol (±)-E





176 168 160 152 144 136 128 120 112 104 96 88 80 72 64 56 48 40 32 24 16 Chemical Shift (ppm)

# 7.5 Synthesis of (±)-4,4-difluorobutan-2-ol (±)-F

7.5.1 (±)-3-Benzyloxy-butanal (±)-SI-15





¹³C NMR, CDCI₃, 101 MHz



#### SI138

# 7.5.2 (±)-2-Benzyloxy-4,4-difluorobutane (±)-SI-16



¹H NMR, CDCI₃, 400 MHz

¹³C NMR, CDCI₃, 101 MHz







¹⁹F, CDCI₃, 376 MHz



### 7.5.3 (±)-4,4-Difluorobutan-2-ol (±)-F





### 7.6 Synthesis of 3,3-difluoropropan-1-ol G

### 7.6.1 1-Benzyloxy-3,3-difluoropropane SI-17




$^{\rm 13}\text{C}$  NMR, CDCI₃, 101 MHz







## 7.6.2 3,3-Difluoropropan-1-ol G



أر محتان وبالمطاوية والحرية والعرابان والمعر

192

184 176

168

200

208



146