

Supplemental Figure S1. Developmental series for petal senescence. The series starts one bud before anthesis (A-1), followed by the subsequent flowers before the dry stage (Anthesis, A+1 to A+4). Petals were dissected under a stereoscopic microscope, mounted in slides using Tween 0.01% dissolved in 1/10 MS and imaged in 2x4 tiles using confocal microscopy. The flowers were collected from one or two inflorescences from homozygous lines of the indicated transcriptional fusions with H2A-GFP cloned in a GAL4-UAS transactivation system.

Supplemental Figure S2. Developmental series for tapetum differentiation. The series starts one bud before anthesis (Anthesis-1), and the previous floral buds around tapetum cell death (A-2 to A-4). Flowers at the indicated developmental stage were fixed for 2 hours at room temperature in a 3.7% Paraformaldehyde solution (dissolved in 50mM PIPES, 5mM EGTA and 1mM MgSO4 buffer), embedded in 5% agarose blocks and sectioned using a vibratome. They were mounted in slides with water and imaged using confocal microscopy. The flowers were collected from one or two inflorescences of the same plant using homozygous lines of the indicated transcriptional fusions with H2A-GFP in a GAL4-UAS transactivation system.

Supplemental Figure S3. Developmental series for seed development. Siliques at the indicated developmental stage were dissected in a stereoscopic microscope to remove the valves , fixed for 2 hours at room temperature in a 3.7% Paraformaldehyde solution (dissolved in 50mM PIPES, 5mM EGTA and 1mM MgSO4 buffer), embedded in 5% agarose blocks and sectioned using a vibratome. They were mounted with water in slides and imaged using CLSM. The siliques were collected from one or two stems of the same plant using homozygous lines of the indicated transcriptional fusions with H2A-GFP in a GAL4-UAS transactivation system.

Supplementary Figure S4

Supplemental Figure S4. Whole-mount TUNEL of 5-to 6-day old root tip after different abiotic stresses provoking cell death. TUNEL signals are in green, DAPI signals in red. A-B) Oxidative strss. A) untreated control. B) after treatment with 5mM H₂O₂ for 3h. C-F) salt stress. C) untreated control. D) after 3h, E) after 6h, F) after 24h of treatment with 140mM NaCl. G-H) ultraviolet radiation stress. G) non-radiated control. H) 8h after exposure to UV-B radiation. I-J) genotoxic stress, I) non-treated control, J) after 24h of treatment with 0.6ug/ml bleomycin. K) negative control without TdT enzyme. L) positive control after DNase treatment. Scale bars are 50um.

Supplemental Figure S4. dPCD marker genes are not transcriptionally regulated during HR-related ePCD. Arabidopsis Col-0 plants were inoculated with Pst AvrRpm1 (5 x 107 cfu/ml). Leaf samples were harvested at the indicated time points from areas inside the infiltrated zone that develops the HR (HR; blue), immediately neighboring the infiltrated zone (periph; red), and from non-inoculated tissues (NI; green) at the indicated time points. Relative expression of the indicated genes in the three zones was determined by Q-RT-PCR. PATHOGENESIS RELATED1 (PR1),METACASPASE1 (MC1), and MYB DOMAIN PROTEIN 30 (MYB30) were used as HR marker genes. Expression values were normalized using SAND family gene as internal standard. Mean and SEM values were calculated from 3 independent experiments with 3 replicates. hpi: hours after inoculation; a.u.: arbitrary units.

Supplemental Table S3. Detailed overview of the ATH1 microarray experiments used for the meta-analysis, describing the treatment leading to programmed cell death (PCD), the control treatment, the PCD subcategory, the presence/absence of a time course (TC) in the experiment, a summary description for the experiment, the experiment identifier and CEL file identifiers for the biological replicates. When a paper was referred for the experiment it is mentioned in the last column, otherwise it is marked as non-available (NA).

PCD	Control	PCD type	тс	Description	Identifier	CEL files	Ref.
Differentiating xylem	Cortex	Tracheary elements	No	sorted cells from 6 day-old roots, cell type specific- GFP expressing protoplast	GSE16468	GSM413912 -14, GSM413909- 11	(1)
VND6 and SND1 expressing cells	WT cells	Tracheary elements	No	cells treated with 2 μ M estrogen for 12h	GSE20586	GSM517076 - 78, 82 -84, 88-90	(2)
35S:VND7-VP16- GR	Empty vector	Tracheary elements	No	10 day old seedlings treated with 10mM CHX for 2hrs followed by 10mM DEX for 4hrs	GSE24169	GSM594701-05, GSM594711-15	(3)
J3411:GFP, Lateral root cap plus epidermis	J0571:GFP, ground tissue (endodermis and cortex) and the QC	Lateral Root Cap	No	sorted cells from 4-5 day-old roots, cell type specific- GFP expressing protoplast	GSE5749	GSM133968-70 GSM133992-93	(4)
Peripheral endosperm-bending cotyledon stage	Embryo proper- bending cotyledon stage	Endosperm	No	Siliques containing bending cotyledon stage seeds were sectioned and the seed compartments were isolated using Laser Capture Microdissection (LCM)	GSE20039	GSM501159-60 GSM501157-58	(5)
Cellularized endosperm-linear cotyledon stage, Peripheral endosperm-bending cotyledon stage	Peripheral endosperm- globular stage, Peripheral endosperm-heart stage	Endosperm	No	Siliques containing seeds in the appropriate stage were sectioned and the seed compartments were isolated using LCM	GSE12403 GSE20039 GSE11262 GSE15160	GSM311289-90 GSM501159-60 GSM284390-91 GSM378649-50	(6)
General seed coat- bending cotyledon and linear cotyledon stage	LCM general seed coat at the heart stage	Seed coat	No	Siliques between 1.2 and 1.5 cm long, 1.6 and 1.9 cm long and 1.9-2.0 cm long were sectioned and the seed compartments isolated using LCM	GSE20039 GSE12403 GSE15160	GSM501165-66 GSM311295-96 GSM378657-58	(5)
Inducible overexpression ANAC059 and ANAC092	Empty vector	Senescence	No	3 weeks old shoots treated with 10µM estradiole and harvested 5 hours after induction	GSE14091	GSM353584-88 GSM353591-93	(7)
Partially senescent leaves, developmental stage: 6.0	Fully developed green leaves, developmental stage: 3.9	Senescence	No	Leaves were harvested at two stages to identify the senescence- enhanced genes	GSE5727	GSM133729-32	NA
Senescent leaf	Rosette leaf # 6	Senescence	No	AtGenExpress: Developmental series	GSE5630	GSM131513-15	NA

				(leaves)		GSM131537-39	
Flowers stage 15, petals	Flowers stage 12, petals	Senescence	No	AtGenExpress: Developmental series (flowers and pollen)	GSE5632	GSM131588-90 GSM131606-08	NA
Flowers stage 15, sepals	Flowers stage 12, sepals	Senescence	No	AtGenExpress: Developmental series (flowers and pollen)	GSE5632	GSM131585-87 GSM131603-05	NA
Senescing siliques of 20 days after anthesis	Mature green silique tissues of 10 days after anthesis	Senescence	No	Two pods collected from each plant and pooled from 20 plants	GSE5736	GSM133816-21	(8)
saul1 mutants transferred to low light treatment for 0, 48h	wt transferred to low light treatment for 0, 48h	Senescence	Yes	11 d old seedlings grown in permissive light (60 umol m-2 s-1) and then transferred to low light treatment	NA	NA	(9)
When 10-30 % cell death was observed in protoplasts the samples were harvested and pooled in one sample	No cell death	Biotic stress	No	6-day old, dark grown cell cultures were treated with 20uM Fumonisin B1 (mycotoxin that induces PCD by disrupting ceramide synthesis) or Methanol as mock treatment, pooled and then protoplasted	GSE5735	GSM133808-15	NA
<i>cpr5</i> mutant	Wt	Biotic stress	No	Cpr5 mutant exhibits spontaneous cell death and heightened immunity	GSE40322	GSM991294-99	(10)
Wt	<i>rpp4</i> mutant	Biotic stress	Yes	2-week old leaves were inoculated with <i>Hyaloperonospora arabidopsidis</i> Emwa1. RNA extracted 0 and 6 days after inoculation. rpp4 mutant had the highest percentage of leaves with sporangiophores (SPP), confirming that its resistance to Hpa Emwa1 is completely compromised	GSE22274	GSM554311_rep1, _rep2 GSM554315_rep1, _rep2 GSM554316_rep1,_rep2 GSM554320_rep1,_rep2	(11)
30 h after inoculation	Before inoculation	Biotic stress	No	2 week old Wt roots were inoculated with <i>Phytophthora parasitica</i> 310 strain (10^6	GSE20226	GSM507047-48, GSM507055-56	(12)

				zoospores per Petri dish)			
Botrytis cinerea conidiospores	Mock treated	Biotic stress	Yes	Four 5 ul droplets of <i>Botrytis cinerea</i> conidiospores diluted to 5X10 ⁵ spores/ml or sterile potato dextrose broth were placed on each of 4-5 rosette leaves (4 week old) per plant. Laeves were harvested 18 hpi	GSE5684	GSM133025-36	(13)
Phytophthora infestans spores	Water drops on leaves	Biotic stress	Yes	Phytophthora infestans (5x10 ⁵ spores) in water applied to 5 week old leaf surfaces. Tissue was harvested 6, 12, 24 hpi	GSE5616	GSM131160-68, GSM131151-59	NA
1 μM GST-NPP1 in water	1 µM GST in water	Biotic stress	No	5 week old leaves infiltrated, harvested 4 hours later	GSE5615	GSM131110, 12, 24, 26, 38, 40	NA
Chitosan 150 µg/ml	Mock solution (0.02% acetic acid)	Biotic stress	No	4 day-old seedlings were treated for 3 hours before RNA extraction	GSE17193	GSM429956,61 GSM429980-81,	(14)
10 μM HrpZ	leaves infiltrated with water	Biotic stress	No	5-weeks old rosette leaves treated for 4 hours	GSE5615	GSM131111, 22, 25, 36, 39,50	NA
AtMYB30-ox	Arabidopsis AtMYB30-as	Biotic stress	No	4 weeks old leaves, 90-105 min after inoculation with a <i>Xanthomonas</i> strain, Xcc147	GSE9674	GSM244451-52, 58-59	(15)
Inoculation with Pseudomonas syringae pv. tomato (Pto) expressing the effector HopZ1a into Wt plants	Inoculation with Pseudomonas syringae pv. tomato (Pto) wt, into WT plants	Biotic stress	No	The effector HopZ1a is recognized in <i>Arabidopsis</i> , triggering the hypersensitive response (HR). Rosette leaf 1-5 harvested 6 hpi	GSE21920	GSM545364, 67, 72 84-86	NA
Cucumber mosaic virus (CMV) 2b counter-defense protein- expressing plants	Wt plants, mock treated	Biotic stress	No	The Cucumber mosaic virus (CMV) 2b counter-defense protein disrupts plant antiviral mechanisms mediated by RNA silencing and salicylic acid (SA)	GSE37921	GS <u>M929932-33, 35, 36,</u> 38, 39	(16)
Cell suspension cultures were exposed to high	Cell suspension cultures were kept at 50 microE/m2/s	Oxidative stress	No	200 mL of cultures with a cell density of approximately 150-200 mg/mL, kept at constant temperature	GSE22671	GSM562208-10, GSM562214-16	(17)

light during 30							
minutes (1800							
microE/m2/s)							
	14/				00540040	0004070005.00	
<i>flu</i> mutant	VVt	Oxidative	NO	Plants grown under continuous light 90	GSE10812	GSM272985-88	(18)
		stress		mmol. m-2 . s-1 for 3 weeks, transferred to			
				the dark for 8 h and Toselle leaves were			
				harvested 2 fraiter remumination			
Wt. 20mM hydrogen	Wt. spraved with	Oxidative	No	2 week old seedlings were harvested	GSF41136	GSM1009029-34	ΝΔ
peroxide	deionised water	stress		3 hr after treatment	00211100		IN/A
P							
Fumigation with 500	Fumigation with	Oxidative	No	2 week-old seedlings were harvested	GSE5722	GSM133705-10	NA
ppb ozone .	scrubbed air	stress		6 hr after treatment. Flow rate was			
	(filtered through			910ml/min			
	charcoal and						
	purafill)						
Wt seedlings treated	Untreated	Oxidative	No	7d dark-grown seedlings were used	GSE40574	GSM996955-58	(19)
with 5mM H2O2		stress		to reduce the endogenous H2O2 level			
				caused by light			
Methyl viologen (10	Control plants	Oxidative	Yes	18-day-old shoots were harvested	ME00340	OXIDATIVE_12H_SHOOT	NA
uM final conc) was	were handled like	stress		12 and 24 h after treatment		_REP1, REP2,	
added to the media	the treated plants					OXIDATIVE_24H_SHOOT	
to induce Oxidative	and narvested in					_REP1, REP2,	
stress	parallel						
						4H SHOOT REP1 REP2	
Methyl viologen (10	Control plants	Oxidative	Yes	18-day-old roots were baryested	ME00340	OXIDATIVE 12H ROOT	NA
uM final conc) was	were handled like	stress	103	12 and 24 h after treatment	ME00040	REP1 REP2	
added to the media	the treated plants					OXIDATIVE 24H ROOT	
to induce Oxidative	and harvested in					REP1, REP2,	
stress	parallel					OXIDATIVE CONTROL 1	
	'					2H_ROOT_REP1, REP2	
						OXIDATIVE_CONTROL_2	
						4H_ROOT_REP1, REP2	

<i>cat</i> 2 mutant, high light exposure in a sun simulator	<i>cat</i> 2, Ambient growth conditions	Oxidative stress	Yes	6 week old leaves were harvested 0, 3 and 8 h after treatment	E-MEXP-449	pz220803_04, _05,_12, hyb1480, 81, 83	NA
wee1KO, transferred to medium with 2mM Hydroxyurea	wee1KO, transferred to control medium	Genotoxic stress	Yes	5d old roots were harvested 5 and 24 h after treatment	E-MEXP- 3048, E-MEXP- 3053	hyb2133-36, 39-42	(20)
1.5ug/ml bleomycin + 22 ug/ml mitomycin	Control- no treatment	Genotoxic stress	Yes	16 d old seedling shoots were harvested 12 and 24 h after treatment	GSE5620 GSE5625	GSM131251,52,55,56 GSM131375,76,79,80	NA
1.5ug/ml bleomycin + 22 ug/ml mitomycin	Control- no treatment	Genotoxic stress	Yes	16 d old seedling roots were harvested 12 and 24 h after treatment	GSE5620 GSE5625	GSM131253,54,57,58 GSM131377,78,81,82	NA
Thaxtomin A	Methanol	Genotoxic stress	No	suspension cell culture 6 h after treatment	GSE17824	GSM444737-44	NA
Isoxaben	Methanol	Genotoxic stress	No	Suspension cell culture, 6 h after treatment	GSE17824	GSM444745-52	NA
UV-1-day radiation	Continuos white light	UV stress	No	18 d old seedlings, shoots harvested 24h after treatment	GSE22951	GSM566614-16 GSM566623-25	NA
UV-B stress (15 min. 1.18 W/m2)	Control- no treatment	UV stress	Yes	16 d old seedlings, Shoots harvested 12 and 24 h after treatment	GSE5626	GSM131403-04 GSM131407-08	(17)
UV-B stress (15 min. 1.18 W/m2)	Control- no treatment	UV stress	Yes	16 d old seedlings Roots-12 and 24 h	GSE5626	GSM131405-06 GSM131409-10	(17)
30 h at 37 °C Heat stress, no recovery	No treatment, no recovery	Heat stress	No	3 week old seedling	GSE18666	GSM463683-86	(21)
55 C for 10 minutes	No treatment	Heat stress	No	6 d suspension cells	NASCARRA YS-30	NRID5299- NRID5304_Swidzinski	NA
250mM NaCl solution	Only water supply	Salt stress	No	5-week-old rosette leaves harvested 24 h after treatment	E-ATMX-30	E-ATMX-30.raw.1.zip/ WT- NaCl1.CEL / WT_NaCl2.CEL / WT-	(22)

						1.CEL /WT-2	
140 mM NaCl	No treatment	Salt stress	Yes	whole seedling roots ,5 days after germination, were harvested 16 and 32 h after treatment	GSE7642	GSM184925-26, GSM184933-36	(23)
Nacl 150 mM	No treatment	Salt stress	Yes	16 d old seedling shoots were harvested 12 and 24 h after treatment	GSE5623	GSM131323-24, GSM131327-28	(17)
Nacl 150 mM	No treatment	Salt stress	Yes	16 d old seedling roots were harvested 12 and 24 h after treatment	GSE5623	GSM131325-26, GSM131329-30	(17)
Wildtype_24H 0°C_Rep1	Wildtype_no treatment_Rep2	Cold stress	No	10 day old seedlings-grown in plate	GSE3326	GSM74900-01, GSM748995	(24)
4°C_under continuous light (~25 umol m-2 s-1)	24°C_under continuous light (~25 umol m-2 s-1)	Cold stress	No	10 day old seedlings-grown in plate 18 days old, aerial parts, soil grown	GSE5534 GSE5535	GSM128789-90, GSM128795-96, GSM128797-98 GSM128803-04	NA
0.3 M mannitol	Control- no treatmen	Osmotic stress	Yes	16-day-old seedlings, Shoots harvested 12 and 24 h after treatment	GSE5622	GSM131299-300 GSM131303-304	(17)
0.3 M mannitol	Control- no treatment	Osmotic stress	Yes	16-day-old seedlings, Shoots harvested 12 and 24 h after treatment	GSE5622	GSM131301-302 GSM131305-306	(17)
0.3M mannitol	Mock treated	Osmotic stress	No	30 d old leaf, 10 day treatment	GSE36789	GSM901069-71 GSM901075-77	(25)
0.3M mannitol	Mock treated	Osmotic stress	No	30 d old root, 10 day treatment	GSE36789	GSM901072-74 GSM901078-80	(25)
ACC (10 uM) ethylene precursor	Mock (3 hours)	Hormone (Ethylene)	No	7-day-old seedling, 3 h after treatment	ME00334	RIKEN-GODA23A, 23B RIKEN-GODA17BA,17AA	NA
5 ppm ethylene	Air	Hormone (Ethylene)	No	Petiole harvested 3 h after treatment	NASC ARRAYS-32	Millenaar_A2_ETH_Rep1, Rep2, Millenaar_A5_ETH_Rep3, Millenaar_A1_AIR_Rep1, Rep2 Millenaar_A4_AIR_Rep3	NA
10 ppm ethylene	Air	Hormone (Ethylene)	No	7-day-old seedling, 3 h after treatment	ME00364	RIKEN-GODA21AH, BH RIKEN-GODA1AH, BH	(26)
Salicylic acid (10 uM, 3 hours)	Mock (3 hours)	Hormone (Salicylic acid)	No	3 week old plants, 4 h after treatment	GSE14247	GSM356823-26	NA
2 mM SA treated	Water treated	Hormone (Salicylic acid)	No	9-day-old seedling, 24 h after treatment	GSE14961	GSM373532-36	NA

- 1
- 2

Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN. Transcriptional and posttranscriptional regulation of transcription factor expression in
 Arabidopsis roots. Proc Natl Acad Sci U S A. 2006;103(15):6055-60.

5 2. Ohashi-Ito K, Oda Y, Fukuda H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and 6 secondary wall formation during xylem differentiation. Plant Cell. 2010;22(10):3461-73.

Yamaguchi M, Mitsuda N, Ohtani M, Ohme-Takagi M, Kato K, Demura T. VASCULAR-RELATED NAC-DOMAIN7 directly regulates the expression of a
 broad range of genes for xylem vessel formation. Plant J. 2011;66(4):579-90.

9 4. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, et al. A gene expression map of the Arabidopsis root. Science. 10 2003;302(5652):1956-60.

5. Zuber H, Davidian JC, Aubert G, Aime D, Belghazi M, Lugan R, et al. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. Plant Physiol. 2010;154(2):913-26.

13 6. Le BH, Cheng C, Bui AQ, Wagmaister JA, Henry KF, Pelletier J, et al. Global analysis of gene activity during Arabidopsis seed development and 14 identification of seed-specific transcription factors. Proc Natl Acad Sci U S A. 2010;107(18):8063-70.

Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, et al. A gene regulatory network controlled by the NAC transcription
 factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 2010;62(2):250-64.

 Wagstaff C, Yang TJ, Stead AD, Buchanan-Wollaston V, Roberts JA. A molecular and structural characterization of senescing Arabidopsis siliques and comparison of transcriptional profiles with senescing petals and leaves. Plant J. 2009;57(4):690-705.

Vogelmann K, Drechsel G, Bergler J, Subert C, Philippar K, Soll J, et al. Early senescence and cell death in Arabidopsis saul1 mutants involves the
 PAD4-dependent salicylic acid pathway. Plant Physiol. 2012;159(4):1477-87.

Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance.
 Plant Cell. 1997;9(9):1573-84.

23 11. Wang W, Barnaby JY, Tada Y, Li H, Tor M, Caldelari D, et al. Timing of plant immune responses by a central circadian regulator. Nature.

24 2011;470(7332):110-4.

Attard A, Gourgues M, Callemeyn-Torre N, Keller H. The immediate activation of defense responses in Arabidopsis roots is not sufficient to prevent
 Phytophthora parasitica infection. New Phytol. 2010;187(2):449-60.

27 13. Ferrari S, Galletti R, Denoux C, De Lorenzo G, Ausubel FM, Dewdney J. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is

28 independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol. 2007;144(1):367-79.

Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, et al. Transcript profiling of chitosan-treated Arabidopsis seedlings. J
 Plant Res. 2011;124(5):619-29.

15. Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, et al. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell. 2008;20(3):752-67.

Lewsey MG, Murphy AM, Maclean D, Dalchau N, Westwood JH, Macaulay K, et al. Disruption of two defensive signaling pathways by a viral RNA
 silencing suppressor. Mol Plant Microbe Interact. 2010;23(7):835-45.

17. Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50(2):347-63.

18. Laloi C, Stachowiak M, Pers-Kamczyc E, Warzych E, Murgia I, Apel K. Cross-talk between singlet oxygen- and hydrogen peroxide-dependent signaling
 of stress responses in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007;104(2):672-7.

19. Cheng H, Zhang Q, Guo D. Genes that respond to H(2)O(2) are also evoked under light in Arabidopsis. Mol Plant. 2013;6(1):226-8.

20. Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, et al. The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature
 vascular differentiation during replication stress. Plant Cell. 2011;23(4):1435-48.

42 21. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O. Epigenetic regulation of repetitive elements is attenuated by prolonged heat 43 stress in Arabidopsis. Plant Cell. 2010;22(9):3118-29.

42 22. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in 45 transgenic Arabidopsis. Plant Physiol. 2008;146(2):623-35.

23. Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science.
2008;320(5878):942-5.

48 24. Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell. 2005;17(11):3155-75.

49 25. Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, et al. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates
 50 Arabidopsis root architecture changes during high osmotic stress. Plant Cell. 2012;24(9):3590-602.

26. Qiao H, Chang KN, Yazaki J, Ecker JR. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 2009;23(4):512-21.

53

54

Supplemental Table S4. Overview of the number of up- and down-regulated genes per condition in the experiments used in the meta-analysis. For each condition the associated experiment number is indicated.

1) Developmental induced cell death

		<u>Number of genes</u>				Experiment
1.1 Differentiat	ion induced PCD	Down	Up	Total		
e-1 vs e-2	Xylem vs cortex	3124	2208	5332	1	1
e-3 vs e-5	VND6 vs Wt	995	1273	2268	2	2
e-4- vs e-5	SND1 vs Wt	371	1030	1401	3	2
e-6 vs e-7	VND7 vs mock	64	133	197	4	3
e-8 vs e-9	LRC vs ground	994	1108	2102	5	4
e-10 vs e-11	End vs embryo, bending cotyledon stage	2793	1834	4627	6	5
e-13 vs e-15	Linear cotyledon	2983	2907	5890	7	6
	vs globular stage, endosperm					
e-14 vs e-12	Bending cotyledon	2850	2120	4970	8	6
	vs heart stage, endosperm					
e-16 vs e-18	Bending cotyledon	2265	1770	4035	9	7
	vs heart stage, seed coat					
e-17 vs e-18	Linear cotyledon	1611	1643	3254	10	7
	vs heart stage, seed coat					
1.2 Senescence	induced PCD					
e-19 vs e-21	Inducible ANAC059 vs empty vector	27	46	73	11	8
e-20 vs e-21	Inducible ANAC092 vs empty vector	60	180	240	12	8
e-22 vs e-23	Mature green vs senescing siliques	1513	1383	2896	13	9
e-24 vs e-25	Rosette, green vs senescing leaves	2338	2572	4910	14	10
e-26 vs e-27	Flower stage 15 vs stage 12, petals	2478	2217	4695	15	11
e-28 vs e-29	Flower stage 15 vs stage 12, sepals	1794	1435	3229	16	12
e-30 vs e-31	Leaf stage 6 vs 3.9,	1485	1748	3233	17	13
	partially senescent vs mature green					
e-32 vs e-34	<i>saul</i> vs wt, time 0, low light	1	26	27	18	14
e-33 vs e-35	<i>saul</i> vs wt, time 48 h, low light	2677	2172	4849	19	14

2) Environmental induced cell death

2.1 Biotic induced	2.1 Biotic induced PCD			Total	Contrast	Experiment
e-36 vs e-37	Fumonisin B1 vs mock, protoplast	21	39	60	20	15
e-38 vs e-39	<i>cpr5</i> vs wt	129	751	880	21	16
e-40 vs e-42	<i>rpp4</i> vs wt, time 0	354	256	610	22	17
e-41 vs e-43	rpp4 vs wt, 6 days after inoculation	174	84	258	23	17
e-44 vs e-45	Phytophthora inoculated root vs control, 30 hpi	1634	1303	2937	24	18
e-46 vs e-48	Botrytis inoculated leaves, vs control, 18 hpi	73	539	612	25	19
e-47 vs e-49	Botrytis inoculated leaves, vs control, 48 hpi	1597	1287	2884	26	19
e-50 vs e-53	Phytophthora inoculated leaves, vs control, 6 hpi	1190	1051	2241	27	20
e-51 vs e-54	Phytophthora inoculated leaves, vs control, 12 hpi	333	658	991	28	20
e-52 vs e-55	Phytophthora inoculated leaves, vs control, 24 hpi	356	563	919	29	20
e-56 vs e-57	NPP1 treated leaves vs mock, 4h	241	722	963	30	21
e-58 vs e-59	chitosan vs mock, seedlings, 3h	501	634	1135	31	22
e-60 vs e-61	HrpZ treated leaves vs mock, 4h	1141	1374	2515	32	23
e-62 vs e-63	AtMYB30-ox vs AtMYB30-as, Xanthomonas	35	53	88	33	24
	inoculated, 90-105 min after inoc					

e-64 vs e-65	<i>Pseudomonas</i> expressing HopZ1a, into Wt plants vs <i>Pseudomonas</i> Wt , into Wt plants Cucumber mosaic virus (CMV) 2b counter-defense	754	693	1447	34	25
e-66 vs e-67	protein- expressing plants vs wt plants	78	391	469	35	26
2.2 Oxidative str	ess	Down	Up	Total	Contrast	Experiment
e-68 vs e-69	HL exposed cultures, vs control, 30 min	42	277	319	36	27
e-70 vs e-71	flu vs wt, continuos light-dark-light, leaves	386	1261	1647	37	28
e-72 vs e-73	20mM hydrogen peroxide vs control, 3 h, seedling	45	198	243	38	29
e-74 vs e-75	500 ppb ozone vs control, 6h, seedling	860	1538	2398	39	30
e-76 vs e-77	5mM H2O2 vs control, seedling dark grown	205	693	898	40	31
e-78 vs e-80	Methyl viologen vs control, 12h, shoots	0	73	73	41	32
e-79 vs e-81	Methyl viologen vs control, 24h, shoots	8	274	282	42	32
e-82 vs e-84	Methyl viologen vs control, 12h, roots	3	1	4	43	33
e-83 vs e-85	Methyl viologen vs control, 24h, roots	99	21	120	44	33
e-86 vs e-88	cat2 mutant, high light, vs control, 3h	563	593	1156	45	34
e-87 vs e-88	cat2 mutant, high light, vs control, 8h	1326	1674	3000	46	34
2.3 Genotoxic sti	ress					
e-89 vs e-91	wee1 KO- Hydroxyurea, vs control,5h	3	60	63	47	35
e-90 vs e-92	wee1 KO- Hydroxyurea, vs control,24h	49	138	187	48	35
e-93 vs e-95	bleomycin +mitomycin vs control, shoots, 12 h	25	158	183	49	36
e-94 vs e-96	bleomycin +mitomycin vs control, shoots, 24 h	16	152	168	50	36
e-97 vs e-99	bleomycin +mitomycin vs control, roots, 12 h	116	223	339	51	37
e-98 vs e-100	bleomycin +mitomycin vs control, roots, 24 h	175	283	458	52	37
e-101 vs e-102	TA, cell cultures vs mock, 6h	1	189	190	53	38
e-103 vs e-104	IXB, cell cultures vs mock, 6h	0	37	37	54	39
2.4 UV stress						
e-105 vs e-106	UV-1-day radiation vs white light, shoots 18d, 24h	483	570	1053	55	40
e-107 vs e-95	UV-15min vs control, shoots 16d , 12 h	89	358	447	56	41
e-108 vs e-96	UV-15min vs control, shoots 16d , 24 h	87	314	401	57	41
e-109 vs e-99	UV-15min vs control, roots 16d , 12 h	3	4	7	58	42
e-110 vs e-100	UV-15min vs control, roots 16d , 24 h	88	155	243	59	42
2.5 Heat stress	20 h 27 °C no recovery vs control 2week					
e-111 vs e-112	seedling	2125	2170	4295	60	43
e-113 vs e-115	10m . 55 °C vs mock suspension cells	610	759	1369	61	44
C 110 V3 C 113		010	,	1000	01	
2.6 Salt stress						
e-116 vs e-117	250mM NaCl vs control, rosette leaves, 24 h	1251	965	1351	62	45
e-118 vs e-120	140mM NaCl vs control, seedling root, 16 h	162	334	496	63	46
e-119 vs e-120	140mM NaCl vs control, seedling root, 32 h	112	300	412	64	46
e-121 vs e-95	250mM NaCl vs control, shoots 16d , 12 h	342	449	791	65	47
e-122 vs e-96	250mM NaCl vs control, shoots 16d , 24 h	874	953	1827	66	47
e-123 vs e-99	250mM NaCl vs control, roots 16d , 12 h	1652	1613	3265	67	48

e-124 vs e-100	250mM NaCl vs control, roots 16d , 24 h	1269	1618	2887	68	48
2.7 Cold stress						
e-125 vs e-126	Wildtype_24h 0°C vs control, 24 h	938	1123	2061	69	49
e-127 vs e-129	4°C vs 24°C, 7days treated, seedlings 10d old	784	718	1502	70	50
e-128 vs e-130	4°C vs 24°C, 7days treated, seedlings 18d old	368	358	726	71	50
2.8 Osmotic stre	\$\$					
e-131 vs e-95	300 mM Mannitol-12 h vs control, shoots, 16 d	1901	1657	3558	72	51
e-132 vs e-96	300 mM Mannitol-24 h vs control, shoots, 16 d	2439	2168	4607	73	51
e-133 vs e-99	300 mM Mannitol-12 h vs control, roots, 16 d	1501	1196	2697	74	52
e-134 vs e-100	300 mM Mannitol-24 h vs control, roots, 16 d	1290	1073	2363	75	52
e-135 vs e-136	300 mM Mannitol-10 d vs control, 30 d old , leaf	331	533	864	76	53
e-137 vs e-138	301 mM Mannitol-10 d vs control, 30 d old , leaf	642	857	1499	77	54
2.9 Hormone		Down	Up	Total	Contrast	Experiment
e-139 vs e-140	ACC (10 uM, 3 h), seedling	14	53	67	78	55
e-141 vs e-142	5 ppm ethylene, 3h, petiole	149	244	393	79	56
e-143 vs e-144	Salicylic acid (SA, 10 uM, 3 h), seedling	96	403	499	80	57
e-145 vs e-146	10 ppm ethylene vs air, 3 week old, 4h	2969	3027	5996	81	58
e-147 vs e-148	2 mM SA vs control, seedling, 24h	1543	1558	3101	82	59
1						

1 Supplemental Tables S6.1 – S6.6

Supplemental Tables S6.1. Performance results of SVM and RF classification of dPCD versus ePCD instances based on the expression profiles of various gene (feature) sets in various experiment subsets. The SVM and RF parameter settings for all analyses can be found in Supplemental Tables S6.2 and S6.3, respectively (linked to the identifiers in the first column). The performance scores displayed are MCC scores generated by 10-fold cross-validation (or 5-fold cross-validation when the number of contrasts in one of the classes was < 10). No optimal settings are reported for the sampled entries (C1.SVM-D4.SVM and C1.RF-D4.RF) since the results are averaged over a hundred runs.

Identifier	dPCD Class	ePCD Class	#dPCD	#ePCD	Balanced	Gene	Algorithm	MCC (Matthews Correlation
lucitatie			contrasts	contrasts	Balancea	Selection	, iigointiinii	Coefficient)
A1.SVM	All dPCD	All ePCD	19	64	No	All	SVM	0.75
A1.RF							RF	0.71
A2.SVM	All dPCD	All ePCD	19	64	No	Curated	SVM	0,71
A2.RF							RF	0,76
A3.SVM	All dPCD	Osmotic+genotoxic+biotic	19	30	No	All	SVM	0.75
A3.RF							RF	0.79
A4.SVM	All dPCD	Osmotic+genotoxic+biotic	19	30	No	Curated	SVM	0,79
A4.RF							RF	0,83
B1.SVM	Differentiation dPCD	All ePCD	10	64	No	All	SVM	0.88
B1.RF							RF	0.82
B2.SVM	Differentiation dPCD	All ePCD	10	64	No	Curated	SVM	0,88
B2.RF							RF	0,77
B3.SVM	Differentiation dPCD	Osmotic+genotoxic+biotic	10	30	No	All	SVM	0.93
B3.RF							RF	0.87
B4.SVM	Differentiation dPCD	Osmotic+genotoxic+biotic	10	30	No	Curated	SVM	0,93
B4.RF							RF	0,87

10 Supplemental Table S6.1 (continued):

C1 SVM	All dPCD	Sampled from all ePCD	19	19	Ves	ΔΠ	SVM	0 74
C1 RF		Sumpleu nom un el eb	15	15	105	7.01	RF	0.77
		Sampled from all ePCD	19	19	Ves	Curated	SVM	0.77
C2.5VW		Sampled nom an er eb	15	15	105	Curated		0,91
CZ.RF		Sampled from					КГ	0,81
C3.SVM	All dPCD	Osmotic+genotoxic+biotic	19	19	Yes	All	SVM	0.73
C3 RF		Comptie Genetickie Biotic					RF	0.79
Contra		Sampled from						0.75
C4.SVM	All dPCD	Osmotic+genotoxic+biotic	19	19	Yes	Curated	SVM	0,76
C4.RF							RF	0,83
D1.SVM	Differentiation dPCD	Sampled from all ePCD	10	10	Yes	All	SVM	0.75
D1.RF							RF	0.8
D2.SVM	Differentiation dPCD	Sampled from all ePCD	10	10	Yes	Curated	SVM	0,79
D2.RF							RF	0,81
		Sampled from	10	10	No.		C) (D.4	0.71
D3.SVIVI	Differentiation dPCD	Osmotic+genotoxic+biotic	10	10	Yes	All	SVIVI	0.71
D3.RF							RF	0.79
D4 SVM	Differentiation dPCD	Sampled from	10	10	Yes	Curated	SVM	0.77
2		Osmotic+genotoxic+biotic	10	10		Caratea	5111	0.77
D4.RF							RF	0.82

Identifier	Kernel Type	Gamma	Nu	Eps
A1.SVM	RBF	0	0.2	0.001
A2.SVM	RBF	0,125	0,2	0,001
A3.SVM	Linear	0	0.1	0.001
A4.SVM	RBF	0,5	0,2	0,001
B1.SVM	RBF	0	0.1	0.001
B2.SVM	RBF	0,125	0,1	0,001
B3.SVM	RBF	0.5	0.2	0.001
B4.SVM	RBF	0,5	0,2	0,001

13 Supplemental Table S6.2. Optimized SVM parameter settings for the analyses in Supplemental Table S6.1

Supplemental Table S6.3. Optimized RF parameter settings for the analyses in Supplemental Table S6.1

Identifier	max-depth	min instances	num trees
A1.RF	2	7	20
A2.RF	2	5	30
A3.RF	2	4	10
A4.RF	2	3	100
B1.RF	1	10	30
B2.RF	1	10	30
B3.RF	1	10	30
B4.RF	1	10	30

Supplemental Table S6.4. The performance of binary classifiers discriminating a particular PCD subclass from all other subclasses. N/A indicates that the MCC could not be calculated by lack of positives or negatives, and thus indicates very poor performance. The SVM and RF parameter settings for all analyses can be found in Supplemental Tables S6.5 and S6.6, respectively (linked to the identifiers in the first column).

Identifier	Class 1	Class 2	#Contrasts #Contrasts		Gene Selection	Algorithm	MCC	
luentinei			Class 1	Class 2	Gene Selection	Algorithm	WICC	
E1.SVM	Senescence dPCD	All - Senescence dPCD	9	74	All	SVM	0.46	
E1.RF						RF	0.46	
E2.SVM	Senescence dPCD	All - Senescence dPCD	9	74	Curated	SVM	0.73	
E2.RF						RF	0.4	
F1.SVM	Differentiation dPCD	All - Differentiation dPCD	10	73	All	SVM	0.88	
F1.RF						RF	0.75	
F2.SVM	Differentiation dPCD	All - Differentiation dPCD	10	73	Curated	SVM	0.88	
F2.RF						RF	0.82	
G1.SVM	Genotoxic ePCD	All - Genotoxic ePCD	9	74	All	SVM	0.73	
G1.RF						RF	0.8	
G2.SVM	Genotoxic ePCD	All - Genotoxic ePCD	9	74	Curated	SVM	0.8	
G2.RF						RF	0.8	
H1.SVM	Oxidative ePCD	All - Oxidative ePCD	10	73	All	SVM	0.3	
H1.RF						RF	N/A	
H2.SVM	Oxidative ePCD	All - Oxidative ePCD	10	73	Curated	SVM	0.29	
H2.RF						RF	N/A	
I1.SVM	UV ePCD	All - UV ePCD	5	78	All	SVM	N/A	
I1.RF						RF	N/A	
I2.SVM	UV ePCD	All - UV ePCD	5	78	Curated	SVM	N/A	
I2.RF						RF	N/A	

Supplemental Table S6.4 (continued)

4	/
2	8

J1.SVM	Temperature ePCD	All - Temperature ePCD	6	77	All	SVM	N/A
J1.RF						RF	N/A
J2.SVM	Temperature ePCD	All - Temperature ePCD	6	77	Curated	SVM	0.39
J2.RF						RF	0.39
K1.SVM	Osmotic/Salt ePCD	All - Osmotic/Salt ePCD	13	70	All	SVM	0.77
K1.RF						RF	0.82
K2.SVM	Osmotic/Salt ePCD	All - Osmotic/Salt ePCD	13	70	Curated	SVM	0.96
K2.RF						RF	0.86
L1.SVM	Hormone ePCD	All - Hormone ePCD	5	78	All	SVM	N/A
L1.RF						RF	0.44
L2.SVM	Hormone ePCD	All - Hormone ePCD	5	78	Curated	SVM	0.62
L2.RF						RF	0.17
M1.SVM	Biotic ePCD	All - Biotic ePCD	16	67	All	SVM	0.62
M1.RF						RF	0.49
M2.SVM	Biotic ePCD	All - Biotic ePCD	16	67	Curated	SVM	0.66
M2.RF						RF	0.46

Identifier	Kernel Type	Gamma	Nu	Eps
E1.SVM	RBF	0	0.1	0.001
E2.SVM	RBF	0.03	0.1	0.001
F1.SVM	RBF	0	0.1	0.001
F2.SVM	RBF	0.03	0.1	0.001
G1.SVM	RBF	0.03	0.1	0.001
G2.SVM	RBF	0	0.1	0.001
H1.SVM	RBF	0.5	0.1	0.001
H2.SVM	RBF	0.5	0.1	0.001
I1.SVM	N/A	N/A	N/A	N/A
I2.SVM	N/A	N/A	N/A	N/A
J1.SVM	N/A	N/A	N/A	N/A
J2.SVM	RBF	2	0.1	0.001
K1.SVM	RBF	0	0.1	0.001
K2.SVM	RBF	0.5	0.2	0.001
L1.SVM	N/A	N/A	N/A	N/A
L2.SVM	RBF	2	0.1	0.01
M1.SVM	RBF	0	0.1	0.001
M2.SVM	RBF	0.5	0.1	0.001

Supplemental Table S6.5. Optimized SVM parameter settings for the analyses in Supplemental Table S6.4

Identifier	max-depth	min instances	num trees
E1.RF	1	8	20
E2.RF	3	1	30
F1.RF	1	1	10
F2.RF	2	1	30
G1.RF	1	8	10
G2.RF	1	8	10
H1.RF	N/A	N/A	N/A
H2.RF	N/A	N/A	N/A
I1.RF	N/A	N/A	N/A
I2.RF	N/A	N/A	N/A
J1.RF	N/A	N/A	N/A
J2.RF	1	2	200
K1.RF	1	1	10
K2.RF	1	1	10
L1.RF	1	5	20
L2.RF	4	2	30
M1.RF	2	6	10
M2.RF	1	9	10

Supplemental Table S6.6. Optimized RF parameter settings for the analyses in Supplemental Table S6.4

Supplemental Table S7. Phytozome blast search for putative homologs of the Arabidopsis dPCD marker genes MC9, BFN1, PASPA3, RNS3,

2 and SCPL48

	MC9 (325AA)			BFN1 (305AA)				PASPA3 (508AA)				
	best blast hit	%ID	blast length	e-value	best blast hit	%ID	blast length	e-value	best blast hit	%ID	blast length	e-value
Arabidospis lyrata	scaffold_600361.1	95.3	319	1.2e-163	fgenesh2_kg.1	98.69	305	4.6e-169	fgenesh2_kg.6	95.67	508	1.1e-268
Medicago truncatula	AES66180	42.4	300	3.5e-42	AES63715	68.67	300	2.2e-113	AES92659	63.08	520	5.8e-184
Solanum lycopersicum	Solyc10g081300.1.1	53.5	331	8.9e-83	Solyc02g078910.2.1	69.00	300	1.1e-121	Solyc02g080880.2.1	66.60	515	4.0e-190
Populus trichocarpa	POPTR_0006s02730.1	65.3	326	7.8e-109	POPTR_0011s04430.1	71.90	274	6.2e-116	POPTR_0004s00900.1	64.79	514	1.0e-186
Oryza sativa	OS11T0134700-01	56.5	329	6.2e-87	OS04T0636400-01	67.23	296	7.5e-114	OS01T0663400-01	60.99	523	1.4e-178
Brachypodium distachyon	BRADI2G50480.1	50.7	337	8.7e-77	BRADI5G23280.1	69.64	280	1.4e-115	BRADI2G16160.1	62.23	511	7.3e-183
Hordeum vulgare	MLOC_5735.2	52.9	331	7.9e-81	MLOC_73587.1	56.57	293	1.1e-113	MLOC_64394.1	54.33	508	7.2e-158
Zea mays	GRMZM2G022799_P01	51.2	336	1.1e-76	GRMZM2G168744_P01	68.93	280	4.3e-114	GRMZM2G065757_P01	60.74	517	6.2e-177
Amborella trichopoda	ERM98168	54.1	320	1.6e-85	ERN03432	56.57	274	1.4e-86	ERN00700	64.24	509	1.5e-183
Selaginella moellendorffii	EFJ20498	50.5	196	6.4e-68	EFJ33450	46.32	285	1.4e-70	EFJ06917	52.80	500	1.8e-146
Physcomitrella patens	PP1S165_65V6	55.0	169	7.1e-73	PP1S211_122V6.1	49.20	311	2.2e-78	PP1S93_73V6.2	55.29	510	3.6e-156
Chlamydomonas reinhardtii	EDP04316	39.5	253	3.1e-57	EDP02767	37.84	37	7.7	EDP04281	55.74	235	6.1e-74

7 Supplemental Table S7 (continued)

	RNS3 (222AA)				SCPL48 (510AA)				
	best blast hit	%ID	blast length	e-value	best blast hit	%ID	blast length	e-value	
Arabidospis lyrata	fgenesh2_kg.1	96.40	222	2.4e-124	fgenesh2_kg.5	97.06	510	1.6e-276	
Medicago truncatula	AES96753	65.91	220	1.7e-90	AES67523	66.47	501	1.1e-184	
Solanum lycopersicum	Solyc05g007940.2.1	58.48	224	1.0e-74	Solyc06g017860.1.1	68.18	506	1.1e-187	
Populus trichocarpa	POPTR_0008s08650.1	64.89	225	1.1e-84	POPTR_0004s22520.1	66.67	504	1.9e-185	
Oryza sativa	OS08T0434100-01	56.68	217	5.3e-74	OS02T0114200-01	66.02	465	6.4e-172	
Brachypodium distachyon	BRADI3G37130.2	58.05	205	2.4e-74	BRADI3G01320.1	66.11	478	2.5e-175	
Hordeum vulgare	MLOC_19306.1	58.42	202	4.8e-74	MLOC_77869.2	65.68	472	3.5e-174	
Zea mays	GRMZM2G161274_P02	56.16	219	2.9e-76	GRMZM2G020146_P01	63.47	501	1.5e-173	
Amborella trichopoda	ERM94495	60.55	218	5.2e-78	ERN12871	65.73	496	1.5e-181	
Selaginella moellendorffii	EFJ09665	50.22	225	7.2e-65	EFJ15031	59.57	465	6.8e-156	
Physcomitrella patens	PP1S59_320V6.1	47.87	211	2.1e-57	PP1S149_206V6.1	59.53	467	6.9e-153	
Chlamydomonas reinhardtii	EDP05112	38.24	204	7.8e-35	EDP01561	44.67	441	2.9e-106	