1 Supplemental Material

Supplementary Figure S1. Number of seeds per silique in NIL(Y106), HZ396-null
and *BnaC9.RING*-transgenic T₀ lines. A two-tailed Student's t test between
HZ396-null and *BnaC9.RING*-transgenic plants was used to generate the *P* value.
Error bars represent the standard deviations.

BmaCB.SMO7c BmaCB.SMO7b BmaCB.SMO7b BmaCB.SMO7b BmaC2.SMO7 BmaC2.SMO7 BmaCB.SMO7 BmaCB.SMO7a BmaCB.SMO7a BmaCB.SMO7a BmaCB.SMO7a ASMO7L	ADDRESS 4.2
BnaCB SM07c BnaCB SM07b BnaCB SM07b BnaCS SM07b BnaCZ SM07b BnaCZ SM07b BnaCS SM07b BnaCB SM07b BnaCB SM07b BnaCB SM07b BnaCS SM07b ASM07b ASM07b	
BinaC9 SM07c BinaC9 SM07b BinaC SM07b BinaC SM07b BinaC SM07 BinaC SM07 BinaC1 SM07 BinaC1 SM07b BinaC1 SM07b BinaC1 SM07b BinaC1 SM07b BinaC1 SM07b BinaC1 SM07b BinaC1 SM07b AISM07L	
BinaCB SM07c BinaCB SM07b BinaC SM07b BinaC SM07b BinaC SM07 BinaC SM07 BinaCB SM07b BinaCB SM07b BinaCB SM07b BinaCB SM07b BinaCB SM07b ABING7L	
BinaCB-SM07c BinaCS SM07b BinA2 SM07b BinA2 SM07b BinA2 SM07b BinA2 SM07b BinA2 SM07b BinA10 SM07 BinA10 SM07a BinA2 SM07a BinA2 SM07a ASM07b	
BinaCB-SM07c BinaCS-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b BinA2-SM07b ASM07b ASM07b	
BinaCB.SM07c BinaCS.SM07b BinA2.SM07b BinA2.SM07 BinA2.SM07 BinA2.SM07 BinA2.SM07 BinA2.SM07b BinA2.SM07a BinA2.SM07a BinA2.SM07a ABM07a ABM07a	
BinaCB.SM07c BinaCB.SM07b BinaC.SM07b BinaC.SM07 BinaC.SM07 BinaCJ.SM07 BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b BinaCB.SM07b ABM07L	
BitaCB.SM07c BitaCB.SM07b BitaCS.SM07b BitaCS.SM07 BitaC2.SM07 BitaC2.SM07 BitaC3.SM07 BitaC3.SM07 BitaC3.SM07 BitaC3.SM07 BitaC3.SM07 BitaC3.SM07a BitaC3.SM07a ASIM07L	GEFOR #

Supplementary Figure S2. Comparison of the amino acid sequences of *Brassicaceae*SMG7. The following protein sequences were used for the alignment: *Brassica rapa*BraA2.SMG7 (Bra020039), *Brassica rapa* BraA10.SMG7 (Bra002233), *Brassica oleracea* BolC2.SMG7 (Bol007112), *Brassica oleracea* BolC9.SMG7a (Bol035912),

23	Brassica oleracea BolC9.SMG7b (Bol043637), Brassica napus BnaA2.SMG7
24	(BnaA02g04210D), Brassica napus BnaA10.SMG7 (BnaA10g15730D), Brassica
25	napus BnaC2.SMG7 (BnaC02g44260D), Brassica napus BnaC9.SMG7a
26	(BnaC09g38310D), Brassica napus BnaC9.SMG7b (BnaC09g45890D) and Brassica
27	napus BnaC9.SMG7c (BnaC09g45900D). The alignment of SMG7 amino acid
28	sequences was performed with Geneious 4.8.3. Gray bars represent the conserved
29	EST-TPR or EST-CD domain.
30	
31	
32	
33	
34	
35	
36	
37	

0.2

39 Supplementary Figure S3. Phylogenetic tree of the *Brassicaceae* SMG7 proteins.

40 The bootstrap neighbor-joining phylogenetic tree was constructed using MEGA 4.0.

41 The lengths of the branches refer to the amino acid variation rates.

Supplementary Figure S4. Origin and evolution analysis of the SMG7 homologs. 54 55 Syntenic analysis of the genomic regions spanning SMG7 and its homologs from the Arabidopsis, B. rapa, B. oleracea and B. napus genomes. The region including 56 57 BnaC9.SMG7b and BnaC9.SMG7c and their flanking genes on the C9 chromosome of 58 the B. napus genome was corrected based on the partial sequences of BAC clone HBnB016G24. The green bar represents the ancestral karyotype R block (Schranz et 59 al., 2006). The loci individually depicted by blue, red and green ellipses represent the 60 61 SMG7 homologs in the A or C genomes, which are connected by blue, red and green

62	solid lines, respectively. The black filled ellipses represent homologs, which are
63	connected by solid or dotted lines, whereas the hollow white ellipses represent the
64	absence of a homologous gene in the expected positions.
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	

Supplementary Figure S5. Flower phenotype and pollen fertility of NIL(HZ396) and
NIL(Y106). A, Flower morphology of NIL(HZ396) and NIL(Y106) after the removal
of petals. Bar=2 mm. B and C, Carmine acetate staining of NIL(HZ396) and
NIL(Y106) pollen. Bars=50 µm.

Supplementary Figure S7. Fluorescence micrographs of pollen tube germination and
growth in NIL(HZ396) and NIL(Y106). A, Pollen grain germination 72 h after
artificial pollination on NIL(HZ396). B, Pollen grain germination 72 h after artificial
pollination on NIL(Y106). Bars=500 µm.

BnaA01g04500D BnaA02g32320D BnaA04g11970D BnaC03g32600D BnaC05g00670D

Supplementary Figure S8. qPCR confirmation of the differentially expressed genes
(DEGs) between NIL(HZ396) and NIL(Y106). Total RNA was extracted from ovaries
during meiotic stages with length <1 mm before pollination. Error bars represent
standard errors from three independent RNA samples.

152

Supplementary Figure S9. Statistics of alternative splicing (AS) events in 153 NIL(HZ396) and NIL(Y106). TSS: Alternative 5' first exon (transcription start site); 154 155 TTS: Alternative 3' last exon (transcription terminal site); SKIP: Skipped exon 156 (SKIP ON, SKIP OFF pair); XSKIP: Approximate SKIP (XSKIP ON, XSKIP OFF pair); MSKIP: Multi-exon SKIP(MSKIP_ON, MSKIP OFF pair); XMSKIP: 157 Approximate MSKIP (XMSKIP ON, XMSKIP OFF pair); IR: Intron retention 158 (IR ON, IR OFF pair); XIR: Approximate IR (XIR ON, XIR OFF pair); MIR: 159 Multi-IR (MIR ON, MIR OFF pair); XMIR: Approximate MIR (XMIR ON, 160 XMIR OFF pair); AE: Alternative exon ends (5', 3', or both); XAE: Approximate AE. 161

	А	в	C C	D
204			-	
205	Supplementary Figu	ire S12. BnaC9.SMG	7c subcellular localiz	ation. Co-localization
206	of BnaC9.SMG7c-GI	FP (A) and AtDCP1-	RFP (B) in the P-bo	dies. The bright-field
207	image (C) and merged	d images (D) are also	shown. Bars=10 μm.	
208				
209				
210				
211				
212				
213				
214				
215				
216				
217				
218				
219				
220				
221				
222				
223				
224				
225				
226				
227				
228				
229				
230				

Supplementary Figure S13. Expression patterns of *BnaC9.SMG7c* by RT-PCR. 1O-5O, ovary from NIL(Y106) with <1, 1-2, 2-3, 3-4 and 4-5 mm before pollination; 1d-7d, ovary from NIL(Y106) grown for 1, 3, 5 and 7 days after pollination; L, leaves; S, stamens; P, pedicels. *BnACTIN7* expression was used as a control.

Supplementary Figure S14. Schematic presentation of transgenic constructs. A, The
genetic complementation construct of *BnaC9.SMG7b*. B, The RNAi construct of *BnaC9.SMG7b*. C, The genetic complementation construct of *BnaC9.RING*. D, The
promoter analysis construct of *BnaC9.SMG7b*.

	Number of seeds per silique of BC_4F_2 progenies of the recombinants (%)						
NO.	3U20	3U82	5U19	3U42	3U92	5U73	T8-15
1	28.1	27	26.6	10.8	10.6	13.2	16
2	25.8	28.2	9.8	7	12.6	12.4	9.7
3	23.4	25.7	17.9	14.5	10.7	14.9	5.7
4	30.5	16.3	23.3	12.8	12	10.4	15.4
5	27.5	18	26.4	15.7	16.1	15.1	15.3
6	27.4	27.1	26.5	16.9	8.8	18.1	16.5
7	25.1	10.9	23.9	12.6	10.2	13.7	15.7
8	9.7	8.2	8	13.3	12.2	18.3	
9	14.1	7	26.9	12.1	12.8	12.4	
10	9.7	14	18.3	13.2	12.8	12.9	
Mean \pm s.e.m	22.1±2.5	18.3±2.6	20.8±2.2	12.9±0.9	11.9±0.6	14.1±0.8	13.5±1.6
Range	9.7-30.5	7-28.2	8-26.9	7-16.9	8.8-16.1	10.4-18.3	5.7-16.5
<i>qSS.C9</i> genotype ^a	Н	Н	Н	В	В	В	В

Supplementary Table S1. Progeny testing of the seven recombinants occurring in the

<i>qSS.C9</i> genotype ^a	Н	Н	Н	В	В	В	В
Range	9.7-30.5	7-28.2	8-26.9	7-16.9	8.8-16.1	10.4-18.3	5.7-16.5
Mean \pm s.e.m	22.1±2.5	18.3±2.6	20.8±2.2	12.9±0.9	11.9±0.6	14.1±0.8	13.5±1.
10	9.7	14	18.3	13.2	12.8	12.9	
9	14.1	7	26.9	12.1	12.8	12.4	
8	9.7	8.2	8	13.3	12.2	18.3	
7	25.1	10.9	23.9	12.6	10.2	13.7	15.7
6	27.4	27.1	26.5	16.9	8.8	18.1	16.5
5	27.5	18	26.4	15.7	16.1	15.1	15.3
4	30.5	16.3	23.3	12.8	12	10.4	15.4
3	23.4	25.7	17.9	14.5	10.7	14.9	5.7

interval between SRC9-298 and SRC9-397 in the autumn of 2012 in Wuhan.

^a qSS.C9 genotype deduced by progeny testing. B, homozygous for HZ396 genotype;

- H, heterozygote.

	-iransgenite faj	peseeu mies.			
NO.	SS05	SS06	SS13	SS40	SS47
1	20.2	19.5	21.5	21.2	22.6
2	20.1	22.9	20.3	19.4	21.5
3	21.9	18.7	19.2	18.3	22.7
4	17.0	24.4	21.7	18.2	17.0
5	22.9	25.3	22.1	21.2	22.3
6	19.4	19.7	21.8	18.3	18.7
7	19.3	21.1	20.6	20.1	21.3
8	19.6	21.8	18.4	17.0	19.7
9	20.7	23.7	19.6	24.0	22.7
10	19.3	21.9	19.3	20.0	20.8
Mean \pm s.e.m	20.0±0.5	21.9±0.7	20.5±0.4	19.8±0.6	20.9±0.0
Range	17.0-22.9	18.7-25.3	18.4-22.1	17.0-24.0	17.0-22.

Supplementary Table S2. Number of seeds per silique in five T_1

BnaC9.SMG7b-transgenic rapeseed lines.

Plant	Number of seeds per	Relative expression	Correlation
	silique	level	coefficient
Ri2-8 T ₁			0.714 ^a
family			
Ri2-8-1	5.6±0.8	0.64±0.03	
Ri2-8-2	4.2±1.0	0.73±0.03	
Ri2-8-3	9.7±0.9	0.68±0.06	
Ri2-8-4	7.6±1.6	0.82 ± 0.07	
Ri2-8-5	22.8±1.0	1.03±0.02	
Ri2-8-6	21.3±1.1	0.70±0.02	
Ri2-8-7	13.1±1.5	0.81 ± 0.08	
Ri2-8-9	28.3±1.0	1.20±0.09	
Ri2-8-10	8.1±1.1	0.94±0.10	
Ri2-8-11	9.7±0.9	0.87±0.03	
Ri2-8-12	11.4±1.1	0.86±0.09	
Ri2-8-13	20.0±1.4	1.21±0.13	
Ri2-8-14	32.8±1.7	1.61±0.11	
Ri2-8-15	31.1±0.9	0.91±0.02	
Ri2-14 T ₁			0.761 ^b
family			
Ri2-14-1	10.7 ± 1.1	1.01 ± 0.08	
Ri2-14-2	25.5±1.5	1.17±0.07	
Ri2-14-3	25.7±1.4	1.14±0.09	
Ri2-14-4	7.5±0.6	0.86±0.04	
Ri2-14-5	27.6±1.6	1.53±0.05	
Ri2-14-6	20.5±0.7	1.29±0.03	
Ri2-14-7	11.1±0.8	1.15 ± 0.007	

310 Supplementary Table S3. Number of seeds per silique and BnaC9.SMG7b

expression level in Ri2-8 and Ri2-14 T₁ families of 7-5 RNAi-transformed plants.

312	Number of seeds per silique and expression are given as mean \pm s.e.m. Relative
313	expression level of the <i>BnaC9.SMG7b</i> gene in each progeny was determined by qPCR
314	with the RNA isolated from flower buds. ^a indicates $P < 0.01$ for the correlation
315	coefficient of the Ri2-8 T_1 family, and ^b indicates P<0.05 for the correlation
316	coefficient of the Ri2-14 T_1 family.
317	
318	
319	
320	
321	
322	
323	
324	
325	
326	
327	
328	
329	
330	
331	
332	
333	
334	
335	
336	
337	
338	
339	
340	
341	

Normal FG^a (%) Abnormal FG^b (%) Ovule genotype NIL(Y106) 55 (96.5%) 2 (3.5%) NIL(HZ396) 44 (34.4%) 84 (65.6%) ^a normal female gametophyte at stage FG5. ^b ovule with no female gametophyte.

342	Supplementary	Table S4.	Confocal	laser	scanning	microscopy	observ	ations of	of
0.12	Supprementaly		comodul	14001	Seaming	merebeepj	00001	<i>at</i> 10110 (1

NIL(Y106) and NIL(HZ396) ovules.

Oracle exercite	NO of anyly initiati	Number of seeds	Proportion of abortion ovule
Ovule genotype	NO of ovule initiation	per silique	numbers (%)
NIL(Y106)	34.3±0.3	27.6±0.7	19.5%
NIL(HZ396)	34.4±0.3	10.4±0.5	69.8%
Data are given as	s mean \pm s.e.m.		

368 Supplementary Table S5. Quantitative analysis of initial ovule number and number
369 of seeds per silique in NIL(Y106) and NIL(HZ396).

394	NIL(HZ396).				
		Dyad (%)	Triad (%)	Tetrad1 (%)	Total
		41	157	236	434
	NIL(¥106)	(9.45%)	(36.17%)	(54.38%)	
		45	140	214	399
	NIL(HZ390)	(11.28%)	(35.09%)	(53.63%)	
395					
396					
397					
398					
400					
401					
402					
403					
404					
405					
406					
407					
408					
409					
410					
412					
413					
414					

Supplementary Table S6. Meiosis during megasporogenesis in NIL(Y106) and NIL(HZ396)

Supplementary Table S7. Part of DEGs expression quantification in NIL(HZ396)

416 and NIL(Y106) by RNA-seq.

	Gene ID	NIL(HZ396)	NIL(Y106)
	BnaA05g23660D	45.2679449	92.3895353
	BnaC04g40810D	12.3068881	55.0821331
	BnaC06g12460D	10.7016418	45.5111242
	BnaC07g16820D	24.1322023	77.0075567
	BnaC08g07580D	19.7445292	70.3664484
	BnaA01g04500D	129.222325	0
	BnaA02g32320D	61.7484733	17.7258992
	BnaA04g11970D	358.612017	4.59017776
	BnaC03g32600D	125.958324	59.5746475
	BnaC05g00670D	670.778909	265.302508
417			
418			
419			
420			
421			
422			
423			
424			
425			
426			
427			
428			
429			
430			
431			
432			
433			
434			
435			
436			

Gene family	Gene ID	NIL(HZ396)	NIL(Y106)
Entry into meiosis			
BnAGO9	BnaA02g05290D	49.3659622	82.33667686
	BnaA10g14440D	1.107458467	0.851700717
	BnaC09g36780D	1.975006991	3.13598695
	BnaC09g36860D	0	0.018798532
BnCDC45	BnaA03g37670D	3.091703106	3.52102192
	BnaA07g05080D	1.682906433	3.194329164
	BnaC03g74180D	3.627816788	5.234455858
BnMEI1 ^a	BnaA07g33480D	4.0961519	7.17287678
	BnaC06g38030D	3.52774858	7.36563184
BnSW11	BnaA02g11280D	3.079670849	2.509166783
	BnaA10g08080D	0.75887258	0.651617692
	BnaC02g15840D	0.861586509	1.79891760
	BnaC09g27720D	7.237326679	11.9246432
BnXRI1	BnaA06g30010D	5.505114064	7.78253041
	BnaA09g03120D	5.636378723	7.72051318
	BnaC07g26700D	9.471440535	12.6285537
	BnaC09g02540D	5.363663216	8.90818545
Recombination: DSB formation	U		
BnDFO	BnaA10g04520D	1.036968744	2.82119147
	BnaC05g04880D	6.463771835	6.01416787
BnH2AX	BnaA06g05170D	86.3502485	95.8801353
	BnaA08g26730D	31.31113827	34.2429054
	BnaA09g48670D	0	0.11607764
	BnaC05g06450D	108.6105109	109.461219
BnPHS1	BnaA03g14800D	5.546848144	7.30299688
	BnaC03g17840D	6.979530211	8.16864391
BnPRD1	BnaA03g24590D	0.72057029	1.703428582
	BnaC03g29300D	1.269872751	2.07488791
BnPRD2	BnaA02g08030D	0.24091193	0.27436534
	BnaA10g11740D	2.044874847	2.10585639
	BnaC02g11140D	0.803604066	0.71779906
	BnaC09g33470D	2.267960796	2.66315284
BnPRD3 ^a	BnaA06g35310D	3.70060041	8.53985049
	BnaA10g00300D	5.58474404	8.01194344
	BnaC05g00390D	3.06078607	3.90078928
	BnaC07g20440D	4.69827208	10.5664721
BnSPO11-1	BnaA01g29970D	3.131855094	5.761672232
-	BnaC01g37870D	1.011830107	2.149195198
BnSPO11-2	BnaA09g11340D	0 688590793	0 69707520

Supplementary Table S8. Meiotic genes expression quantification in NIL(HZ396)

	BnaC00g11780D	0.413154476	0.653508005
Personalization: early DSP repair	BliaC09g11780D	0.413134470	0.055508005
PrATM	$D_{ma} \land 06 a 20800 D$	2 127979002	2 502012508
BIAIM	BilaA00g20800D	2.137878903	2.302912398
	BilaC03g55200D	0.100832774	0.88893393
BhATK	BnaA04g12/20D	23.89073168	18.7755024
	BnaC04g33820D	1.238362521	1.9///38616
BnBRCA2(IV), BnBRCA2(V)	BnaA03g00230D	0.150777639	0.243262721
	BnaA05g13130D	2.007571487	2.88680058
	BnaC03g00130D	2.131026921	3.0561526
	BnaC06g42060D	2.32872433	3.448350079
BnCOM1 ^a	BnaA04g05720D	1.83289904	3.59696378
	BnaC04g28430D	2.87435946	6.66537638
BnMCM8 ^a	BnaA05g28830D	1.46115188	2.77341627
	BnaC05g43310D	0.78509653	1.65577091
BnMRE11	BnaA10g07340D	2.770725725	4.190862724
	BnaC09g30690D	14.03283981	14.95849429
BnNBS1	BnaA05g33420D	7.290310223	7.911722151
BnRAD50	BnaA03g14800D	5.546848144	7.302996885
	BnaC03g17840D	6.979530211	8.168643913
BnRAD51	BnaA03g08120D	3.013697058	6.946086319
	BnaA10g14690D	5.575003207	6.950874522
	BnaC03g10300D	18.2919285	21.54479516
	BnaC09g37020D	4.864463583	8.24767947
BnRAD51B	BnaA04g17220D	0.044846682	0.085123607
	BnaC04g39830D	4.068374037	4.943645994
BnRAD51C	BnaA05g04710D	4.016269558	6.270772372
	BnaC04g04170D	1.055443474	1.335560039
BnRAD51D	BnaA08g29130D	0.699608246	1.021483282
BnRPA1A	BnaA07g04290D	3.757769408	3.540093129
	BnaC07g47810D	5.375174817	5.735677427
BnRPA1C	BnaA02g23910D	58.5871356	64.66933901
	BnaA09g17670D	2 281331236	3 748184624
	BnaC02g31570D	56 91812798	49 2756239
	BnaC09g18720D	2 69640678	3 412037908
BnXRCC3	BnaA03g10270D	0 455770844	0 432549924
Diritees	BnaC03g12950D	0.075715178	0.646718312
Recombination: IH bias	Dime00512700D	0.070710170	0.010/10012
BnAHP2	BnaC05o08840D	0 213816701	0 243507628
BnMND1	Bna 403 a 403 a	2 506020547	3 541142045
	$B_{n_2} \wedge \Omega_{\alpha} \Omega_{\beta} \wedge \Omega_{\beta} \wedge \Omega_{\beta}$	2.300323347 1 701067721	6 359126072
DIIARUU2	DIIAAU3200800D	4./0470//34	0.330130073
Decembination: CO and NCO a tra	DIIaCU9g00300D	3./000/9008	4.432994930
Recombination: CO and NCO outco		10 550(050	21 0122(772
ΒΠΑΚΥΌ	BnaAusguu100D	18.5526953	21.91236772
	BnaC03g/1020D	17.73679515	17.76923147

BnBLAP75	BnaA09g06650D	1.056810039	2.031008112
	BnaC09g05950D	2.381419898	3.490583001
BnCDKG1	BnaC02g42490D	24.00616529	36.77840543
BnFANCM	BnaA05g18180D	2.793890072	4.354569966
	BnaC05g27760D	3.098265088	4.810352395
BnHEI10 ^a	BnaA05g14420D	2.93421221	4.53199203
	BnaA06g00910D	1.76557286	4.55558987
	BnaC03g69660D	3.1539716	6.20425502
	BnaC06g06360D	3.23699338	6.63964133
BnMER3 ^a	BnaA02g29040D	2.05494471	4.94160585
	BnaC02g37070D	1.32408251	3.55068848
BnMHF1	BnaA03g13400D	8.870033114	9.722331954
	BnaC03g16220D	7.549729269	12.65830902
BnMHF2	BnaA07g34380D	3.831188012	3.952167461
	BnaC03g70530D	1.525308675	1.061570562
	BnaC06g39210D	10.32755029	12.01458908
BnMHL1	BnaA03g23940D	2.509805365	3.479856865
	BnaC03g28480D	4.343362273	5.518259988
BnMHL3	BnaA03g53380D	2.114033612	4.142558833
	BnaC07g45660D	4.49209934	7.343762371
BnMSH2	BnaA03g34810D	2.591832253	4.15862397
BnMSH4 ^a	BnaA08g08260D	1.49979069	3.55844586
BnMSH5 ^a	BnaA05g20450D	2.34023885	6.4681952
BnMUS81	BnaA09g20790D	9.021846838	10.76840565
BnPTD	BnaA06g38110D	3.693151097	5.885737836
	BnaC05g49280D	11.66013743	11.01182346
BnRFC1	BnaA02g05420D	29.60298865	37.80334093
	BnaC08g49560D	0.094849274	0.108020195
BnRBR	BnaA01g30730D	5.061142328	6.633106254
	BnaA03g32200D	6.774862458	5.133912396
	BnaA05g26760D	13.19074544	16.37060044
	BnaC03g37490D	2.019907424	2.362808801
	BnaC05g40780D	12.02666434	13.68040049
BnSHOC1 ^a	BnaA03g12670D	0.45169902	1.47547585
	BnaC03g15550D	0.60418818	1.4829455
BnZIP4	BnaA06g30240D	12.95961057	15.86580961
	BnaC07g26460D	17.11186423	19.13308265
Recombination: control of CO distrib	oution		
BnAXR1	BnaA08g28200D	4.45631689	4.261072504
	BnaA09g50410D	6.495395704	8.476137874
	BnaA10g03210D	5.140251423	6.145469556
	BnaC05g03220D	13.55157193	14.63508729
	BnaC08g44060D	1.818108746	2.622727346
	BnaC08g46380D	6.366166986	7.091187824

BnPSS1	Bna406g38300D	2 703404228	2 52679559
Dii 331	BnaC05g11410D	3 031089589	3 420892491
	BnaC08g39040D	0.560031231	1.022112274
Avis SC	DilaCoog59040D	0.300031231	1.022112274
Bn A SV1 ^a	Bna & 07a26350D	8 08536014	25 1118531
DIASTI	BnaC06g26770D	0.89366017	1 84771041
	BnaC06g20770D	0.89500017	8 77188388
$Bn \land SV 3$	BnaC00g20450D	12 27/61768	17 122/0255
$D_{\rm IIAS} 1.5$ $D_{\rm D} 7 V D 1^{\rm a}$	BhaC04g00500D	1 40016053	5 10741641
DIIZ IIII	BnaA07g20070D	2.06771417	17 5252784
	BhaA07g54050D	2.00771417	10.8205750
	BliaC00g20530D	4.79558075	10.8203739
Sister abromatid achagion	Bliacoog58090D	0.30400919	15.5752557
PrCTE7	$D_{no} \wedge 0.2 \times 51450 D$	9 005166912	10 67095214
Blic IF /	$D_{\text{ma}} \wedge 08 \approx 12500D$	0.093400842	1.001670020
	BhaA08g12300D	0.402073704	1.0010/0029
	BnaC03g07030D	1.945550258	4.00840708
Drscco	BhaC07g50950D	4./10829101	8.228208817
BnSCC2	BnaA02g02000D	0./832/3804	10.19/49308
	BnaA10g186/0D	4.858390595	1.1222(08
D. 9002	BnaC02g06100D	0.880665496	1.1323698
BnSCC3	BnaA05g00110D	44.54816308	61.4234/134
	BnaC04g51/20D	0.174031902	0.24//4/811
BnSMC2	BnaA06g1/360D	2.528346126	4.742600953
	BnaA06g21840D	5.696215095	7.7490712
	BnaC03g/4950D	10.84214309	12.47/55727
BnSMC3	BnaA03g22510D	0.256162498	0
	BnaC03g/2//0D	0.560031231	0.02/256327
	BnaC04g38670D	21.4314635	26.31630096
BnSGO1, BnSGO2	BnaA07g09410D	2.745099618	2.158627788
	BnaC0/g12350D	9.1/64/586/	10.718/035
BnSYNI	BnaA10g24970D	2.44111//3	5.57546569
	BnaC09g49900D	1.49873232	2.84474779
BnSYN3	BnaA09g37900D	2.333775632	2.115328011
	BnaC04g23000D	2.125246723	0.844946147
D. D. I.V.G.	BnaC08g29760D	3.972623041	7.363321754
BnPANSI	BnaA03g01210D	2.735093964	2.868980824
	BnaA10g25920D	5.714884985	8.249098467
BnTTN8	BnaA03g37440D	0.376133465	0.164755368
	BnaA09g34490D	23.6982843	31.97017658
	BnaC03g43960D	1.807321301	1.480086714
	BnaC08g25430D	23.94544432	29.04498132
Cell cycle control: spindle–cytokine	esis		
BnATK1	BnaA09g19860D	21.56025411	28.91793474
	BnaC09g21860D	21.0367089	27.61639233

BnCDKA;1	BnaA01g20470D	13.41102068	15.22026408
	BnaC01g25750D	18.7945605	24.13903502
	BnaC03g52880D	6.02603741	7.671854483
	BnaC08g20460D	0.120622111	0
BnCYCB3;1 ^a	BnaA06g10930D	4.50157765	7.12945094
	BnaA08g23620D	2.30134291	3.16051039
	BnaC05g12450D	8.81984754	13.506279
	BnaC08g16920D	4.93245143	7.16089366
BnJASON ^a	BnaA08g28700D	9.99975383	19.4426328
	BnaC08g01870D	7.09961856	11.47549
BnMMD1 ^a	BnaA02g12370D	15.4538664	32.1657266
BnMPK4	BnaA03g26950D	16.64843151	19.52835687
	BnaC03g31910D	48.58910209	49.39786635
BnNACK2	BnaA06g19570D	5.906780144	8.681767863
BnOSD1 ^a	BnaA09g37090D	9.72455461	18.5245993
	BnaC08g28850D	13.5334054	21.7693159
BnPS1 ^a	BnaA07g05890D	16.1150548	23.2469015
	BnaA08g06420D	1.43926562	1.81135117
	BnaA10g09600D	6.18313873	12.791739
	BnaC07g48210D	5.22695816	9.34892027
	BnaC08g06940D	1.36828143	1.43971815
	BnaC09g31940D	4.93826406	8.22242932
BnSDS ^a	BnaA06g09550D	0.46551879	2.33523507
	BnaA08g31410D	0.7519154	2.66826708
	BnaA09g45480D	1.36423608	4.4817579
	BnaC05g10920D	0.39681096	2.20162627
	BnaC08g16420D	0.45940504	3.14542108
	BnaC08g39330D	0.3840165	2.55115959
BnSKP1 ^a	BnaA02g17620D	181.85469	191.766039
	BnaA07g21520D	188.134783	231.623014
	BnaA07g32230D	104.293451	117.013432
	BnaC02g23320D	52.9051577	56.0864113
	BnaC05g15660D	66.3980048	0
	BnaC06g22030D	366.258725	402.528256
	BnaC06g36600D	115.197839	131.153409
BnSMG7	BnaA02g04210D	13.55235271	14.5444385
	BnaA10g15730D	14.29953816	15.52103359
	BnaC02g44260D	0.77926661	0.805303033
	BnaC09g38310D	15.78776183	15.92843249
	BnaC09g45890D	0	0.613145116
	BnaC09g45900D	0.522654983	0.595111436
BnTAM ^a	BnaA02g03470D	12.4044015	12.0471034
	BnaA07g33530D	2.98282585	3.34555571
	BnaC02g07160D	0.52877367	1.04226928

	BnaC06g38120D	7.48268662	18.1239553
BnTDM1 ^a	BnaA03g44650D	3.02250106	5.96649797
	BnaC07g36490D	4.59420161	7.34338212
^a indicates that these gene f	families are anaylzed by qF	PCR.	

466	Supplementary	v Table S9. q.	SS.C9 genotyp	bes, haplotypes	and number	of seeds per
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

467 silique in 84 accessions.

Accessions	SNP1	SNP2	SNP3	SNP4	SNP5	Number of seeds	qSS.C9	Geographical/Collection
						per silique	haplotype ^a	region
	promoter region		coding	g region				
g187	_	_	_	_	_	12.3±1.3	Type I	China
HZ396	_	—	—	—	—	9.6±1.7	Type I	Hubei, China
g035	_	—	—	—	—	13.5±0.4	Type I	Hubei, China
g080	_	—	_	—	_	18.2±0.7	Type I	Hubei, China
g048	_	—	_	—	_	14.4±0.6	Type I	Sichuan, China
g099	—	—	—	—	_	16.3±1.2	Type I	Europe
g163	—	—	_	—	_	11.6±1.6	Type I	Europe
g169	—	—	_	—	_	14.7±0.2	Type I	Europe
g028	G	Т	Т	А	G	18.1±1.9	Type II	Australia
g037	G	Т	Т	А	G	19.5±1.0	Type II	Australia
g039	G	Т	Т	А	G	23.1±1.0	Type II	Australia
g133	G	Т	Т	А	G	15.2±0.1	Type II	Canada
g027	G	Т	Т	А	G	20.8±3.4	Type II	Canada
g183	G	Т	Т	А	G	15.0±1.9	Type II	China
g184	G	Т	Т	А	G	17.6±3.0	Type II	China
g109	G	Т	Т	А	G	23.8±1.2	Type II	China
g086	G	Т	Т	А	G	10.6±1.0	Type II	Hubei, China
g076	G	Т	Т	А	G	14.5±1.2	Type II	Hubei, China
g003	G	Т	Т	А	G	14.6±0.9	Type II	Hubei, China
g085	G	Т	Т	А	G	14.7±4.4	Type II	Hubei, China
g171	G	Т	Т	А	G	16.1±0.9	Type II	Hubei, China
925A	G	Т	Т	А	G	16.1±1.2	Type II	Hubei, China
g087	G	Т	Т	А	G	16.4±1.8	Type II	Hubei, China
g013	G	Т	Т	А	G	17.5±2.0	Type II	Hubei, China

g157	G	Т	Т	А	G	17.7±1.3	Type II	Hubei, China
HZ165	G	Т	Т	А	G	18.0±0.8	Type II	Hubei, China
g002	G	Т	Т	А	G	18.5±1.5	Type II	Hubei, China
H29A	G	Т	Т	А	G	18.8±0.9	Type II	Hubei, China
WHR	G	Т	Т	А	G	18.9±0.5	Type II	Hubei, China
g051	G	Т	Т	А	G	19.0±1.4	Type II	Hubei, China
g146	G	Т	Т	А	G	19.1±1.0	Type II	Hubei, China
616A	G	Т	Т	А	G	19.1±0.8	Type II	Hubei, China
春 R2	G	Т	Т	А	G	19.1±1.3	Type II	Hubei, China
g061	G	Т	Т	А	G	19.4±1.8	Type II	Hubei, China
R11	G	Т	Т	А	G	19.9±0.7	Type II	Hubei, China
g172	G	Т	Т	А	G	20.1±2.7	Type II	Hubei, China
5148DH	G	Т	Т	А	G	20.3±1.0	Type II	Hubei, China
HS5X	G	Т	Т	А	G	20.6±0.6	Type II	Hubei, China
g075	G	Т	Т	А	G	20.6±1.3	Type II	Hubei, China
245A	G	Т	Т	А	G	20.9±0.3	Type II	Hubei, China
987A	G	Т	Т	А	G	20.9±1.1	Type II	Hubei, China
g001	G	Т	Т	А	G	21.1±0.6	Type II	Hubei, China
g064	G	Т	Т	А	G	21.2±1.2	Type II	Hubei, China
g016	G	Т	Т	А	G	21.4±1.5	Type II	Hubei, China
g004	G	Т	Т	А	G	21.7±1.1	Type II	Hubei, China
g015	G	Т	Т	А	G	21.8±1.4	Type II	Hunan, China
HZ168	G	Т	Т	А	G	22.2±1.1	Type II	Hubei, China
ZS11X	G	Т	Т	А	G	23.0±0.5	Type II	Hubei, China
g074	G	Т	Т	А	G	23.1±3.1	Type II	Hubei, China
195-14A	G	Т	Т	А	G	23.2±0.7	Type II	Hubei, China
g158	G	Т	Т	А	G	23.5±2.4	Type II	Hubei, China
8307R	G	Т	Т	А	G	23.6±0.3	Type II	Hubei, China
g063	G	Т	Т	А	G	24.0±0.1	Type II	Hubei, China

L135R	G	Т	Т	А	G	24.6±0.3	Type II	Hubei, China
7-6R	G	Т	Т	А	G	25.4±0.4	Type II	Hubei, China
Y106	G	Т	Т	А	G	26.0±0.7	Type II	Hubei, China
g049	G	Т	Т	А	G	26.4±2.3	Type II	Hubei, China
g062	G	Т	Т	А	G	26.5±2.2	Type II	Hubei, China
Y147	G	Т	Т	А	G	27.5±0.9	Type II	Hubei, China
7-5DH	G	Т	Т	А	G	28.1±0.3	Type II	Hubei, China
ҮҮ9Х	G	Т	Т	А	G	14.0±1.1	Type II	Guizhou, China
HY16X	G	Т	Т	А	G	19.7±0.5	Type II	Shanghai, China
g052	G	Т	Т	А	G	24.2±2.1	Type II	Shanghai, China
g147	G	Т	Т	А	G	18.0±0.1	Type II	Sichuan, China
g050	G	Т	Т	А	G	23.3±3.4	Type II	Sichuan, China
g088	G	Т	Т	А	G	23.7±1.7	Type II	Sichuan, China
g014	G	Т	Т	А	G	23.4±1.6	Type II	Yunnan, China
g110	G	Т	Т	А	G	24.3±2.7	Type II	Yunnan, China
ZY50X	G	Т	Т	А	G	17.4±0.3	Type II	Zhejiang, China
2013ZL6	G	Т	Т	А	G	21.0±0.6	Type II	Zhejiang, China
ZS72X	G	Т	Т	А	G	21.8±0.8	Type II	Zhejiang, China
g121	G	Т	Т	А	G	14.9±0.7	Type II	Europe
g026	G	Т	Т	А	G	15.8±0.5	Type II	Europe
g025	G	Т	Т	А	G	20.1±1.4	Type II	Europe
g181	G	Т	Т	А	G	20.4±1.0	Type II	Europe
g148	G	Т	Т	А	G	21.4±1.7	Type II	Europe
g122	G	Т	Т	А	G	25.8±0.5	Type II	Europe
wester	А	Т	Т	А	G	16.7±1.1	Type III	Australia
g040	А	Т	Т	А	G	20.2±1.9	Type III	Australia
g038	А	Т	Т	А	G	23.0±0.9	Type III	Canada
g073	А	Т	Т	А	G	23.8±2.0	Type III	Hubei, China
MY12X	А	Т	Т	А	G	23.1±0.4	Type III	Sichuan, China

g145	А	Т	Т	А	G	24.9±0.8	Type III	Europe
HZX	G	С	С	G	А	25.5±1.4	Type IV	Hubei, China
^a qSS.C9 1	naplotype is	determ	ined a	nd gro	uped by	sequencing	the promote	r region and
gene regio	on of qSS.C	9 in the	access	ions. I	Data are	given as me	an \pm s.e.m.	

qSS.C9 haplotype P values Range $Mean \pm s.e.m$ 9.6-18.2 13.8 ± 1.0 Haplotype I (n=8) 9.72E-05^a Haplotype II (n=69) 10.6-28.1 $20.4{\pm}0.4$ 0.000384^b Haplotype III (n=6) 16.7-24.9 $22.0{\pm}1.2$ 0.277^c *P* values were generated by a two-tailed Student's t test. ^a, ^b and ^c indicate the *P* value 496 497 calculated, respectively, between Haplotype I and Haplotype II, Haplotype I and Haplotype III, and Haplotype II and Haplotype III. Data are given as mean \pm s.e.m. 498 499 500 501 502 503 504 505 506 507 508 509 510

495 **Supplementary Table S10.** Number of seeds per silique in three haplotypes.

511

512

513

514

519

Accessions	NO of ovule initiation	Number of seeds per silique	Proportion of abortion ovule numbers (%)	P values
Westar	23.6±0.6 ^a	16.7±0.9	29.2%	8E-06
ZS4R	23.8±0.2 ^a	21.4±0.8	10.1%	6E-04
ZY50X	$26.0{\pm}0.4^{b}$	18.7±0.7	28.1%	2E-09
HY15X	26.3 ± 0.2^{bc}	22.5±0.3	14.5%	6E-09
HZ165	27.4 ± 0.4^{bcd}	18.4±0.5	32.8%	2E-12
195A-14	27.6±0.4 ^{cd}	24.9±0.5	9.8%	1E-04
ZS11X	$28.1{\pm}0.6^{d}$	27.7±0.6	3.9%	0.728
HZ168	$28.3{\pm}0.4^{d}$	21.7±0.9	23.3%	3E-09
7-6	$28.5{\pm}0.4^d$	26.6±0.3	6.7%	5E-04
R5200	$28.6{\pm}0.3^{d}$	26.0±0.4	9.1%	3E-04
Y106	30.2±0.5 ^e	26.0±0.4	13.9%	1E-06
80-5213	30.6±0.4 ^e	23.0±0.9	24.8%	1E-05
80-5215	30.7±0.4 ^e	29.2±0.7	4.9%	0.239
80-5214	31.1±0.4 ^e	22.1±0.8	28.9%	2E-07
7-5DH	32.4 ± 0.6^{f}	26.2±1.0	19.1%	5E-06

520 Supplementary Table S11. Quantitative analysis of initial ovule number and number

521 of seeds per silique in 15 *B. napus* germplasms.

^a Different alphabetical letters following means indicate significant differences (P=0.01). Data are given as mean \pm s.e.m. P values were generated by a two-tailed Student's t test.

Primer name	Sequence 5'-3'	Purpose	
SCC9-136L	CGTCAAGCCAATAGCAGAATCG	fine mapping	
SCC9-136R	CTTGGTGGCGTGTTTCTTGTTC		
SRC9-298L	TCCACCTTCGGATTCTCTCCCTCT	fine mapping	
SRC9-298R	TGTCTTCTTGTTCACCGCCACT		
STC9-114L	ATGGTTCTGCCTCGAAAAGCAAC	fine mapping	
STC9-114R	GAGATGAACTCCCAACAATTGCC		
SRC9-397L	GGTTTTGGCACACGGATTAAAGAAACA	fine mapping and BAC screening	
SRC9-397R	CGTGCTAAGCATGGGGTAATAACACT		
STC9-108L	ATCGGTGTTTCAGTTACAGG	fine mapping and BAC screening	
STC9-108R	CGAAATCCACGTAACAATTC		
STC9-164L	CAACCCTACAAAGATGAGCTAAGACG	fine mapping and the BnaC9.SMG7b and	
STC9-164R	TGGATGATGACTTTGCAGATGG	BnaC9.SMG7c homologous copies analysis	
STC9-271L	CATGATTACGAATTCGAGCTCGGTACCCTTACAAGTAGAGCATGGAC	$P_{\rm H} = C_0 SMC7h$ Complementation test	
STC9-271R	TGCCTGCAGGTCGACTCTAGATAACTGAGGTTGAGCTGGCTCCTCG	blue	
SWC9-012L	ATTTGAAAAATCTCAGAATTCCTTCCTCTGCGTTCCACCTCCAGAT	BnaC9.RING Complementation test	
SWC9-012R	GGTCTTAATTAACTCTCTAGACTTGCCGACCGGTGAAGTAGTCTCT		
C9RNAi-2L	TTACCGCTCCCAAAGACTCG	BuaC9 SMG7h RNAi test	
C9RNAi-2R	GGGTAAAAAGAATCCCGTTGAG		
STC9-175L	TTTGGCGCGCCGGTAAAACCCCATGTTGCTTC	Pro _{BnaC9.SMG7b} -GUS construction	
STC9-175R	CGGGGTACCCTTACAAGTAGAGCATGGAC		
STC9-368L	GGAGAGGACAGGGTACCCGGGATGGAGAGGGAGATTCTAAGAACCG	BnaC9.SMG7b- GFP and BnaC9.SMG7c-GFP	
STC9-368R	GGCAGCGGCAGCAGCCGGATCCCAAAAAATCATATCTTCCGTTAAGC	construction	
STC9-391L	ATCAGTGATAGGGATAGATCTGGATGTCTCAAAACGGGAAGATAATC	AtDCP1-RFP construction qPCR analysis of BnaC9.SMG7b expression	
STC9-391R	ACCTGGTGCTCCGCCAGATCTTTGTTGAAGTGCATTTTGTAAAGTTC		
STC9-300L	AGGACACAAGCAGAGGTTTAAGC		
STC9-300R	TTGGATCAGAAGGATTCCGAGC		
STC9-333L	CGGCTGATCGGTGGCACTGTTG	RT-PCR analysis of BnaC9.SMG7c expression	
STC9-333R	AAGGATTCCGAGGGTGAGCACG		
STC9-043L	AGATGCTCAAAGCATTCTGCG	qPCR analysis of BnaC9.SMG7b expression in	
STC9-043R	CTCGTAGACTGCTGCTAGTGGA	RNAi-transformed plants	
STC9-452L	GGCTCAACCTTAGATTCACAGA	qPCR analysis of BnaA05g23660D expression	
STC9-452R	GTATCTAACTGCTAGGATCGCG		
STC9-455L	CCCTTTGCGCCAGTTCATCTAG	qPCR analysis of BnaC04g40810D expression	
STC9-455R	CATAGGCCACACTGAGCTAAGC		
STC9-457L	GTTGGGCTCAAGTTGACAGGCA	qPCR analysis of BnaC06g12460D expression qPCR analysis of BnaC07g16820D expression qPCR analysis of BnaC08g07580D expression	
STC9-457R	GGTGTAAGCTCATTGGAAATGACC		
STC9-458L			
STC9-458R			
STC9-460L	GAGCTITIGCTTCCGGTGCTGGA		
STC9-460R			
STC9-463L	GGGTTCGATGCCAATTGCCAAG	qPCR analysis of BnaA01g04500D expression	
STC9-463R	GCAATAAGCCGATAACCATTGAC		

Supplementary Table S12. Summary of primers used in this study.

STC9-465L	GCCTGCTCATGTAGTCATATGC		
STC9-465R	GCTCGAACAAGATCCTTGAGC	GPCR analysis of BnaA02g32320D expression	
STC9-467L	AGAAGCCGTGTCCGCCTAAAGC		
STC9-467R	CCCAAACTTAGGGTGTGGA	qrCK analysis of BhaA04g11970D expression	
STC9-469L	TTGGCTGAGATCGGTCGTTACAC	aDCD analysis of DraC02a22600D averagian	
STC9-469R	GGCAGAAGCAGCCACTTTACCG	qrek analysis of Bhaeo5g52000D expression	
STC9-471L	CGATCGACGGCTATTACATTCCA	aPCP analysis of PhaC05c00670D expression	
STC9-471R	TCCTTTTCCCGGCGCTAAAC	qi ek anarysis of Bhaeo5g00070D expression	
STC9-198L	GAGGAATCTACCCAAGGAG	aDCP analysis of PhTAM approxim	
STC9-198R	GAGCGGAGATTCTAGATCC	qrek analysis of BirrAin expression	
STC9-206L	GGATTCAAGAAGAAGCTGAG	qPCR analysis of BnTDM1 expression	
STC9-206R	CTTTCTCTTGCTCGACAGTC		
STC9-340L	GCATGAGACTCTCTACCTCACAATG	aPCR analysis of RnCVCR3.1 expression	
STC9-340R	CCTAGGATGCCAATAGTCCTCG	qi ex anarysis of bite r ebs, r expression	
STC9-342L	CAGAGGCGAGAGACCGATTG	aPCR analysis of RnOSD1 expression	
STC9-342R	GCGAACTGGATGTTCGAACAC	qi ek anarysis of BioSD1 expression	
STC9-348L	CAATGTTCTGCAATGGAGCTTC	aPCR analysis of BnSDS expression	
STC9-348R	CTTCAATTCTGGTGGCCAGAG		
STC9-414L	CTTGTGGCACTATACCTGCGACG	aPCR analysis of BnIASON expression	
STC9-414R	GGCCTTCCCAACTCTTCACAAGC		
STC9-417L	CCCCAAACACTCGCTGTTAG	aPCR analysis of BnPS1 expression	
STC9-417R	CACTCTTGTTGGTCCGGACCTG	qi ex uluiyas or bin or expression	
STC9-418L	ATGTACCAACCTCGGAGCAAGG	aPCR analysis of BnMMD1 expression	
STC9-418R	GGGAACCGAGAAGCTCTATAGC		
STC9-420L	GAATCGTTCGAGGTCGATGAG	aPCR analysis of BnSKP1 expression	
STC9-420R	GCAGTACTCGATAACCTTGGCG	qi ett uluiysis of bilotti i expression	
STC9-423L	TGGCTGCTAAGTACAAGTGGGC	aPCR analysis of BnMEI1 expression	
STC9-423R	CATTCCCTTACGCTGGTCTG		
STC9-424L	AGGCTGGAAGACAGTGAAACCAG	aPCR analysis of BnPRD3 expression	
STC9-424R	TAGCTCCTTTGGCGTCCCC		
STC9-427L	GGAGGCAAAGATCCTCATGATG	aPCR analysis of BnCOM1 expression	
STC9-427R	TTCCGCCACTTGAATTCTCTGC	4	
STC9-428L	CTCTTCGCCGAGTGGTAGAG	aPCR analysis of BnMCM8 expression	
STC9-428R	GAACTGCAGCATTCATACATGG	4	
STC9-432L	GACTCAGTCATGGAAGTACCATTG	oPCR analysis of BnMSH5 expression	
STC9-432R	TCTACCCATTGGTGTGGCACAC		
STC9-434L	GTCTTACATTCTCCAAGGCGTTG	aPCR analysis of BnMER3 expression	
STC9-434R	GACGACTGTATGTGCAGGCAG	4	
STC9-437L	CACCGTCAGCTGATGATAAGACC	aPCR analysis of BnSHOC1 expression	
STC9-437R	CGTGTGCAATCCTAGCTTCATGG	qrCK analysis of BnSHOC1 expression	
STC9-438L	AAGGCCGTGCCATTTCCAC	aPCR analysis of BnHE110 expression	
STC9-438R	GGAGAAATTCCAGCCATCGCC		
STC9-441L	CACTCCGATGAGCAGCAATG	aPCR analysis of BnASY1 expression	
STC9-441R	CGCTTCGAGTACTGCAGGATAG		

STC9-442L	CAACGAGAATGCTAAGCTCAGG	qPCR analysis of BnZYP1 expression	
STC9-442R	CAGCTTCTTGAACCTGAGAAGCC		
STC9-445L	GCCAGTGACCACTCACACAGAC	qPCR analysis of BnSYN1 expression	
STC9-445R	GTAGAAGAGTTGAGCTGCAGCG		
STC9-379L	AAGAGGTGGCCTGGATGGCCG	RT-PCR/qPCR analysis of BnaA03g28670D ±PTC	
STC9-379R	GCATGAAATGTAAGGCACGG	transcription	
STC9-380L	AAGAGGTGGCCTGGATGGCCG	RT-PCR/qPCR analysis of BnaA03g28670D -PTC	
STC9-380R	GGTAGAGATGATTCGGGGCTCTTC	transcription	
BnACTIN7-L	CCCTGGAATTGCTGACCGTA	RT-PCR/qPCR control for <i>B. napus</i>	
BnACTIN7-R	TGGAAAGTGCTGAGGGATGC		