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Supporting Figures and Tables
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Supplementary Figure S1: Noise as measured by CV2in the one-state promoter
model across varying basal transcription rates and strengths of positive feedback.
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Supplementary Figure S2: The one-state promoter model provides a benchmark
threshold for viral activation. The threshold for activation (green dotted line) was
set at the deterministic steady-state protein value for an active one-state
promoter system with positive (non-cooperative) feedback (left panel;
deterministic). 1000 simulations of protein production in the stochastic model
are presented in red (right panel; stochastic). Representative traces or cells that
crossed the threshold (blue; “ON”) or that failed to cross the threshold (yellow;
“OFF”) over time are shown.
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Supplementary Figure S3: Extended sensitivity analysis for a one-state model with positive
feedback and exploration of cooperative behavior. (A) Schematic of model (B) Multiple nodal
sinks and bistability in a one-state promoter model with cooperative feedback (q = 3) (C) 1000
simulations of protein production for a stochastic model of a one-state promoter system with
cooperative feedback (g = 3). Representative traces or cells that crossed the threshold (blue;
“ON”) or that failed to cross the threshold (yellow; “OFF”) over time are shown. The threshold for
activation is presented as a green dotted line (D) The Hill co-efficient ‘g’ was varied from 1 to 5.
For each simulation, mean onset time, mean first passage time, cell activation, and Fano factor
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are shown (for a representative set of n = 1000 runs).
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Supplementary Figure S4: Extended sensitivity analysis for a one-state
(A) An amplification factor (AMP)
vent (see Methods) (B) For each
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model with transcriptional amplification.
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Supplementary Figure S5: Mean onset time (days) for a two-state
promoter model under varying transcriptional burst sizes and frequencies.
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Supplementary Figure S6: Charting paths through CV for a two-state
promoter model with positive feedback. These paths (i.e., lines of constant
burst size or burst frequency) correspond to the same paths explored in
Figure 3 (main text).
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Supplementary Figure S7: Accounting for mRNA export from the nucleus and Tat import into the
nucleus. (A) Schematic of model (B) Mean first passage time, cell activation, Fano factor, and mean
onset time are shown (for a representative set of n = 100 runs) at a mRNA export rate (Mgyp) of 62.2
day?! and a Tat import rate (T,,,,) of 499.68 day. Same metrics are additionally shown for (C) My, of
6.22 day! and T, of 49.968 day?, and (D) Mg, of 0.622 day* and T,,,, of 4.996 day. Altering these
rates can lead to significant variations in onset time of Tat production. X and Y axes of the heat plots
indicate variations in transcriptional burst size and burst frequency, respectively.
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Supplementary Figure S8: Mean protein counts is plotted for a ‘two-step’
three-state model (with an intermediate state transition). kg, and kg rates
were varied from 0.01 to 10 day?, and the model was simulated under
different conditions of burst size and frequency (for a representative set of
n =100 runs). Color scale is plotted in log units.
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Supplementary Figure S9: Cell activation is plotted for a ‘two-step’ three-
state model (with an intermediate state transition). kqy and kg rates were
varied from 0.01 to 10 day?, and the model was simulated under different
conditions of burst size and frequency (for a representative set of n = 100
runs).



Increasing Kqge

0.01

0.1

10

Burst frequency (k,/y,,)

Fano factor for a ‘two-step’ three-state promoter model

Increasing kg

Burst size (a,/k;)

Supplementary Figure S10: Fano factor is plotted for a ‘two-step’ three-
state model (with an intermediate state transition). kg and kg rates were
varied from 0.01 to 10 day?, and the model was simulated under different
conditions of burst size and frequency (for a representative set of n = 100
runs). Color scale is plotted in log units.
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Mean first passage time for a ‘two-step’ three-state promoter model
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Supplementary Figure S11: Mean first passage time (days) is plotted for a
‘two-step’ three-state model (with an intermediate state transition). kg
and koge rates were varied from 0.01 to 10 day?, and the model was
simulated under different conditions of burst size and frequency (for a
representative set of n = 100 runs).

>
10

Burst size (a,/k)) [ B

0 1 2 3 4 5 6



Influence of Tat positive feedback in a two-state promoter model
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Supplementary Figure S12: Variations in Tat positive feedback behavior for
a two-state promoter model. Mean first passage time, cell activation, and
Fano factor are shown (for a representative set of n = 100 runs). X and Y
axes of the heat plots indicate burst size and burst frequency, respectively.
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Supplementary Figure S13: Extending the range of burst size and frequency
for a two-state promoter model with positive feedback (for a
representative set of n = 100 runs). The yellow dotted box indicates the
sampled ranges in the main text.
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Supplementary Table S1: Experimental values of burst size and frequency.



