Complex PDB (a)	Class (b)	s Unbound PDB 1	Component 1	Unbound PDB 2	Component 2	iRMSD (Å) (c)	$\Delta ASA (Å^2) (d)$	Kd (M)	ΔG (kcal/mol (e)) Temp. (K)	pН	Method (f)	d Ref. (g)
3H2V_A:E	ox	3MYI_A	Vinculin tail domain	1WI6_A(8)	Raver1 RRM1 domain	0.8	1263	2.21e-5	-6.31	296.0	8	ITC	1
3DAW_A:B	OX	1IJJ_A	Alpha actin	$2HD7_A(5)$	Twinfilin-1 C-terminal do- main	1.49	2323	2e-5	-6.41			\mathbf{SA}	2
4HX3_BD:A	EI	4HWX_AB	Neutral proteinase in- hibitor ScNPI	$1C7K_A$	Zinc endoprotease	0.9	2086	6e-6	-7.41	310.0	7.4	\mathbf{SA}	3
3HI6_XY:B 2X9A D:C	A OR	3HI5_HL 1S62_A(8)	AL-57 Fab fragment TolA C-terminal domain	1MJN_A 2X9B A	Integrin alpha-L I domain G3P Tol A binding domain	1.65 1.33	1871 1571	4.7e-6	-7.27 -7.31	298.0	7.4	SPR SA	4
3R9A_AC:B	OR	1H0C_AB	Alanine-glyoxylate amino-	2C0M_A	PEX5P TPR repeat do-	1.91	1926	3.5e-6	-7.44	298.0	7.5	ITC	6
$1M27_AB:C$	OX	1D4T_AB	SAP-SLAM Complex	3UA6_A	Fyn kinase SH3 domain	1.22	799	3.45e-6	-7.45	298.0	8	ITC	7
3A4S_A:D	EI	1A3S_A	SUMO-conjugating en- zyme UBC9	3A4R_A	NFATC2-interacting pro- tein SLD2 ubiquitin-like domain	0.72	1116	2.81e-6	-7.57	298.0	7.5	ITC	8
3F1P_A:B	OX	$1P97_A(9)$	HIF2 alpha C-terminal PAS domain	$1X0O_A(5)$	ARNT C-terminal PAS do- main	2.52	1919	1.4e-6	-7.85	293.0	7.5	ITC	9
4M76_A:B	OR	$1C3D_A$	C3D	$1M1U_A$	Integrin alpha-M CD11B A-domain	0.43	1046	4.5e-7	-8.66	298.0	7.5	ITC	10
3LVK_AC:B	Е	3LVM_AB	Cysteine desulfurase IscS	$1DCJ_A(12)$	Sulfurtransferase tusA	0.81	1609	3.04e-7	-8.89	298.0	7.4	SPR	11
3L89_ABC:M	OR	3L88_ABC	Ad21 fiber knob	1CKL_A	mains	2.51	2167	2.84e-7	-8.93	298.0	7.4	\mathbf{SPR}	12
4IZ7_A:B	EI	1ERK_A	Non-phosphorylated ERK	$2LS7_A(1)$	PEA-15 Death Effector Domain	1.56	1202	1.33e-7	-9.44	300.0	7.5	\mathbf{SA}	13
3K75_D:B	\mathbf{ER}	1BPB_A	DNA polymerase beta	3K77_A	Reduced XRCC1, N- terminal domain	0.64	1195	1.1e-7	-9.49		7.5	\mathbf{SA}	14
3PC8_A:C	\mathbf{ER}	3PC6_A	DNA repair protein XRCC1	3PC7_A	DNA ligase III-alpha BRCT domain	0.5	1240	1.02e-7	-9.54		7.5	SPR	15
3BIW_A:E	OX	3BIX_A	Neuroligin-1	2R1D_A	Neuroligin-1-beta	0.39	1191	9.7e-8	-9.41	293.0	7.2	ITC	16
3SZK_DE:F	OX	30DQ_AB	MetHaemoglobin	2H3K_A 1MXO_A(20)	ISDH-N1 Mustana bin	2.1	1263	9.01e-8	-9.45	293.0	7.5	CDD	17
3RVW CD:A	4	3RVT CD	4C1 Fab	$3F5V \Delta$	DEB P 1 allergen	1.78	1383	2.1e-8	-10.50	293.0	75	ITC	10
3BX7_A:C	ox	3BX8_A	Lipocalin 2	30SK_A	CTLA-4 extracellular do-	1.63	2349	9e-9	-10.98	298.0	7.4	SPR	20
3MXW_LH:A	А	3MXV_LH	Anti-Shh 5E1 chimera Fab fragment	3M1N_A	Sonic Hedgehog N- terminal domain	0.48	1696	7e-9	-11.31	303.0	7.2	ITC	21
4GXU_MN:ABEFC	D A	4GXV_HL	1F1 antibody	1RUZ_HIJKLM	1918 H1 Hemagglutinin	0.78	1830	6.2e-9	-11.20			BLI	22
4G6J_HL:A	Α	$4G5Z_HL$	Canakinumab antibody fragment	4I1B_A	Interleukin-1 beta	0.61	1893	4.1e-9	-11.44	298.0	7.4	$^{\mathrm{TP}}$	23
3V6Z_AB:F	Α	3V6F_AB	Fab E6	3KXS_F	Capsid protein assembly domain	1.83	1922	3.3e-9	-11.57		7.4	SPR	24
3S9D_B:A	OR	1N6U_A(15)	IFNAR2	1ITF_A(9)	IFNa2	1.69	1841	3e-9	-11.63		7.5	SA	25
3EOA_LH:I 2GAF_D:A	\mathbf{A} ER	3EO9_LH 3OWG_A	Efalizumab Fab fragment Poly(A) polymerase VP55	3F74_A 1VPT_A	Integrin alpha-L I domain Vaccinia protein VP39	$0.39 \\ 0.69$	$1272 \\ 3368$	2.2e-9 1.2e-9	-11.81 -12.17	298.0	7.4	SPR SPR	$\frac{26}{27}$
4FQI_HL:ABEFCD	А	4FQH_HL	CR9114 Fab	2FK0_ABCDEF	H5N1 influenza virus	1.08	1459	9e-10	-12.55	303.0	7.4	BLI	28
2VXT_HL:I	А	2VXU_HL	Murine reference antibody 125-2H Fab	1J0S_A(6)	Interleukin-18	1.33	2163	5.33e-10	-12.65			SPR	29
4G6M_HL:A	Α	$4G6K_HL$	Gevokizumab antibody fragment	4I1B_A	Interleukin-1 beta	0.49	1673	2.9e-10	-13.01	298.0	7.4	$^{\mathrm{TP}}$	23
2W9E_HL:A	А	2W9D_HL	ICSM 18 Fab fragment	1QM1_A	Prion protein fragment	1.13	1677	1.3e-10	-13.49		9.6	ELISA	30
3L5W_LH:I	Α	$3L7E_LH$	C836 Fab	1IK0_A(11)	Interleukin-13	0.48	1138	5.4e-11	-14.01	298.0	7.4	SPR	31
4DN4_LH:M	Α	4DN3_LH	CNTO888 Fab	1DOL_A	MCP-1	0.81	1317	3.8e-11	-14.22	298.0	7.1	SPR	32
1JTD_B:A	EI	3QI0_A	BLIP-II	1BTL_A	TEM-1 beta-lactamase	0.44	2180	2.72e-11	-14.41	298.0	7	\mathbf{SA}	33
3G6D_LH:A	Α	$3G6A_LH$	CNTO607 Fab	11K0_A(10)	Interleukin-13	1.86	1793	1.84e-11	-14.65	298.0	7.3	SPR	34

Supporting Table 1: New interactions in version 2 of the structural affinity benchmark. Notes: (a) PDB entry with the chain codes noted AB:C to represent a complex where chains A and B make up component 1, chain C, component 2. Some of the unbound components have NMR structures; the number in parentheses refers to a model in the NMR ensemble. The processed coordinate files may be downloaded from http://zlab.umassmed.edu/benchmark/ (b) Functional classes: A antigen/antibody; EI enzyme/inhibitor; ER enzyme complex with a regulatory or accessory chain; OR receptor containing; OX miscellaneous. (c) Root-mean-square displacement of the C α atoms of interface residues of the two partners after the unbound and the bound interfaces have been superimposed by least-square. (d) Change in accessible surface area (ASA) between the complex and its components in bound conformation. (e) $\Delta G = -RT \ln K$; temperatures are as reported, with "ambient" or "not stated" set to 298 K. Additional kinetic and thermodynamic are available online at http://bmm.cancerresearchuk.org/~bmmadmin/Affinity (f) Method used to determine affinity: ITC isothermal titration calorimetry; SA spectroscopic assay; SPR surface plasmon resonance; BLI biolayer interferometry; TP thermophoresis; ELISA enzyme-linked immunosorbent assay. (g) Primary citation as listed below. Additional references and corroborating data are available online at http://bmm.cancerresearchuk.org/~bmmadmin/Affinity

Complet	DC (kca)	AASA DASA	DComple	+ DOPE	pyDock	SIPPER	FireDock	DDG-OU	DDC-CA	DDGAU	DDCAN	DDGY	MARS	RÊ	RBE	FN23	ConsBind	SolveBi	LAPP LAPP	IRAD	TRANK	IDOOK	AASA RAASI
1M27	-7.45	799	-9.27	-499	-36.20	2.72	-21.15	-9.56	-8.72	-11.29	-10.84	-10.56	-8.61	-8.01	-6.25	-7.75	-7.65	6.30	-8.23	-138.84	-82.13	644.2	6.61
3PC8	-9.54	1240	-14.67	-770	-28.96	6.09	-60.48	-3.87	-6.28	-9.05	-15.47	-20.36	-9.62	-8.82	-9.33	-7.91	-8.92	5.55	-9.46	-215.42	-103.27	1108.4	10.39
3BIW	-9.41	1191	-9.66	-681	-18.71	0.66	-18.34	-0.13	-3.14	-3.21	-7.69	-12.41	-7.87	-7.83	-6.42	-10.72	-8.21	7.25	-9.69	-120.07	-69.44	516.8	10.37
3F1P	-7.85	1919	-18.28	-1521	-44.79	14.04	-50.20	-2.11	-4.61	-9.28	-18.02	-29.53	-8.87	-10.64	-14.22	-17.52	-12.82	8.93	-10.89	-233.74	-87.55	1299.3	9.57
3A4S	-7.57	1116	-11.30	-643	-37.00	2.85	-29.43	-10.00	-11.97	-9.54	-14.03	-11.81	-10.28	-7.99	-6.82	-6.08	-7.79	5.58	-8.03	-177.25	-109.72	902.0	9.46
2X9A	-7.31	1571	-17.03	-945	-21.02	1.64	-82.03	-10.36	-18.63	-16.73	-27.46	-22.05	-11.31	-12.30	-11.89	-14.39	-12.47	7.24	-10.15	-222.07	-116.17	1302.4	9.06
3L89	-8.93	2167	-13.68	-1446	-21.95	8.68	-45.87	-3.72	-6.21	-10.31	-19.61	-27.60	-9.57	-9.93	-8.90	-10.35	-9.69	10.19	-12.05	-218.08	-127.60	1238.1	10.51
4HX3	-7.41	2086	-16.70	-1372	-29.60	4.68	-41.56	-7.70	-3.84	-7.07	-18.38	-23.96	-8.61	-10.73	-13.63	-10.35	-10.83	10.03	-12.80	-221.45	-118.88	1235.4	12.65
3H2V	-6.31	1263	-9.53	-712	-13.64	-0.29	2.30	-1.86	-3.44	-6.85	-9.37	-13.35	-8.58	-8.22	-8.89	-7.75	-8.36	5.99	-7.45	-114.67	-58.88	672.5	9.81
3AAA	-10.30	1686	-13.84	-1123	-43.31	0.45	-60.77	-6.54	-7.19	-15.89	-20.28	-19.73	-11.36	-11.28	-10.45	-8.67	-10.44	7.01	-9.90	-244.97	-131.67	1257.6	8.68
4IZ7	-9.44	1202	-10.75	-717	-26.59	5.03	-37.98	-7.02	-5.37	-10.06	-13.26	-19.02	-8.74	-8.82	-9.29	-9.36	-9.05	6.76	-9.98	-160.50	-81.94	881.3	6.84
3SZK	-9.45	1263	-11.16	-1128	-19.30	1.27	-7.58	-12.35	-13.07	-9.10	-15.60	-16.95	-9.16	-9.36	-11.27	-11.47	-10.31	6.34	-9.53	-135.20	-69.74	704.4	7.07
1 JTD	-14.41	2180	-19.50	-1910	-48.40	12.04	-53.71	-8.29	-17.27	-19.10	-29.19	-29.32	-13.64	-12.42	-12.65	-11.34	-12.51	8.88	-13.51	-234.03	-99.64	1729.0	14.05
3S9D	-11.63	1841	-15.52	-1082	-32.77	10.16	-56.36	-11.61	-14.45	-10.30	-16.87	-25.54	-11.23	-10.68	-12.58	-11.34	-11.46	8.14	-11.41	-186.75	-92.79	1262.9	9.27
2GAF	-12.17	3368	-19.44	-1949	-41.41	7.73	-48.72	-13.37	-18.50	-16.22	-36.96	-39.10	-9.00	-12.29	-11.42	-8.67	-10.34	11.58	-10.01	-292.91	-150.15	1622.1	18.09
3K75	-9.49	1195	-12.43	-1011	-36.98	2.73	-51.09	-3.08	-10.34	-5.05	-12.58	-18.86	-9.77	-8.73	-11.27	-7.75	-9.38	6.10	-10.46	-142.06	-69.75	817.7	9.94
3R9A	-7.44	1926	-15.28	-959	-17.93	-2.26	-30.09	2.71	1.23	-8.52	-24.01	-25.80	-7.54	-10.59	-7.36	-10.22	-8.92	7.47	-9.05	-180.61	-105.48	1007.7	9.59
3LVK	-8.89	1609	-11.46	-902	-43.02	11.12	-43.88	-4.24	-5.90	-13.58	-25.16	-17.49	-9.85	-9.23	-10.09	-7.75	-9.23	6.25	-7.27	-235.72	-122.70	1524.6	11.10
3BX7	-10.98	2349	-21.48	-1627	-44.46	10.31	-75.21	-7.48	-10.34	-7.30	-19.53	-37.80	-10.80	-11.75	-12.00	-14.39	-12.24	9.57	-11.00	-268.18	-129.98	1697.1	11.20
3DAW	-6.41	2323	-19.23	-1519	-28.45	9.75	-107.16	5 - 9.62	-11.75	-16.94	-25.66	-33.67	-10.66	-12.17	-12.60	-10.42	-11.46	8.47	-11.28	-319.66	-161.42	1650.0	11.15
4M76	-8.66	1046	-9.68	-499	-8.15	0.39	-10.81	-4.46	-7.06	-6.59	-14.49	-8.76	-7.93	-7.18	-5.88	-6.08	-6.77	5.18	-7.31	-94.73	-44.33	577.8	9.76
3G6D	-14.65	1793	-16.16	-1238	-57.10	15.33	-61.34	-8.25	-12.70	-16.31	-19.21	-25.67	-12.58	-12.60	-12.90	-16.35	-13.61	9.14	-11.30	-278.12	-141.04	1423.9	9.09
3L5W	-14.01	1138	-11.06	-895	-31.50	4.88	-48.21	-12.59	-14.66	-14.92	-17.09	-18.31	-10.50	-10.15	-9.53	-13.83	-11.00	7.87	-9.67	-174.44	-78.23	1098.7	10.03
3V6Z	-11.57	1922	-15.10	-1746	-43.74	16.11	-62.69	-4.34	-10.90	-13.36	-19.06	-29.90	-13.08	-12.28	-10.79	-14.39	-12.63	9.61	-14.09	-223.07	-111.87	1344.4	9.58
4G6J	-11.44	1893	-16.10	-1463	-27.70	2.01	-60.16	-13.75	-15.62	-19.27	-26.18	-23.01	-11.21	-10.90	-13.65	-8.67	-11.11	9.18	-12.03	-215.20	-104.43	1282.9	12.66
4G6M	-13.01	1673	-14.66	-1488	-18.48	1.07	-45.44	-12.94	-10.05	-22.64	-22.54	-21.79	-9.71	-10.78	-13.89	-12.39	-11.69	8.78	-12.98	-232.79	-117.86	1249.9	12.05
2VXT	-12.65	2163	-21.28	-1457	-46.26	4.89	-76.01	-19.35	-20.28	-25.99	-35.82	-31.97	-13.03	-12.44	-11.99	-12.59	-12.51	9.30	-12.55	-318.30	-160.11	1687.4	11.31
3EOA	-11.81	1272	-12.46	-892	-33.64	5.73	-43.08	-6.65	-8.06	-9.68	-13.72	-17.16	-10.31	-9.57	-9.54	-9.36	-9.69	7.36	-9.66	-167.36	-82.97	1148.2	10.68
3HI6	-7.27	1871	-16.41	-1391	-51.66	8.12	-51.64	-3.84	-9.37	-11.10	-22.10	-26.79	-13.50	-10.39	-9.57	-10.35	-10.95	9.15	-11.88	-235.06	-113.86	1455.8	9.38
3RVW	-10.53	1383	-13.96	-1174	-29.63	7.10	-9.45	-6.13	-7.48	-7.18	-8.46	-18.17	-8.68	-9.94	-13.56	-9.36	-10.39	9.05	-10.61	-169.67	-74.46	1233.7	10.93
2W9E	-13.49	1677	-16.05	-1471	-37.82	5.58	-35.00	-5.81	-9.27	-9.17	-14.17	-18.96	-10.54	-10.90	-15.97	-12.39	-12.45	9.38	-10.82	-234.13	-98.88	1353.8	10.30
3MXW	V - 11.31	1696	-18.63	-1405	-44.13	5.25	-68.89	-11.60	-10.56	-20.70	-15.80	-20.11	-11.06	-11.22	-12.15	-13.83	-12.06	8.79	-10.17	-300.39	-150.62	1503.3	12.15
4DN4	-14.22	1317	-13.77	-779	-23.25	8.64	-74.64	-11.24	-15.81	-15.04	-24.80	-20.32	-11.03	-11.01	-10.02	-13.83	-11.47	7.57	-10.96	-235.64	-112.60	1236.6	9.99
4FQI	-12.55	1459	-13.65	-1220	-46.91	8.34	-63.13	-8.36	-11.33	-11.22	-23.76	-22.07	-12.64	-11.43	-12.32	-7.88	-11.07	7.78	-11.25	-201.69	-93.54	1405.9	9.66
4 GXU	-11.20	1830	-11.56	-1089	-5.61	-2.46	-6.52	-6.36	-9.91	-5.61	-20.73	-21.64	-8.88	-10.18	-8.83	-10.22	-9.53	9.00	-7.83	-105.82	-48.78	798.7	12.02

Supporting Table 2: Predicted affinities. See main text for descriptions of the scoring functions.

	Light Chain	Light Chain	Light Chain	Heavy Chain	Heavy Chain	Heavy Chain		
PDB code*	L1	L2	L3	H1	H2	H3		
3G6D_LH	26, 27, 28, 29, 30, 31, 32, 33	45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55	88, 89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111		
3L5W_LH	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37	49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61	99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110		
3V6Z_BA	27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40	52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62	95, 96, 97, 98, 99, 100, 101, 102, 103	27, 28, 29, 30, 31, 32, 33, 34, 35	47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
4G6J_LH	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 56,\ 57,\ 58,\ 59,\ 60\end{array}$	98, 99, 100, 101, 102, 103, 104, 105, 106, 107		
$4G6M_LH$	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37	$\begin{array}{l} 49,\ 50,\ 51,\ 52,\ 53,\ 54,\ 55,\\ 56,\ 57,\ 58,\ 59,\ 60,\ 61 \end{array}$	99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109		
2VXT_LH	27, 28, 29, 30, 31, 32, 33, 34	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	94, 95, 96, 101, 102		
3EOA_LH	27, 28, 29, 30, 31, 32, 33, 34	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
3HI6_LH	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	89, 90, 91, 92, 93, 94, 95	27, 28, 29, 30, 31, 32, 33, 34, 35	47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109		
3RVW_CD	27, 28, 29, 30, 31, 32, 33, 34	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56	89, 90, 91, 92, 93, 94, 95	27, 28, 29, 30, 31, 32, 33, 34, 35, 36	48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
2W9E_LH	27, 28, 29, 30, 31, 32, 33	45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 56,\ 57,\ 58,\ 59,\ 60\end{array}$	98, 99, 100, 101, 102, 103, 104, 105		
3MXW_LH	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 55A,\ 56,\ 57,\ 58,\ 59\end{array}$	94, 95, 96, 97, 98, 99, 100, 100A, 100K, 101, 102		
4DN4_LH	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,48,49,50,51,52,\\ 53,54,55,56,57 \end{array}$	90, 91, 92, 93, 94, 95, 96, 97, 98	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 56,\ 57,\ 58,\ 59,\ 60\end{array}$	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108		
3EO1_AB	27, 28, 29, 30, 31, 32, 33, 34, 35	47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57	90, 91, 92, 93, 94, 95, 96, 97	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 56,\ 57,\ 58,\ 59,\ 60\end{array}$	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109		
3HMX_LH	27, 28, 29, 30, 31, 32, 33, 34	$\begin{array}{c} 46,47,48,49,50,51,\\ 52,53,54,55,56 \end{array}$	89, 90, 91, 92, 93, 94, 95, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{c} 47,\ 48,\ 49,\ 50,\ 51,\ 52,\ 53,\\ 54,\ 55,\ 56,\ 57,\ 58,\ 59,\ 60\end{array}$	98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108		
4FQI_LH	27, 27A, 27B, 28, 29, 30, 31, 32, 33, 34	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56	89, 90, 91, 92, 93, 94, 95, 95A, 95B, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	94, 95, 96, 97, 98, 99, 100, 100A, 100B, 100C, 100D, 101, 102		
4GXU_NM	27, 27A, 27B, 28, 29, 30, 31, 32, 33, 34	46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56	89, 90, 91, 92, 93, 94, 95, 95A, 95B, 95C, 96	27, 28, 29, 30, 31, 32, 33, 34, 35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	94, 95, 96, 97, 98, 99, 100, 100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H, 100I, 101, 102		

* PDB code and chain identifiers are reported, in the order light/heavy chain.

Supporting Table 3: List of antibodies complementarity-determining regions (CDRs) in antibody/antigen complexes used to drive docking simulation in HADDOCK; data calculated by PARATOME webserver. For the other type of complexes, restraints to drive the docking were derived from bioinformatics predictions by CPORT (http://haddock.chem.uu.nl/services/CPORT/). The full list of the CPORT predicted residues is reported in the online set of HADDOCK decoys provided.

References

- [1] Lee, J. H., Rangarajan, E. S., Yogesha, S. D. & Izard, T. (2009). Raver1 interactions with vinculin and RNA suggest a feed-forward pathway in directing mRNA to focal adhesions. Structure 17, 833–842.
- [2] Paavilainen, V. O., Oksanen, E., Goldman, A. & Lappalainen, P. (2008). Structure of the actin-depolymerizing factor homology domain in complex with actin. J. Cell Biol. 182, 51–59.
- [3] Trillo-Muyo, S., Martinez-Rodriguez, S., Arolas, J. L. & Gomis-Ruth, F. X. (2013). Mechanism of action of a janus-faced singledomain protein inhibitor simultaneously targeting two peptidase classes. Chem. Sci. 4, 791–797.
- [4] Shimaoka, M., Kim, M., Cohen, E. H., Yang, W., Astrof, N., Peer, D., Salas, A., Ferrand, A. & Springer, T. A. (2006). AL-57, a ligand-mimetic antibody to integrin LFA-1, reveals chemokine-induced affinity up-regulation in lymphocytes. Proc. Natl. Acad. Sci. U.S.A. 103, 13991–13996.
- [5] Lorenz, S. H., Jakob, R. P., Weininger, U., Balbach, J., Dobbek, H. & Schmid, F. X. (2011). The filamentous phages fd and IF1 use different mechanisms to infect Escherichia coli. J. Mol. Biol. 405, 989–1003.
- [6] Fodor, K., Wolf, J., Erdmann, R., Schliebs, W. & Wilmanns, M. (2012). Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol. 10, e1001309.
- [7] Chan, B., Lanyi, A., Song, H. K., Griesbach, J., Simarro-Grande, M., Poy, F., Howie, D., Sumegi, J., Terhorst, C. & Eck, M. J. (2003). SAP couples Fyn to SLAM immune receptors. Nat. Cell Biol. 5, 155–160.
- [8] Sekiyama, N., Arita, K., Ikeda, Y., Hashiguchi, K., Ariyoshi, M., Tochio, H., Saitoh, H. & Shirakawa, M. (2010). Structural basis for regulation of poly-SUMO chain by a SUMO-like domain of Nip45. Proteins 78, 1491–1502.
- [9] Cardoso, R., Love, R., Nilsson, C. L., Bergqvist, S., Nowlin, D., Yan, J., Liu, K. K., Zhu, J., Chen, P., Deng, Y. L., Dyson, H. J., Greig, M. J. & Brooun, A. (2012). Identification of Cys255 in HIF-1 as a novel site for development of covalent inhibitors of HIF-1/ARNT PasB domain protein-protein interaction. Protein Sci. 21, 1885–1896.
- [10] Bajic, G., Yatime, L., Sim, R. B., Vorup-Jensen, T. & Andersen, G. R. (2013). Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc. Natl. Acad. Sci. U.S.A. 110, 16426–16431.
- [11] Dahl, J. U., Radon, C., Buhning, M., Nimtz, M., Leichert, L. I., Denis, Y., Jourlin-Castelli, C., Iobbi-Nivol, C., Mejean, V. & Leimkuhler, S. (2013). The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis. J. Biol. Chem. 288, 5426–5442.
- [12] Cupelli, K., Muller, S., Persson, B. D., Jost, M., Arnberg, N. & Stehle, T. (2010). Structure of adenovirus type 21 knob in complex with CD46 reveals key differences in receptor contacts among species B adenoviruses. J. Virol. 84, 3189–3200.
- [13] Callaway, K., Abramczyk, O., Martin, L. & Dalby, K. N. (2007). The anti-apoptotic protein PEA-15 is a tight binding inhibitor of ERK1 and ERK2, which blocks docking interactions at the D-recruitment site. Biochemistry 46, 9187–9198.

- [14] Cuneo, M. J. & London, R. E. (2010). Oxidation state of the XRCC1 N-terminal domain regulates DNA polymerase beta binding affinity. Proc. Natl. Acad. Sci. U.S.A. 107, 6805–6810.
- [15] Beernink, P. T., Hwang, M., Ramirez, M., Murphy, M. B., Doyle, S. A. & Thelen, M. P. (2005). Specificity of protein interactions mediated by BRCT domains of the XRCC1 DNA repair protein. J. Biol. Chem. 280, 30206–30213.
- [16] Arac, D., Boucard, A. A., Ozkan, E., Strop, P., Newell, E., Sudhof, T. C. & Brunger, A. T. (2007). Structures of neuroligin-1 and the neuroligin-1/neurexin-1 beta complex reveal specific protein-protein and protein-Ca2+ interactions. Neuron 56, 992–1003.
- [17] Krishna Kumar, K., Jacques, D. A., Pishchany, G., Caradoc-Davies, T., Spirig, T., Malmirchegini, G. R., Langley, D. B., Dickson, C. F., Mackay, J. P., Clubb, R. T., Skaar, E. P., Guss, J. M. & Gell, D. A. (2011). Structural basis for hemoglobin capture by Staphylococcus aureus cell-surface protein, IsdH. J. Biol. Chem. 286, 38439–38447.
- [18] Takeda, S., Minakata, S., Koike, R., Kawahata, I., Narita, A., Kitazawa, M., Ota, M., Yamakuni, T., Maeda, Y. & Nitanai, Y. (2010). Two distinct mechanisms for actin capping protein regulation-steric and allosteric inhibition. PLoS Biol. 8, e1000416.
- [19] Chruszcz, M., Pomes, A., Glesner, J., Vailes, L. D., Osinski, T., Porebski, P. J., Majorek, K. A., Heymann, P. W., Platts-Mills, T. A., Minor, W. & Chapman, M. D. (2012). Molecular determinants for antibody binding on group 1 house dust mite allergens. J. Biol. Chem. 287, 7388–7398.
- [20] Schonfeld, D., Matschiner, G., Chatwell, L., Trentmann, S., Gille, H., Hulsmeyer, M., Brown, N., Kaye, P. M., Schlehuber, S., Hohlbaum, A. M. & Skerra, A. (2009). An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc. Natl. Acad. Sci. U.S.A. 106, 8198–8203.
- [21] Maun, H. R., Wen, X., Lingel, A., de Sauvage, F. J., Lazarus, R. A., Scales, S. J. & Hymowitz, S. G. (2010). Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem. 285, 26570–26580.
- [22] Tsibane, T., Ekiert, D. C., Krause, J. C., Martinez, O., Crowe, J. E., Wilson, I. A. & Basler, C. F. (2012). Influenza human monoclonal antibody 1F1 interacts with three major antigenic sites and residues mediating human receptor specificity in H1N1 viruses. PLoS Pathog. 8, e1003067.
- [23] Blech, M., Peter, D., Fischer, P., Bauer, M. M., Hafner, M., Zeeb, M. & Nar, H. (2013). One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1. J. Mol. Biol. 425, 94–111.
- [24] Watts, N. R., Vethanayagam, J. G., Ferns, R. B., Tedder, R. S., Harris, A., Stahl, S. J., Steven, A. C. & Wingfield, P. T. (2010). Molecular basis for the high degree of antigenic cross-reactivity between hepatitis B virus capsids (HBcAg) and dimeric capsid-related protein (HBeAg): insights into the enigmatic nature of the e-antigen. J. Mol. Biol. 398, 530–541.
- [25] Piehler, J., Roisman, L. C. & Schreiber, G. (2000). New structural and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface. J. Biol. Chem. 275, 40425–40433.
- [26] Li, S., Wang, H., Peng, B., Zhang, M., Zhang, D., Hou, S., Guo, Y. & Ding, J. (2009). Efalizumab binding to the LFA-1 alphaL I domain blocks ICAM-1 binding via steric hindrance. Proc. Natl. Acad. Sci. U.S.A. 106, 4349–4354.

- [27] Gershon, P. D. & Khilko, S. (1995). Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore surface plasmon resonance detector. J. Immunol. Methods 183, 65–76.
- [28] Dreyfus, C., Laursen, N. S., Kwaks, T., Zuijdgeest, D., Khayat, R., Ekiert, D. C., Lee, J. H., Metlagel, Z., Bujny, M. V., Jongeneelen, M., van der Vlugt, R., Lamrani, M., Korse, H. J., Geelen, E., Sahin, O., Sieuwerts, M., Brakenhoff, J. P., Vogels, R., Li, O. T., Poon, L. L., Peiris, M., Koudstaal, W., Ward, A. B., Wilson, I. A., Goudsmit, J. & Friesen, R. H. (2012). Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348.
- [29] Wu, C., Sakorafas, P., Miller, R., McCarthy, D., Scesney, S., Dixon, R. & Ghayur, T. (2003). IL-18 receptor beta-induced changes in the presentation of IL-18 binding sites affect ligand binding and signal transduction. J. Immunol. 170, 5571–5577.
- [30] Antonyuk, S. V., Trevitt, C. R., Strange, R. W., Jackson, G. S., Sangar, D., Batchelor, M., Cooper, S., Fraser, C., Jones, S., Georgiou, T., Khalili-Shirazi, A., Clarke, A. R., Hasnain, S. S. & Collinge, J. (2009). Crystal structure of human prion protein bound to a therapeutic antibody. Proc. Natl. Acad. Sci. U.S.A. 106, 2554–2558.
- [31] Fransson, J., Teplyakov, A., Raghunathan, G., Chi, E., Cordier, W., Dinh, T., Feng, Y., Giles-Komar, J., Gilliland, G., Lollo, B., Malia, T. J., Nishioka, W., Obmolova, G., Zhao, S., Zhao, Y., Swanson, R. V. & Almagro, J. C. (2010). Human framework adaptation of a mouse anti-human IL-13 antibody. J. Mol. Biol. 398, 214–231.
- [32] Das, A., Sweet, R., Tsui, P., Bethea, D., Wu, S., Kang, J. & Baker, A. (2009). Anti- mcp-1 antibodies, compositions, methods and uses. WO Patent App. PCT/US2008/068,696.
- [33] Lim, D., Park, H. U., De Castro, L., Kang, S. G., Lee, H. S., Jensen, S., Lee, K. J. & Strynadka, N. C. (2001). Crystal structure and kinetic analysis of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase. Nat. Struct. Biol. 8, 848–852.
- [34] Wu, S. J., Luo, J., O'Neil, K. T., Kang, J., Lacy, E. R., Canziani, G., Baker, A., Huang, M., Tang, Q. M., Raju, T. S., Jacobs, S. A., Teplyakov, A., Gilliland, G. L. & Feng, Y. (2010). Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng. Des. Sel. 23, 643–651.