Supplementary Table S1. Improvement of merged paired-end reads in alignment and RIS identification

Merged Paired Sequences	#		
Total reads	2489444		
Alignment filters	#	# %	
Repeats	7481	6 3.005	
Unique RISs	164	3 1.724	
Mean bit score	255.53	2	
Non-Merged Paired Sequences	#		
Total reads	2489444		
Alignment filters	# %		
Repeats	8514	5 3.42	
Unique RISs	158	5 1.446	
Mean bit score	225.13	1	
Unique RIS Z Score Raetio	5.049		
Unique RIS P Value	0.00001		
Repeat Z Score Ratio	-26.25		
Repeat P Value	0.00001		

The table reports the total number of sequence reads, number of unique retroviral integration site (RISs) identified, mean alignment of blastbit score, and the number of reads excluded because of unreliable mapping in a repetitive region of the genome. The number of sequences filtered out because of unreliable mapping in repeat regions was significantly reduced, and the alignment of blastbit score was improved. Finally, the number of unique integrations identified using merged paired-end reads was significantly higher than unmerged reads. Statistics were calculated using the *z*-ratio for the significance of the difference between two independent proportions on a two-tailed probability with a significance of 0.01.