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Leveraging Distant Relatedness to Quantify
Human Mutation and Gene-Conversion Rates

Pier Francesco Palamara,1,2,* Laurent C. Francioli,3 Peter R. Wilton,4 Giulio Genovese,2,5,6

Alexander Gusev,1,2 Hilary K. Finucane,1,2,7 Sriram Sankararaman,2,6 Genome of the Netherlands
Consortium, Shamil R. Sunyaev,2,8 Paul I.W. de Bakker,3,9 John Wakeley,4 Itsik Pe’er,10

and Alkes L. Price1,2,11

The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand

demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the num-

ber of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population-

size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent

simulations. We applied the method to 498 trio-phased sequenced Dutch individuals and inferred a point mutation rate of 1.66 3

10�8 per base per generation and a rate of 1.26 3 10�9 for <20 bp indels. By quantifying how estimates varied as a function of allele

frequency, we inferred the probability that a site is involved in non-crossover gene conversion as 5.99 3 10�6. We found that recombi-

nation does not have observable mutagenic effects after gene conversion is accounted for and that local gene-conversion rates reflect

recombination rates. We detected a strong enrichment of recent deleterious variation among mismatching variants found within IBD

regions and observed summary statistics of local sharing of IBD segments to closely match previously proposed metrics of background

selection; however, we found no significant effects of selection on our mutation-rate estimates. We detected no evidence of strong

variation of mutation rates in a number of genomic annotations obtained from several recent studies. Our analysis suggests that a

mutation-rate estimate higher than that reported by recent pedigree-based studies should be adopted in the context of DNA-based

demographic reconstruction.
Introduction

Germlinemutations represent a fundamental evolutionary

force that shapes phenotypic variation and has a

profound impact on heritable diversity. Precise estimation

of mutation rates has several applications, including the

interpretation of mutations implicated in diseases,1–3

studies of natural selection,4,5 the timing of demographic

events inferred from genetic analysis,6–8 and the study of

several aspects of human mutagenesis.9 High-throughput

sequencing technologies have recently enabled the quanti-

fication of germline mutation rates, but the estimates ob-

tained by these methods are inconsistent with those of

previous studies. The source of these inconsistencies,

whether biological or due to methodological biases, is at

the center of recent debate,7,10,11 and gaining additional

insight into germline mutation rates will require new

methods.

In this work, we propose a method for estimating

mutation rates by using mutations occurring within iden-

tical-by-descent (IBD) haplotype blocks12–17 transmitted

through recent common ancestors who lived ~100

generations (~3,000 years) before the present. These
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IBD segments can be detected by several available

methods13,18,19 and reflect genetic relationships that are

typically not known to the affected individuals but are

found to be ubiquitous even in outbred populations.15,20

IBD segments are defined in our work as contiguous chro-

mosomal regions in which the most recent common

ancestor (MRCA) for two sampled chromosomes is un-

changed. Occasional mutations segregating along the line-

ages connecting a pair of IBD haplotypes to their MRCA

will create mismatched sites on the shared haplotypes,

and these sites can be used for inferring the rate at which

new germline mutations appear. If the exact number of

generations separating the IBD segments (via their

MRCA) is known, one can infer the mutation rate by

dividing the number of observed sequence mismatches

by the number of generations and the physical length for

all segments. A special case of this approach is used in

trio-based analyses, where transmitted parental haplotypes

and IBD offspring haplotypes are separated by a single gen-

eration. In this work, we instead use a reconstructed demo-

graphic model to infer the age of IBD segments.

The IBD-based approach we propose for inferring muta-

tion rates is robust to, and can quantify, the presence of
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Figure 1. tMRCA Regression
We simulated a chromosome of 50 cM for 250 diploid samples by
using m ¼ 23 10�8 for the mutation rate and no genotyping error.
We matched the allele-frequency spectrum of the simulated sam-
ples to the spectrum found in real data for IBD-segment detection
with GERMLINE, and we used the IBD-segment detection param-
eters used in real data. The slope of this regression captures the
simulated mutation rate; the intercept is proportional to genotyp-
ing error rate.
substantial amounts of genotyping error in the analyzed

sequences and can be used for inferring the rate of non-

crossover gene conversion. We applied the developed

methodology to analyze 250 trio families from the

Netherlands and infer mutation and gene-conversion

rates. We further studied the rate of short indels and

analyzed the relationship between recombination rates

and mutation rates. We studied the enrichment of delete-

rious variation in mismatching variants within IBD re-

gions, showed that the length of shared IBD segments

along the genome closely reflects summary statistics of

background selection, and explored enrichment or deple-

tion of mutation rates in several specific genomic

annotations.
Material and Methods

Overview of Methods
The method we propose is aimed at estimating the sex-averaged,

genome-averaged, and time-averaged mutation and gene-conver-

sion rates per base per generation by using mismatching genotype

sites found on IBD haplotypes for a sample of individuals from a

population of known demographic history. Note that these quan-

tities are affected by several aspects of the study population, such

as the length of the generation for males and females along the

ancestral lineages in the past several generations (~100 genera-

tions in our analysis; see Discussion). We briefly describe solutions

to three challenges. First, to estimate the number of generations

separating two IBD segments (twice the time to the MRCA

[tMRCA]), we use a recently developed method14 that relies on

the spectrum of observed IBD-segment lengths to infer demo-

graphic history. We then use this method to obtain a posterior

mean estimate of the average tMRCA for pools of IBD segments
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of different lengths, as detailed in the real-data description (see

GoNL Dataset) and Appendix A. Second, to deal with the presence

of genotyping errors rather than rely on stringent filtering criteria

(as in trio-based analyses21–25), we regress the observed sequence

mismatches for several IBD-segment length thresholds on the esti-

mated tMRCA; the slope of this regression reflects the rate at

which new mutations accumulate per generation time unit,

whereas the genotyping error rate is captured by the intercept.

We refer to this procedure as tMRCA regression (illustrated in

Figure 1). Finally, we correct for the occurrence of non-crossover

gene-conversion events along the lineages leading to the MRCA

by exploiting the relationship between an allele’s frequency and

the probability that it is involved in a gene-conversion event

(see Controlling for Gene Conversion via MaAF-Threshold Regres-

sion below). This also allows us to estimate the rate at which a

genomic locus is involved in a non-crossover gene-conversion

event; this rate is proportional to the difference between corrected

and uncorrected estimates for mutation rates. We have released

open-source software (IBDMUT) implementing these methods

(see Web Resources).

Estimating the Mutation Rate via tMRCA Regression
The proposed methodology for the inference of mutation rates re-

quires the availability of haploid genotype data, a list of IBD seg-

ments that exist between pairs of haploid individuals and that

are longer than a specified Morgan length threshold (including

start and end positions), and a demographic model, which can

be inferred from the spectrum of shared IBD segments as described

in Palamara et al.14 For each IBD segment i, we obtain an observed

mismatch rate by counting the number of sequence differencesmi

in the haploid genotypes within the region and dividing by the re-

gion size si in base pairs: qi ¼ mi/si. We then obtain the observed

mismatch rate by averaging all observations bqu ¼ n�1
u

Pnu
i¼1qi for

nu segments longer than u Morgans. We repeat this measurement

for several thresholds u to obtain a vector of observed mismatch

rates bq. Because of the lack of detailed pedigree structures at

deep time scales, the exact number of meiotic events separating

two individuals who share IBD segments is generally unknown.

Using the reconstructed demographic model, we therefore infer

the posterior mean age tu of pooled IBD segments longer than a

known genetic length threshold u by using recently developed

coalescent theory14,15 (details are summarized in Appendix A).

Finally, we regress the observed mismatch rates bqu on twice the

posterior mean age (in generations) to the MRCA of the IBD seg-

ments: qu ¼ aþ 2mtu þ e. We refer to this regression as the tMRCA

regression. Older segments will tend to harbor a larger number of

sequence differences because mutation events have a higher

chance of occurring along the lineages connecting extant individ-

uals to their MRCA. The slope m of this regression will capture the

rate at which mutations arise per unit of time. Note that we are

neglecting the uncertainty on the measurement in the regressor

tu, i.e., the inferred age of the pooled IBD segments. As shown in

simulations, however, this only results in negligible biases for

the estimated slope coefficient because of the large number of

pooled segments.

If we assume a genotyping error model for which false-positive

or -negative genotype calls are independent of the average coales-

cent time of pairs of individuals at a locus, the intercept a of this

regression is expected to capture the rate at which genotyping

errors occur on the considered range of IBD segments. Note

that when performing the tMRCA regression, we rely on non-

independent observations of mismatch rates (because we use
er 3, 2015
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Figure 2. MaAF-Threshold Regression
We simulated 250 diploid samples as described in Figure 1 and
a probability of 6 3 10�6 for a base pair to be involved in a
non-crossover gene-conversion event. We performed the MaAF-
threshold regression to correct for the occurrence of gene conver-
sion. The regression intercept is used for estimating the corrected
mutation rate, whereas the difference between the corrected and
uncorrected mutation rates captures the effects of gene conver-
sion, whose magnitude can be estimated with the observed popu-
lation heterozygosity.
overlapping ranges for the length of the IBD segments), which cor-

responds to attributing larger weights to measurements obtained

from long, more-reliable IBD segments. Although this violates in-

dependence assumptions in the regression, the reweighting of the

data is not expected to result in biases for the estimated slope and

intercept (Table S1), but it decreases heteroscedasticity. In order to

estimate SEs of the resulting slope and intercept, which are ex-

pected to be biased because of non-independence, we rely in all

cases on a block-weighted jackknife procedure,26 which uses inde-

pendent regions as resampling units.

Controlling for Gene Conversion via MaAF-Threshold

Regression
Non-crossover gene-conversion events occur at a rate that is corre-

lated to the recombination rate and have been observed to be

more frequent than crossover recombination events.27 In the coa-

lescent process, gene conversion can be modeled as two consecu-

tive recombination events that occur very close to each other,28 at

an average distance of ~300 bp.29 These events introduce the pos-

sibility that polymorphisms segregating in the population might

be assimilated into haplotypes within IBD regions. These poly-

morphisms can create sequence differences between individuals

who share IBD segments. These sequence differences, however,

are not due to newly arising mutations. Note that whereas gene-

conversion events change the MRCA of the ~300 bp converted

segment, here we do not consider this to break an IBD block.

Furthermore, because the number of gene-conversion events is

related to the number of meiotic events, short IBD regions will

tend to exhibit more gene-conversion-driven mismatches than

longer, more-recent IBD segments, therefore resulting in an up-

ward bias when the mutation rate is estimated via the slope of

tMRCA regression. The mismatching variants observed on IBD

segments, therefore, will be due to at least two distinct sources

of heterozygosity. The first, qp, which we hereafter call population
The American
heterozygosity, represents the effect of gene-conversion events,

which introduce standing genetic variation onto IBD blocks. The

second source of heterozygosity is due to newly arising point mu-

tations on IBD blocks and will be referred to as qm. For IBD seg-

ments of a chosen length, we can express the total observed

mismatch rate as q ¼ qm þ qp. To estimate the mutation rate due

to point mutations only, we need to exclude the effects of qp

from our calculations. We make the following two observations:
Jo
1. The frequency of mutations that arise on long (e.g.,R1 cM)

IBD segments is typically low in the population (Figure S1),

so that qm is mostly due to rare variants.

2. If we divide the allele-frequency spectrum into bins of equal

width, we find an approximately uniform contribution to qp

for each frequency. This implies that if we compute the fre-

quency-bounded population heterozygosity qp,f by using

only variants of frequency up to f, we observe an approxi-

mately linear relationship between qp,f and f (Figure S2; see

additional calculations in Appendix A).
Observation 1 implies that if we exclude high-frequency vari-

ants when we compute m by using the proposed regression

approach, the contribution of qm to the observed mismatch rate

on IBD segments will be largely unaffected. Furthermore, observa-

tion 2 suggests that if we estimate a frequency-bounded value of mf
by ignoring variants of frequency higher than a threshold f, the

contribution of population heterozygosity due to gene-conversion

events, qp,f, will be decreased to an extent that is approximately

linear in f. Assuming that the contribution of qm to mf is unaffected

for values of f in the range F¼ [Fmin, Fmax], we can therefore regress

mf on F and observe a linear relationship.We refer to this regression

as the MaAF-threshold regression (Figure 2). The intercept of this

regression will then reflect an estimate of mwithout the confound-

ing effects of qp, whereas the contribution of qm is left unchanged.

We avoid computing values of mf corresponding to F˛½0; FminÞ, for
a sufficiently large Fmin (e.g., >0.1), given that this might result in

removing variants that are due to new point-mutation events on

the IBD segments, which we use to estimate m. Because this

approach relies on the stochastic relationship among allele fre-

quency, population heterozygosity, and gene conversion, it is

not possible to fully determine whether the sequence mismatches

that are found on IBD segments are due to a recentmutation event

or a site involved in gene conversion, although those resulting

from the latter are expected to have a substantially higher allele

frequency. Finally, note that we neglect the possibility that point

mutations arising on IBD segments are removed via gene conver-

sion because this does not substantially affect the estimates. As in

the tMRCA, the use of nested frequency bins in the MaAF regres-

sion results in non-independent observations in the performed

regression. The use of nested frequency bins might improve the

correction in cases where the relationship between MaAF cutoffs

and population heterozygosity deviates from linearity as a result

of recent demographic events. Simulations showed that his

approach has no significant impact on the quality of the estimated

mutation rates (Table S2). As in the case of tMRCA regression, we

obtained reported SEs with the block-weighted jackknife method

to avoid biases induced by the non-independent observations.
Estimating the Gene-Conversion Rate
The difference between the mutation rate computed without

correction for gene-conversion events and the estimate obtained
urnal of Human Genetics 97, 775–789, December 3, 2015 777



after removal of the effects of gene conversion can be used for

quantifying the probability that a base pair within IBD segments

is involved in a gene-conversion event during meiosis. This differ-

ence, which we indicate as mGC, represents the probability of

observing a heterozygous site as a result of existing polymor-

phisms introduced via gene conversion in a single generation.

This rate can be expressed as mGC ¼ p(GC) 3 p(qp j GC), i.e., the

probability that a base pair is involved in a gene-conversion

event can be multiplied by the probability of assimilating a

heterozygous site given that the gene-conversion occurs at the

locus. The quantity p(qp j GC) can be estimated with the

genome-wide heterozygosity of the analyzed sample, and

the value of mGC can be estimated with the previously described

correction method. An estimate of p(GC) is therefore obtained asbpðGCÞ ¼ bmGC3bpðqp ��GCÞ�1, and a confidence interval is obtained

via block-weighted jackknife.26
Coalescent Simulations
We used extensive coalescent simulation to evaluate the proposed

methodology. To this end, we used a publicly available coalescent

simulator, COSI230 (which allows simulation of gene-conversion

events), and our implementation of a coalescent simulator,

inspired by the existing GENOME algorithm31 (which enables

simulation of a large number of samples and efficient extraction

of information on IBD segments). The algorithm proceeds back-

ward in time and, for each individual at generation g, samples a

parent at the discrete time g þ 1 in the past, occasionally resulting

in coalescent events and sampling a new parent when a recombi-

nation event occurs. To speed up computation, the GENOME

approach divides the simulated region into relatively large chunks

that are not allowed to recombine, discretizing the recombination

process and resulting in approximate linkage-disequilibrium (LD)

structure at short genomic intervals. The version we developed en-

ables substantial improvements of memory and run-time require-

ments while circumventing the original GENOME algorithm’s

simplifying assumption of non-recombining LD blocks. In brief,

we sped up the original algorithm by sampling recombination

breakpoints from an exponential distribution and by only storing

chromosomal regions and individuals relevant for calculating the

ancestral recombination graph (ARG) at each simulated genera-

tion. In addition, we applied several improvements to data struc-

tures and other algorithmic details. To evaluate our methodology,

we further extended the program to allow efficient extraction of

IBD segments from the ancestral recombination graph without

requiring testing of differences in shared common ancestors for

each marginal tree in the ARG, as done in previous works.14,16,32

We have released open-source software (ARGON) implementing

the simulator (see Web Resources).

To assess the impact of demographic history on our estimates,

we simulated three plausible demographic scenarios, in addition

to the reconstructed GoNL (Genome of the Netherlands; see

GoNL Dataset below) demographic history. The simulated popula-

tions comprised an expanding population that experienced a

severe founding event 30 generations before the present and

a population that undergoes severe exponential contraction

(referred to as Ashkenazi and Maasai, respectively, because they

resemble recently studied groups14) and an exponentially expand-

ing population (referred to as Europeans; see Figure S3). We used

two types of recombinationmaps to simulate non-uniform recom-

bination rates along the genome (Figure S4). To assess the impact

of genotyping errors on our methodology, we simulated errors for
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which a previously unobserved variant is created (‘‘de novo’’ er-

rors) or false-positive or -negative calls on existing variants. To

model frequency-dependent genotyping error rates, we used a

beta distribution as a prior for sampling the frequency of planted

genotyping errors33 (Figure S5). For all simulations, we obtained

posterior mean estimates for the age of IBD segments by using

the coalescent distributions of the simulated models.
GoNL Dataset
We analyzed sequence data from a recent study of 250 trio families

from the Netherlands (GoNL project,34 release 4). The dataset con-

sists of 748 individuals who passed quality control and were

sequenced at an average of ~133 (details are provided in the anal-

ysis described elsewhere34). Combining the output of several

detection algorithms detected indels (GoNL Release 5). In addition

to using the quality-control filters applied in the original analysis

of the data, we further excluded regions that did not meet several

quality criteria derived from the 1000 Genomes Project phase 1, as

described in Genovese et al.35

Trio phasing is expected to result in accurate estimation of

haploid sequences in the GoNL data. Low-frequency variants, in

particular, are unlikely to result in doubly heterozygous parents,

so phasing of rare polymorphisms is generally trivial.

IBD segments and an inferred demographic model were ob-

tained from the analysis described elsewhere34 with the use of ge-

netic maps from in the 1000 Genomes Project.36 26 regions were

selected for the analysis reported in this paper; each was longer

than 45 cM, which gave a total of 2,160 cM and an IBD density

of 3.073 10�3 per site per pair. The B statistic of background selec-

tion4 in these regions is slightly lower than the genome-wide

average (0.78 versus 0.79; p< 0.01 based on 10,000 permutations).

The B statistic, however, was not found to have a significant

impact on our mutation-rate estimates (see Results). The recombi-

nation rate was not found to be significantly lower than the

genome-wide average (p ¼ 0.37). Informed by the density of

de novo mutation events along the genome, a recent study9 esti-

mated a map of local variation in substitution rates. Out of the

14 types of substitutions reported in this map, four (C>T and

G>A [p < 0.01]; A>T and T>A [p ¼ 0.032]) were found to be

depleted in these regions, although the differences were found

to be minimal (�1.3% for C>T and G>A; �1.0% for A>T and

T>A). This effect is probably mediated by the reduced B statistic

in the regions, which is related to the substitution rates computed

for primate sequences in Duret and Arndt,37 on which the substi-

tution map is based. Consistent with this hypothesis, we observed

a small but significant correlation between these annotations and

B statistic in these regions (r ¼ 0.014 for C>T and G>A; r ¼ 0.017

for A>T and T>A; p < 10�6). The density of IBD-segment sharing

along the analyzed regions is depicted in Figure S10 and is occa-

sionally non-uniform, as expected given the deviations from

neutrality along the genome.20,38 No significant correlation was

observed between our mutation-rate estimates and the density

of IBD-segment sharing (see Results). To cope with imperfect

detection of the IBD-segment boundaries, we excluded 0.5 cM

on either side of the IBD segments from the analysis of mutations

and gene-conversion rates, because we observed that inflation due

to noisy boundary estimation plateaued for values larger than this

threshold (Figure S11).

Demographic inference was performed with the software tool

DoRIS.14,32 The resulting demographic history is one of exponen-

tial expansion starting with an ancestral population size of 11,500
er 3, 2015



Figure 3. InferredMutation Rates under Several Values of Simu-
lated Genotyping Error Rate for Three Types of Genotyping
Errors
The simulated true underlying mutation rate was m ¼ 2 3 10�8.
All simulations involved a single chromosome of 250 cM for
200 haploid individuals from a GoNL-like population and used
beta(a ¼ 0.5, b ¼ 1) as a prior for the allele frequency of erroneous
variants. True IBD segments were extracted from the simulated
ancestral recombination graph. Additional simulation results are
shown in Figure S13. Error bars represent SE.
haploid individuals 150 generations in the past. Two periods of

exponential expansion were inferred. The expansion rate between

generations 150 and 10 was inferred to be 0.0146 and was fol-

lowed by a strong expansion in the recent generations at a rate

of 0.479 per generation. Because of the scarcity of extremely recent

coalescent events, the magnitude of the latter expansion period

was inferred with a high degree of uncertainty; however, this

was observed to not have appreciable effects on the analysis

described in the remainder of the paper (see Results).

Enrichment of Deleterious Variation in IBD Regions
We tested whether mutations arising between the present genera-

tion and the MRCA of IBD segments are enriched with deleterious

variation. To this end, we ran the software tool ANNOVAR (version

‘‘2015Mar22’’39) on the GoNL variants and obtained numeric

scores for the PolyPhen-2 (‘‘ljb23_pp2hvar’’40) and Gerpþþ
(‘‘gerpþþgt2’’41) annotations; we restricted the analysis to

scores > 2 for the latter. To test for enrichment, we compared

the average score of genome-wide variants to the average score

of variants found to mismatch within IBD regions; we treated all

variants as independent and reported Z test p values.

Analysis of Annotated Genomic Regions
Several sites along the genome were excluded from the analysis

after application of the filtering criteria previously described. In

addition, we analyzed mutation rates in specific regions described

in several annotations (e.g., DNase I hypersensitive sites42 and

several others, as detailed in Table S3). It is sufficient to neglect re-

gions that fall outside the genomic annotation at hand when

computing the observed mismatch rate in the tMRCA regression.

Annotations that are too small or too clustered in specific regions

of the genome might result in downward biases of the estimated

mutation rate because of the ‘‘inspection paradox’’ of the

Poisson process underlying the model of IBD-segment sharing14
The American
(Figure S12). For this reason, our method cannot be used for infer-

ring local mutation rates. Annotation-specific bias due to localiza-

tion was computed and corrected with a permutation procedure

(Table S3). Sequence context was accounted for with the trinucle-

otide context-specific mutation-rate matrix of Kryukov43 (details

in Table S3).

To derive mutation rates for different mutation categories (CpG

or non-CpG and transition or transversion), we downloaded the

ancestral alignment used in the 1000 Genomes Project36 (see

Web Resources). The ancestral allele for loci that were not present

in this sequence (545,279 out of 12,181,714) was set to the major

allele found in the 1000 Genomes dataset (n ¼ 300,503) or set to

the allele found in the human reference genome (UCSC Genome

Browser hg19; see Web Resources) if monomorphic in the 1000

Genomes dataset (n¼ 244,776).We then computedmutation rates

by using MaAF-threshold regression and excluding variants that

did not match the analyzed mutation type (e.g., CpG transition)

and scaled the resulting rate by the genomic fraction that might

harbor the specific kind of mutation (e.g., CpG or non-CpG).
Results

Simulations

We evaluated the accuracy and robustness of the method

via extensive coalescent simulation (see Material and

Methods). To assess the impact of demographic history

on our estimates, we simulated several plausible demo-

graphic scenarios and modeled genotyping errors by using

a beta distribution with different parameters and speci-

fying error rate at different allele frequencies (Figure S5).

We extracted ground-truth shared IBD segments from the

synthetic ancestral recombination graph and simulated

three types of errors, referred to as de novo, false-positive,

and false-negative errors (see Material and Methods;

Figure 3). We observed that tMRCA regression is robust

to the presence of substantial levels of de novo genotyping

errors, consistent with the fact that IBD segments of

different lengths are equally affected by the spurious

sequence mismatches that result from errors of this kind.

When we simulated false-positive genotyping errors, we

observed our approach to be robust to errors up to a rate

of ~10�5 per base pair. False negatives were tolerated up

to a frequency of ~10�6. Very large values of false-positive

or -negative genotyping error rates resulted in a downward

bias of the estimates, which is due to the fact that IBD seg-

ments of different lengths harbor a slightly different spec-

trum of mismatching sites and are therefore not equally

likely to be affected by spurious genotype calls (see

Figure S1). Similar results were observed for several kinds

of genotyping-error distributions, demographic models,

and recombination maps, although the approach proved

more robust for error distributions that are less concen-

trated on very rare variants (Figures S3–S5 and S13). The

intercept of the tMRCA was observed to reflect genotyping

error; average values were between 13 and 23 the simu-

lated error rate (Figure S14), depending on the type of error

and the parameters of the distribution used for selecting

the frequency of affected alleles.
Journal of Human Genetics 97, 775–789, December 3, 2015 779
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Figure 4. Comparison of the Estimated SE for Trios and tMRCA
under Different Demographic Models and Minimum Cutoffs for
IBD-Segment Length
We report the estimated SD from the analysis of several simula-
tions of a single 100 Mb chromosome. For illustrative purposes,
we show results of analyses using IBD-length cutoffs of 1.0 and
1.5 cM. Analysis of the GoNL data used a length cutoff of 1.6 cM.
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Figure 5. Inference of Gene-Conversion-Corrected Mutation
Rate in Simulated Data
We simulated a chromosome of 50 cM for 250 diploid samples by
using m ¼ 2 3 10�8 for the mutation rate and a probability of 6 3
10�6 for a base pair to be involved in a non-crossover gene-conver-
sion event. We matched the allele-frequency spectrum of the
simulated samples to the spectrum found in real data for IBD-
segment detection with GERMLINE. We used several values of
the GERMLINE allowed mismatching sites (‘‘-het’’) to assess the
impact of this parameter in the results. Negligible biases were
observed for the recovered mutation rate. Error bars represent SE.
We note that the proposed procedure estimates a histor-

ical sex-averaged mutation rate per base per generation, a

quantity that might be affected by potential differences be-

tween the mutation and recombination rates of males and

females over several generations in the past. We performed

additional simulations to test whether sex-specific muta-

tion and recombination rates and effective population

sizes could bias our estimates. We determined that sex-

specific variability of these parameters did not produce a

bias (Table S4), given that the recovered estimate reflected

a flat average of male and female mutation and recombina-

tion rates.

To compare the power of the proposed method to the

power of trio-based mutation-rate inference, we simulated

data at various sample sizes by using the GoNL demo-

graphic model. Because pairs sharing IBD segments in-

crease quadratically as sample size increases, the proposed

method results in smaller SEs than the trio-based

approach, except at very small sample sizes (Figure 4).

However, for demographic models that result in substan-

tial IBD-segment sharing as a result of a small recent

effective population size, higher sample size did not sub-

stantially decrease the SE (Figure S15). This is due to the

fact that as new samples are added, early coalescent events

result in overlapping ancestral lineages across pairs of indi-

viduals, so that limited new information is obtained from

increasing the sample size.

We finally tested the MaAF-threshold-regression

approach to correct biases introduced by non-crossover

gene-conversion events and estimate the probability that

a base pair is involved in gene conversion. We simulated

realistic mutation and gene-conversion rates and used

GERMLINE to detect IBD-segment sharing after subsam-

pling synthetic SNPs in order to match the allele fre-
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quencies observed in the GoNL data. We observed good

performance of the MaAF-threshold regression in recov-

ering the simulated mutation-rate value (Figure 5) and

observed a small downward bias when we recovered the

gene-conversion rate by using the GERMLINE IBD-

segment discovery parameters used in the real-data anal-

ysis (Figure S16).

Average Genome-wide Mutation Rate and Gene-

Conversion Rate in the GoNL Dataset

We analyzed 498 founders that passed quality control in

250 trio families sequenced within the GoNL project (see

Material and Methods). Because of the trio design of the

GoNL study, the average ~133 sequencing depth is

effectively doubled to ~263 for the transmitted haplotypes

in the 498 analyzed founders. 248 trios and 2 duos

passed sequencing quality control. In the remainder of

the paper, we report results for the analysis of transmitted

haplotypes only.

We estimated a mutation rate of (2.08 5 0.06) 3 10�8

(Figure 6) by using IBD segments between 1.6 and 5.0 cM

of length before correcting for gene-conversion events

(hereafter, 5 introduces a SE). For all analyses of mutation

and gene-conversion rates, we discarded 0.5 cM on either

edge of the segments and ignored variants with a trio-

phasing and genotyping posterior value less than 1.0.

Choosing more-conservative values for the minimum-

length and edge-exclusion cutoffs resulted in compatible

estimates (Figures S11, S17, and S18). As expected,

including variants with lower trio-phasing and genotyping
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Figure 6. tMRCA Regression for Segments of Length R 1.6 cM
in the GoNL Dataset
The obtained slope is used for estimating mutation rate per gener-
ation per base pair before the effects of gene conversion are ac-
counted for.
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Figure 7. MaAF-Threshold Regression for Segments of
Length R 1.6 cM in the GoNL Dataset
We computed mutation rates for several allowed maximum-allele-
frequency thresholds between 0.125 and 0.5 (green dots) and re-
gressed the observed heterozygosity on the maximum allele
frequency. The intercept of the resulting linear model reflects
the corrected mutation-rate estimate.
posterior values resulted in higher estimates of genotyping

error, but negligible effects were observed on the estimates

of mutation rate (Figures S6–S9). The tMRCA-regression

intercept, which reflects genotyping and phasing error

rate (see Material and Methods), was estimated to be

(2.21 5 0.09) 3 10�6, within a range that is not expected

to result in biases in the tMRCA-regression slope according

to simulations (Figures 3, S6, S9, S13, and S14).

We then performed MaAF-threshold regression to cor-

rect for gene-conversion events (see Material andMethods;

Figure 7). Using this approach, we estimated a genome-

wide average mutation rate of (1.66 5 0.04) 3 10�8 per

base per generation. Note that this represents a historical

mutation rate, which includes effects such as average

paternal age (see Discussion). Using segments up to

10 cM in length did not result in appreciable changes in

our estimate: (1.66 5 0.04) 3 10�8 per base per generation

(tMRCA regression is shown in Figure S19). Analysis per-

formed with only the range of long IBD segments between

5.0 and 10.0 cM resulted in a compatible estimate (but a

substantially larger SE). As expected given the simulated

data (Tables S1 and S2), a concordant estimate was also ob-

tained when the analysis was repeated with non-overlap-

ping IBD-segment length bins in the tMRCA regression

(and inverse-variance weighting of the observations) or

with non-overlapping MaAF frequency bins. We truncated

the MaAF regression to a conservative lower maximum

allele frequency of 12.5% (see Material and Methods),

given that including low MaAF values can result in down-

ward biases as a result of the exclusion of recent mutation

events (Figure S20). The mutation-rate estimates for each

region and for regions of ~20 cM are shown in Tables S5

and S6. The difference between the corrected and uncor-

rected genome-wide estimates, (4.18 5 0.48) 3 10�9, and

the observed population heterozygosity of ~6.98 3 10�4

can be used for estimating the chance that a base pair is
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involved in a gene-conversion tract (see Material and

Methods). We estimated that a base pair is involved in a

gene-conversion event at a rate of (5.99 5 0.69) 3 10�6

per meiotic event. This rate is in good agreement with a

recently published estimate of (5.9 5 0.71) 3 10�6.27

We estimated the effects of uncertainty in the inferred

model of demographic history on our estimates. When a

genome-wide average mutation rate was inferred for a de-

mographic model with ancestral population size perturbed

by 10%, we observed a ~1.8% difference in the inferred

average mutation rate. Larger variation in the ancestral

population size was observed to have an approximately

linear effect on our estimate (Table S8). We observed very

limited effects on the mutation-rate estimate when we per-

turbed the present-day population size, which is inferred

with uncertainty because of the scarcity of very recent coa-

lescent events (Table S8).

Average Genome-wide Indel Rate

We applied the same procedure used for inferringmutation

rates to infer the rate of <20 bp indels, which we estimated

to be (1.265 0.06)3 10�9. This rate is higher than a recent

estimate of 0.68 3 10�9, reported in Kloosterman et al.,44

but compatible with a second recent estimate of (1.5 5

0.18) 3 10�9,25 both obtained via observation of de novo

events in trios. We further divided the indels into inser-

tions and deletions and estimated the rate of different

classes as a function of their maximum length (Figure S21).

We observed deletions to be about 50%–100% more

frequent than insertions, depending on the length range.

We additionally used our method to estimate the gene-

conversion rate on the basis of indels and obtained a rate

of (9.02 5 2.91) 3 10�6 per meiotic event, compatible

with the rate obtained from point mutations.
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Figure 8. Association between Recombination Rate and Muta-
tion Rate
We annotated the genome on the basis of uniform bins of recom-
bination rate and estimated mutation rates for each obtained
annotation. We observed a strong association between mutation
and recombination rate before correcting for the occurrence of
gene-conversion events. After applying the correction, we de-
tected no significant association, which suggests that the linear
relationship observed for the uncorrected estimates is induced
by gene conversion (see Figure S22). Error bars represent SE.

Figure 9. Relationship between Region-Specific Values of the B
Statistic and the Average Length ofR1.6 cM IBD Segments Span-
ning the Regions
Equally spaced bins of the B statistic were used. Reduced local
effective population size has similar effects on the B statistic and
the length of IBD haplotypes, which are longer in regions of strong
background selection as a result of earlier average coalescent times
between pairs of individuals. Error bars represent SE.
Recombination Does Not Strongly Affect

Mutation Rate

We used our approach to analyze annotation-specific mu-

tation rates (see Material and Methods). We looked for as-

sociation between recombination rates andmutation rates,

a relationship that has been previously detected and

attributed to mutagenic properties of recombination.45

Indeed, we found our tMRCA-regression estimates of mu-

tation rate to be strongly associated with recombination

rate (b ¼ 0.38 5 0.04 mutations/recombination, F-test

p ¼ 5.27 3 10�6, R2 ¼ 0.9; Figure 8). As previously

mentioned, however, an increased sequence-mismatch

rate at loci that undergo frequent recombination might

be a result of polymorphic variants introduced by gene-

conversion events, which might increase the slope of

the tMRCA regression. Consistently, after controlling for

gene conversion, we observed no significant association

between recombination rate and mutation rate (b ¼
�0.04 5 0.03, F-test p ¼ 0.17), suggesting a lack of observ-

able mutagenic effects associated with recombination hot-

spots (Figures 8 and S22). A recent study reached similar

conclusions.5 Repeating the same analysis with indels,

we detected no significant association between indel rate

and recombination rate for either tMRCA-regression slope

or MaAF-threshold-regression intercept (b ¼ �0.003 5

0.003, F-test p ¼ 0.37 after gene-conversion correction).

Effects of Background Selection

Natural selection affecting new mutations can reduce

genomic variation, leading to downward bias in our muta-

tion-rate estimates. Because our analysis is limited tomuta-

tion events that occurred in the past ~100 generations,
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given the length of IBD segments, we expect the effects

of natural selection on our genome-wide average mutation

rate estimate to be small. Genomic regions with functional

or regulatory roles, however, might be under selective pres-

sures that might result in a measurable impact even at

these short time scales.

To estimate the impact of selective pressures on our esti-

mates, we divided the genome on the basis of the B statistic

proposed in McVicker et al.4 The B statistic measures the

impact of background selection on a genomic region by

estimating the ratio between local effective population

size and the effective population size expected under

neutrality, such that small values of the B statistic corre-

spond to higher selective pressures (see page 11 in

McVicker et al.4 for details on the computation of the B sta-

tistic). Similarly, a local reduction in effective population

size affects the spectrum of shared IBD segments, which

are expected to be longer on average, as a result of early

coalescent events in populations of smaller effective

size.20,38 Indeed, we observed a strong correspondence be-

tween small values of the B statistic and the average length

of IBD segments (F-test p ¼ 8.43 3 10�7; Figure 9). As ex-

pected, the effect is such that smaller values of the B statis-

tic correspond to longer average shared IBD segments as a

result of reduced local effective population size. This effect

is remarkably strong up to the measured genome-wide

average value of the B statistic. We observed longer average

IBD segments for large values of the B statistic, a result that

might be explained by biases in either of the two measures

or by the fact that additional evolutionary forces, such as

selection acting on standing genetic variation,38 are being

captured by IBD-segment lengths. When we measured the

impact of different values of the B statistic on our estimates
er 3, 2015



Table 1. Analyses of PolyPhen-2 and GerpþþAnnotated Variants:
Genome-wide versus Mismatching within IBD Segments

Genome-wide
Mismatching in IBD
Segments

PolyPhen-2 Results

Annotated variants 54,960 1,843

Mean score 0.41 5 0.0018 0.45 5 0.0099

Gerpþþ (>2) Results

Annotated variants 948,782 27,900

Mean score 3.08 5 0.00098 3.11 5 0.0059
of mutation rate, however, we found the effect to not be

significant (b ¼ [2.17 5 1.55] 3 10�9 mutations per gener-

ation per unit of B statistic, F-test p¼ 0.19; Figure S23). The

genome-wide average B statistic was estimated to be 0.78. If

we were to correct the estimated average genome-widemu-

tation rate to account for this, we would obtain an updated

average mutation rate of (1.75 0.05)3 10�8, which is not

significantly different from the uncorrected estimate. In

addition to these analyses, we tested for significant correla-

tion with the mutation rate inferred for each region or for

sub-regions of size 10, 20, 30, or 40 cM. The correlationwas

found to not be significant for the average value of the B

statistic in the region, the recombination rate, or the

average density of IBD sharing.

Sequence Differences in IBD Segments Are Enriched

with Deleterious Variation

Mutation events occurring within the analyzed IBD re-

gions are expected to have arisen within the past ~100

generations and are therefore on average substantially

younger than variants randomly sampled along the

genome. Several recent studies have outlined the recent

origin of a large fraction of functionally relevant vari-

ants.46–48 We therefore tested whether the presence of

recent mutations on IBD segments results in more delete-

rious variants than in the average genome-wide locus by

contrasting average scores obtained from PolyPhen-240

and Gerpþþ41 annotations (see Material and Methods).

Of the analyzed GoNL variants, 54,960 were annotated

with PolyPhen-2, and 948,782 were annotated with

Gerpþþ; of these, 1,843 and 27,900, respectively, were

found to be mismatched on IBD segments of 1 cM or

longer. When we compared average scores, we found

that mismatching sites within IBD regions were strongly

enriched with higher scores in both annotations

(PolyPhen-2 Z-test p ¼ 2.8 3 10�5; Gerpþþ Z-test

p ¼ 9.03 3 10�10; Table 1). We further found a marginal

association between PolyPhen-2 scores and the B statistic

of background selection (b ¼ �0.074 5 0.025, p ¼ 0.014,

R2 ¼ 0.39) and a strong association between Gerpþþ
scores and regional B statistics (b ¼ �0.734 5 0.068,

p ¼ 3.55 3 10�7, R2 ¼ 0.91; Figure S24), which is expected

because both measures rely on metrics related to sequence

conservation.
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We finally tested for enrichment or depletion of the mu-

tation rate in several genomic annotations that have

recently been extracted from several studies (Material and

Methods; Table S3). None of the annotations were signifi-

cantly enriched with or depleted of mutation rates after

we controlled for trinucleotide context and multiple hy-

pothesis testing. A recent paper49 found that cell-specific

chromatin features are a strong determinant of cancer mu-

tations. On the other hand, our estimated mutation rate of

(1.66 5 0.05) 3 10�8 in DNase I hypersensitive regions

suggests that the germline mutation rate is not substan-

tially different from the genome-wide average in these re-

gions, in line with recent analyses.9 We further computed

estimates of the rate of mutations at CpG and non-CpG

sites (Table S7) and found them to be higher than in previ-

ous reports according to trio analysis, consistent with a

higher genome-wide rate (see Table 2 in Kong et al.24).
Discussion

We propose a method for estimating mutation and gene-

conversion rates from genealogical relationships across

the past tens to few hundreds of generations. This

approach is robust to substantial amounts of genotyping

error, which is an important confounder for many recent

mutation-rate estimators based on trio data. Using this

method, we inferred a genome-wide average point muta-

tion rate of (1.66 5 0.04) 3 10�8 per base per generation,

which is significantly higher than several recent family-

based estimates ranging from 1.0 3 10�8 to 1.2 3 10�8

per base per generation.7,10,11 Family-based methods

have the advantage of relying on direct observation of de

novomutation events while makingminimal modeling as-

sumptions but are currently affected by the need to rely on

strict filtering criteria to deal with false-positive and -nega-

tive genotype calls, and this could in part or entirely

explain the discrepancy with our results. We note that

the approach of Campbell et al.23 is similar in spirit to

ours, because it uses de novo mutations on long stretches

of recently arisen autozygosity within individuals from a

known pedigree. However, the autozygosity reflects iden-

tity by descent at a more recent time scale, and the authors

still mainly rely on stringent filtering criteria to avoid false-

positive genotype calls, thereby incurring the same poten-

tial biases as other trio-based studies. Phylogenetic

methods, on the other hand, fall within the range of

2.0 3 10�8 to 2.5 3 10�8 per base per generation.50,51

These estimates rely on several underlying modeling as-

sumptions, which provide a possible explanation for the

higher inferred rates, although some have suggested the

possibility that these analyses might capture the results

of evolutionary changes of the mutation rate across popu-

lations or the effects of a varying length of generation

times.7,10,52 Converting between per-year and per-genera-

tion estimates requires making assumptions on the sex-

averaged generation length.10 This is generally done with
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indirect evidence, which complicates the comparison of

different estimates. If we assume a sex-averaged long-

term generation length of 29 years,53 we can convert our

inferred sex-averaged per-generation rate to (5.71 5

0.14) 3 10�10 per base per year. Fu et al.54 used ancient

DNA to estimate a range of 0.4 3 10�9 to 0.6 3 10�9 per

year, which is slightly lower than our result, but the re-

ported confidence intervals are compatible. Similarly, Sun

et al.55 computed a rate of 1.4 3 10�8 to 2.3 3 10�8 per

base per generation on the basis of point mutations near

microsatellites, which is also compatible with our estimate.

A contemporary study56 related in spirit to ours used simu-

lation-based calibration of the decay of heterozygosity

along the genome to infer an average genome-wide muta-

tion rate of (1.61 5 0.13) 3 10�8, which matches our esti-

mated value. The authors discuss several implications of

this mutation rate on the ability to reconcile demographic

events inferred with DNA analysis and fossil records,

which apply to our analysis as well.

Because conversion between sequence divergence and

phylogenetic split times across different primate species re-

lies on an estimate of the per-year mutation rate, different

values of this rate have a direct impact on our ability to

reconstruct the timing of these events.7,10 If we assume

no significant effects of generation time and no changes

in mutation rates, our estimate (in conjunction with addi-

tional data from Table S5 of Prado-Martinez et al.57) implies

that the split between humans and chimpanzees occurred

~6.6 million years ago and that the split between humans

and orangutans occurred about ~19.5 million years ago.

When we used our estimate of mutation rate to interpret

recently reported split times across human populations,8

we found dates that are compatible with what has been in-

ferred by methods other than DNA-based reconstruction.

The split of African and non-African populations is esti-

mated to have occurred 46,000–61,000 years ago, whereas

a split time of 15,000 years ago is inferred for the separa-

tion of East Asians and Native American populations.

These estimates are lower than those obtained under the

assumption of a smaller mutation rate, but they do not

contradict current fossil evidence.

Note that the several different available estimates might

disagree not only because of statistical uncertainty and

possible biases induced by violations of modeling assump-

tions but also as a result of differences in the underlying

quantity being estimated. Our approach aims at measuring

the sex-averaged, genome-averaged, and time-averaged

mutation and gene-conversion rates per base per genera-

tion. As pointed out in several recent studies,10,23,24,55,58

paternal age at conception is an important determinant

of sex-averaged mutation rates, and it is interesting to ask

whether variation in historical paternal age might at least

partially explain the discrepancy between our estimate

and that obtained in recent pedigree studies. In Kong

et al.,24 the authors reported that the paternal age in Ice-

land between 1650 and 1900 was ~36 years, significantly

higher than the average paternal age of ~30 years for the
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contemporary samples they analyzed. We found that

even if we conservatively assume the per-year paternal-

age effect by from Kong et al.24—which is higher than

the by value from other studies10,23,55,58—and a drop

from the historical paternal age of 36 years to the contem-

porary paternal age of 30 years, then our extrapolated esti-

mate decreases to 1.43 3 10�8 (Table S9). Thus, in the

absence of additional evidence for historical average age

variation in the analyzed samples, this observation alone

might not fully explain the difference between our esti-

mate and those reported in recent pedigree studies,

although it outlines the importance of taking this addi-

tional source of variation into account in a comparison

of estimates obtained from different methods. We note

that paternal-age-related differences in per-generation esti-

mates of the mutation rate might also affect the previously

described conversion between the per-generation and per-

year scales.

In addition to estimating the rate of point mutations, we

report a gene-conversion rate of (5.99 5 0.69) 3 10�6 per

base per generation, in close agreement with a recent

report,27 and have found that recombination is not associ-

ated with mutation rates, supporting recent findings.5 A

recent sperm-typing study further dissected the relation-

ship among mutation, recombination, and gene conver-

sion and found evidence of both higher mutational load

in regions of high recombination and repairing mecha-

nisms associated with gene conversion.59 These lead to a

higher prevalence of GC alleles than of AT alleles. Overall,

these effects might be counteracting each other in a way

that results in minimal differences in the total number of

observed mutations in recombination-rich regions while

affecting sequence composition. Interestingly, a recent

study has reported that recombination rate affects the dis-

tribution of putatively deleterious variants along the

genome but found no evidence suggesting a role of biased

gene conversion in this observation.60

Finally, we applied our method to estimate the rate of

short (<20 bp) indels, which have not thus far been exten-

sively characterized. We inferred a rate of (1.26 5 0.06) 3

10�9, compatible with two previous estimates of (1.5 5

0.18) 3 10�9 from Besenbacher et al.25 and (1.06 5

0.1) 3 10�9 from Ramu et al.61 but higher than the esti-

mate of 0.68 3 10�9 reported in Kloosterman et al.44

Although these analyses are most likely affected by diffi-

culties related to detection of short indels, collectively

they suggest that insertions and deletions occur at a signif-

icantly lower rate than do single point mutations.

In addition to analyzing genome-wide average rates, we

looked for enrichment or depletion of mutation rates in a

number of genomic annotations that were recently derived

from several studies. Although we cannot exclude signifi-

cant deviations from genome-wide averages, we found

no evidence of changes in overall mutation rates for the

analyzed regions. Notably, although the distribution of

shared IBD haplotypes closely reflects the effects of

background selection along the genome, we observed a
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negligible effect on our estimated mutation rates, suggest-

ing that estimating mutation rates by using mutation

events under the effects of ~100 generations of natural se-

lection does not significantly bias local mutation-rate esti-

mates in European populations. Consistent with the idea

that mutations on IBD segments are recent and under

the effects of selective forces,46–48 we found a strong

enrichment of deleterious variants within IBD regions.

Our method provides a way of studying mutation and

gene-conversion events in large samples of unrelated indi-

viduals because it is robust to substantial amounts of

genotyping error, which limits other approaches. A main

limitation is the need to rely on two fundamental compo-

nents—namely, detecting shared IBD segments and infer-

ring the recent demographic history for the analyzed

population—that are potential sources of bias. Our analysis

of mutation rates in the GoNL dataset relies on IBD detec-

tion and demographic inference performed in a previous

study,34 but it is possible that additional sources of uncer-

tainty in these two components affect our results. Our

conservative exclusion of substantial portions of IBD seg-

ments, together with our sensitivity analysis for changes

in the demographic model, however, suggests that these

biases, if present, should not be substantial.

Several potential directions for improvement of the pro-

posed methodology and analysis can be outlined. First,

additional developments of the coalescent calculations

used in this work can remove the requirement of esti-

mating a demographic model for the analyzed samples.62

Second, it might be possible to devise more-sophisticated

weighting schemes for dealing with heteroscedasticity in

the regressions and develop additional modeling for

dealing with any small deviations from linearity that de-

mographic variation might induce in the MaAF regression.

Third, alternative genotype-calling strategies (e.g., individ-

ual-based calling) can be employed for reducing these

effects of the relationship between allele frequency and

genotyping error rates. Finally, applying the tMRCA regres-

sion approach proposed in this paper might make it

possible to analyzemulti-generation pedigrees (e.g., Camp-

bell et al.23) while controlling for substantial genotyping

error. In this scenario, in fact, IBD calling and the inference

of tMRCA for IBD segments are substantially simplified.

Future improvements of sequencing technologies and

methods for downstream analysis will lead to accurate

and direct characterization of biological properties of the

processes leading tomutation and gene-conversion events.

These advances will also shed light on the discrepancy be-

tween previous pedigree-based mutation-rate estimates

and those obtained by our methods and will enable testing

whether cross-population differences exist. In particular, it

will be possible to test whether false-negative de novo

genotype calls due to stringent filtering criteria lead to sys-

tematically lower mutation-rate estimates in pedigree-

based studies (we currently believe this to be the most

plausible explanation for the observed discrepancy).

Accordingly, we expect that improved sequence quality
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and analysis will lead trio-based studies to detect a higher

number of de novo mutations. Because our methodology

relies on evidence from several generations in the past, it

is sensitive to additional historical parameters, such as vari-

ation in the average paternal age or changes of the muta-

tion rate itself. Although we cannot exclude that historical

variation in these quantities might play a role in the higher

mutation-rate estimate we obtained, our method relies on

evidence from a relatively small number of generations,

and it seems less plausible that substantial variation might

be observed in such a short time span. Future methodolog-

ical developments, however, might enable testing of these

hypotheses. On the basis of the analysis we described, we

believe that several pedigree-based estimates available to

date might not accurately reflect the historical mutation

rate, particularly in the context of demographic recon-

struction, where a higher rate should be assumed.
Appendix A

The Age of IBD Segments

If a pair of chromosomes share a common ancestor at time

t generations before present, the probability that a single

site is spanned by an IBD segment of length l at least uMor-

gans can be expressed as

sðtÞ ¼
Z N

u

lð2tÞ2e�2tldl

¼ e�2tuð2tuþ 1Þ:
(Equation A1)

The distribution lð2tÞ2e�2tl represents the sum of two

exponential random variables with parameter 2t, which

is the rate at which a recombination occurs on either side

of the chosen site. Note that this assumes that an IBD

segment is delimited by the occurrence of recombination

events, which is equivalent to assuming an underlying

sequentially Markovian coalescent (SMC) model. For very

short IBD segments (e.g., <0.3 cM) and in populations

that experience substantial and long-lasting isolation

(e.g., Ne < 1,000), the slightly more-complex SMC0

model63 provides more-accurate calculations.8,64 This is,

however, unnecessary given the demographic history

and length ranges here considered. It follows from the

linearity of the expectation operator that the expected

genomic fraction f(t) shared identically by descent by a

pair of individuals whose ancestral lineages coalesce at

time t can be obtained from the probability that a single

site is spanned by an IBD segment of length at least uMor-

gans, which we write f(t) ¼ s(t). The expected length of an

IBD segment transmitted from a common ancestor living

at time t is therefore

[ðtÞ ¼
Z N

u

l32te2tðu�lÞ dl ¼ 1=ð2tÞ þ u : (Equation A2)

To determine the expected number of IBD segments ob-

tained if the lineages of two individuals coalesce at time t,

we therefore divide the expected total amount of genome
Journal of Human Genetics 97, 775–789, December 3, 2015 785



shared identically by descent by the expected length of an

IBD segment co-inherited from an ancestor living at time t.

This yields

nuðtÞ ¼ LfuðtÞ=[ðtÞ

¼ Le�2tuð2tuþ 1Þ
1=ð2tÞ þ u

¼ L2e�2tut;

(Equation A3)

where L is the size, in Morgans, of the considered genomic

region. To obtain the expected number of IBD segments

longer than u Morgans for the average pair of individuals

in the population, we marginalize over the distribution

of pairwise coalescence times, c(t), which depends on the

demographic history,

nu ¼
Z N

0

cðtÞnuðtÞdt: (Equation A4)

This quantity has a closed-form expression if we assume

that the population size becomes constant at an arbitrarily

remote point in time, and we can use it to obtain the pos-

terior age distribution of IBD-segment ages,

puðtÞ ¼ cðtÞnuðtÞ
nu

: (Equation A5)

Contribution of Individual Variants to Heterozygosity

For a sample of K homologous sequences from a popula-

tion, the heterozygosity per site can be estimated by

bq ¼ 1

s

Xs

i¼1

K

K � 1
2
xi
K

�
1� xi

K

�
; (Equation A6)

(see Nei65), where s is the number of sites in each sequence,

xi is the number of samples carrying a derived allele at site i,

and K/(K � 1) is a bias-correction factor. Defining M(x) as

the total number of sites in the sample for which exactly

x sequences carry a derived allele, we can rewrite this equa-

tion as a sum over x:

bq ¼
XK�1

x¼1

MðxÞ
s

2xðK � xÞ
KðK � 1Þ : (Equation A7)

The term M(x)/s is the proportion of sites at which x of

the K sequences carry a derived allele, and the term

2xðK � xÞ
KðK � 1Þ (Equation A8)

is the probability of discovering such a polymorphic site

when just two sequences are sampled without replacement

from the K sequences. Note that this probability is the

same for sites with x copies of a derived allele as it is for sites

with K � x copies. Thus, we can also write

bq ¼
X½K=2�
x¼1

MðxÞ þMðK � xÞ
s

2xðK � xÞ
KðK � 1Þ ; (Equation A9)
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where [K/2] is the largest integer that is less than or equal to

K/2, and x is now the count of the minor allele.

This allows us to consider the average contribution of

different kinds of polymorphic sites to overall heterozygos-

ity. Under the model of constant population size and

neutral evolution of Watterson,66

E½MðxÞ� ¼ sq

x
(Equation A10)

(see Fu67), in which q ¼ 4Nm is the diploid population-

scaled mutation rate per site, or the expected per-site

heterozygosity of the population. Using Equation A10

together with Equation A9 and simplifying gives

E
�bq� ¼ X

x¼1

ðK�1Þ=2
q

2

K � 1
; (Equation A11)

in whichwe assume that K is odd for simplicity. The sum in

Equation A11 evaluates to q, as expected for an unbiased

estimator.

Equation A11 shows that, on average, the different kinds

of polymorphic sites, categorized by minor allele fre-

quency, contribute uniformly to heterozygosity, as noted

previously by Kruglyak and Nickerson.68 Another way of

stating this is that polymorphisms discovered by screening

in samples of size two will be uniformly distributed among

classes of minor allele frequencies. This depends on geno-

type-calling criteria and a constant population size over

time and is also not true for derived allele-frequency clas-

ses. Figure S2 shows that contributions to heterozygosity

are close to uniform for the GoNL site-frequency spectrum.
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ski, M. (2003). A neutral explanation for the correlation of di-

versity with recombination rates in humans. Am. J. Hum.

Genet. 72, 1527–1535.

46. Nelson,M.R.,Wegmann,D., Ehm,M.G., Kessner, D., St Jean, P.,

Verzilli, C., Shen, J., Tang, Z., Bacanu, S.-A., Fraser, D., et al.

(2012). An abundance of rare functional variants in 202 drug

target genes sequenced in14,002people. Science337, 100–104.

47. Fu,W., O’Connor, T.D., Jun, G., Kang, H.M., Abecasis, G., Leal,

S.M., Gabriel, S., Rieder, M.J., Altshuler, D., Shendure, J., et al.;

NHLBI Exome Sequencing Project (2013). Analysis of 6,515

exomes reveals the recent origin of most human protein-cod-

ing variants. Nature 493, 216–220.

48. Kiezun, A., Pulit, S.L., Francioli, L.C., van Dijk, F., Swertz, M.,

Boomsma, D.I., van Duijn, C.M., Slagboom, P.E., vanOmmen,

G.J., Wijmenga, C., et al.; Genome of the Netherlands Con-

sortium (2013). Deleterious alleles in the human genome are

on average younger than neutral alleles of the same frequency.

PLoS Genet. 9, e1003301.

49. Polak, P., Karli�c, R., Koren, A., Thurman, R., Sandstrom, R.,

Lawrence, M.S., Reynolds, A., Rynes, E., Vlahovi�cek, K.,

Stamatoyannopoulos, J.A., and Sunyaev, S.R. (2015). Cell-

of-origin chromatin organization shapes the mutational

landscape of cancer. Nature 518, 360–364.

50. Nachman,M.W., and Crowell, S.L. (2000). Estimate of themu-

tation rate per nucleotide in humans. Genetics 156, 297–304.

51. Chimpanzee Sequencing and Analysis Consortium (2005).

Initial sequence of the chimpanzee genome and comparison

with the human genome. Nature 437, 69–87.

52. Harris, K. (2015). Evidence for recent, population-specific evo-

lution of the human mutation rate. Proc. Natl. Acad. Sci. USA

112, 3439–3444.

53. Fenner, J.N. (2005). Cross-cultural estimation of the human

generation interval for use in genetics-based population diver-

gence studies. Am. J. Phys. Anthropol. 128, 415–423.

54. Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S.M., Bondarev,

A.A., Johnson, P.L., Aximu-Petri, A., Prüfer, K., de Filippo, C.,
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Figure S1: Simulated frequency spectra on IBD segments of different legnths.
We computed the allele frequency spectrum of mismatching sites due to new
mutation events occurring on IBD segments. Empty dots represent the frac-
tion of the total genome-wide variants of a specific frequency that are found
heterozygous on the IBD segments. Simulations were performed using the
reconstructed GoNL demographic model.
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Figure S2: Approximately uniform contribution of variants of different fre-
quencies to overall heterozygosity for both point mutations and indels in the
GoNL dataset. Small deviations from linearity may be caused by demographic
history (at both recent and remote time scales).
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Figure S3: Demographic models inferred for the GoNL data or adopted in
simulations.
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Figure S4: Genetic maps adopted in simulations.
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Figure S5: Distributions adopted to sample the frequency of spurious geno-
typing calls in simulated data. The beta distribution Beta(α, β) was used
with β = 1 and α as specified in the Legend. For “de-novo” false positive
errors, the frequency determines the number of individuals that are affected
by an erroneous genotype call. For false-positive/negative genotyping errors,
the sampled frequency corresponds to the frequency of the allele that is chosen
to add/remove erroneous genotype calls. Three shape parameters were tested
for the beta distribution: α = 0.01, α = 0.5, resulting in a strong preference
for rare variants being erroneously called, and α = 1, resulting in a uniform
distribution.
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Figure S6: Estimated intercept of the tMRCA regression in the GoNL dataset
for segments of length at least 1.6 cM, as a function of the minimum required
MVNCall posterior quality for observed heterozygous sites. The MVNCall
program used to trio-phase the analyzed data outputs posterior probabilities
that capture uncertainty about genotyping and phasing calls. To test the
robustness of our approach to the effects of genotype uncertainty, we computed
mutation rates excluding from the analysis variants for which the MVNCall
posterior was lower than a chosen threshold in IBD regions. Lower values of
the posterior threshold resulted in a larger intercept of the tMRCA regression,
reflecting higher genotyping error.
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Figure S7: Estimated slope of the tMRCA regression in the GoNL dataset
for segments of length at least 1.6 cM, as a function of the minimum required
MVNCall posterior quality for observed heterozygous sites. Different values
of the MVNCall posterior threshold, resulting in higher estimated genotyping
error rates (Figure S8), did not significantly affect the estimated mutation rate.
tMRCA estimates are inflated due to uncorrected effects of gene conversion,
for which MaAF-threshold regression is adopted.
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Figure S8: Estimated slope of the MaAF-threshold regression performed to
correct for gene conversion in the GoNL dataset for segments of length at least
1.6 cM, as a function of the minimum required MVNCall posterior quality for
observed heterozygous sites. Minimal variation is observed as the MVNCall
posterior threshold is changed.
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Figure S9: Estimated intercept of the MaAF-threshold regression in the GoNL
dataset for segments of length at least 1.6 cM, as a function of the minimum
required MVNCall posterior quality for observed heterozygous sites. We ob-
served no significant impact of the chosen MVNCall posterior threshold on the
inferred average genome-wide mutation rate.
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Figure S10: Region-specific density of ≥ 1.6 IBD segments.
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Figure S11: Gene conversion-corrected and uncorrected mutation rates in-
ferred for segments longer than 1.6 cM in the GoNL data set, as a function of
the size of discarded IBD segment edge. Inferred values become stable when
> 0.5 cM edges are exluded.
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Figure S12: We observed a downward bias when we simulated annotations that
are extremely localized, with a large average distance between the analyzed
regions. This occurs due to the fact that in our approach we are estimating the
age of chromosome-wide IBD segments of a specified length, rather than the
age of segments spanning a small genomic region. Due to the “inspection para-
dox” of Poisson processes, the length distribution of IBD segments spanning
individual sites differs from that of segments spanning large regions such as
chromosomes. To quantify and correct the resulting bias, we randomly shifted
the tested annotation along the analyzed chromosomal regions and computed
the ratio between the mutation rate obtained from random shifting and the
genome-wide mutation estimate. The computed correction factor was used to
correct for the observed bias in real data analysis (see Table S3).
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Figure S13: Inferred mutation rates for several values of simulated genotyping
error rate, for several types of genotyping errors, demographic history and prior
distribution for the frequency of spurious calls. The simulated true underlying
mutation rate was µ = 2×10−8. All simulations involved a single chromosome
of 250 cM for 100 diploid individuals. The “steps” recombination map was
adopted (Figure S4). Analogous results, omitted from this summary, were
obtained for the “hotspots” recombination map.
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Figure S14: We simulated a chromosome of 250 cM for 100 diploid samples
and introduced several types and magnitudes of sequencing errors using the
GoNL demographic model. In all cases we used the beta distribution with
parameter 0.5 as a prior for the frequency of simulated errors (Figure S5), and
the “steps” recombination map (Figure S4). We report the intercept from the
tMRCA regression as a function of simulated error.
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Figure S15: Comparison of the estimate standard error for trios and tMRCA
under different demographic models and minimum IBD segment length cut-
offs. We report the estimated standard deviation from the analysis of several
simulations of a single 100 Mb chromosome.
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Figure S16: We simulated a chromosome of 50 cM for 250 diploid samples,
using µ = 2 × 10−8 for the mutation rate and a probability of 6 × 10−6 for a
basepair to be involved in a non-crossover gene conversion event. We matched
the allele frequency spectrum of the simulated samples to the spectrum found
in real data for IBD detection with GERMLINE. We used several values of
the GERMLINE allowed mismatching sites (“-het”) to asses the impact of this
parameter in the results. Using a stringent “-het” value of 1, we observed a
downwards bias in the estimated gene converion rate. A small bias is observed
for higher values, including “-het 2” used in the real data analysis.
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Figure S17: Gene conversion-corrected and uncorrected mutation rates in-
ferred for segments longer than several length thresholds in the GoNL data
set.
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Figure S18: tMRCA regression for segments of length ≥ 1.0 cM in the GoNL
data set. The obtained slope is used to estimate mutation rate per generation
per base pair, before the effects of gene conversion are accounted for. Segments
shorter than 1.6 cM (green) result in mismatching estimates that appear non-
linear when compared to segments longer than 1.6 cM. This is likely due to
inaccuracies of the underlying demographic model and noisy IBD detection for
short segments.
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Figure S19: tMRCA regression using segments up to 10 cM.
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Figure S20: MaAF regression. Red dots show mutation rates for low MaAF
values, not used in the regression.
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Figure S21: Inferred rate for indels, insertions and deletions, as a function of
maximum length.
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Figure S22: Association between recombination rate and gene conversion rate.
We annotated the genome based on uniform bins of recombination rate (per
base, per generation), and estimated gene conversion rates for each obtained
annotation. We observed association between gene conversion and recombi-
nation rate (R = 0.91; slope = 353.6, s.e. = 56.5, p = 1.52 × 10−4; intercept
= 8.107× 10−7, s.e. = 9.208× 10−7, p = 0.401).
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Figure S23: Despite a strong association between average IBD segment length
and McVicker B statistic, no significant association is detected between the B
statistic and the inferred mutation rates, indicating that the change in local
coalescent distributions does not significantly affect the posterior mean IBD
segment age used in this analysis.
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Figure S24: Association between Gerp++ scores of mismatching variants
found on IBD segments and average B statistic in IBD regions.



estimator estimate ×108

µ̂o 1.981± .172
µ̂n 2.018± .197
µ̂o,w 1.985± .178
µ̂n,w 2.012± .180

(a) Estimates in simulation.

estimator estimate ×108

µ̂o 1.64± 0.0396
µ̂n 1.65± 0.0397
µ̂o,w 1.63± 0.0441
µ̂n,w 1.67± 0.0394
µ̂o,long 1.73± 0.1928

(b) Estimates in GoNL.

Table S1: Effects of non-independent observations on tMRCA regression. We
performed tMRCA regression using either overlapping (o) or non-overlapping
(n) IBD length bins for segments between 1.6 and 10 cM, with intervals of
0.1 cM. (a) We simulated a mutation rate of 2 × 10−8 in a sample of 200
individuals for a chromsome of 100 cM using the GoNL demographic model.
We report the inferred average mutation rate and observed standard deviation
across 500 independent simulations. We estimated mutation rate using over-
lapping length bins (µ̂o), non-overlapping length bins (µ̂n), overlapping length
bins weighted by inverse-variance (µ̂o,w), non-overlapping length bins weighted
by inverse-variance (µ̂n,w). We report the mean and standard deviation em-
pirically determined across independent simulations. The overlapping length
bins estimator performed as well or better than other estimators. Very small
biases were observed, consistent with other analyses. (b) We used the same
four estimators in the GoNL data, observing negligible differences. We report
the estimate and the standard error determined via block-weighted jackknife.
An estimate (µ̂o,long) obtained using overlapping bins and very long segments
(5 − 10 cM) was compatible but resulted in large standard error. Inverse-
variance weights were inferred using block-weighted jackknife.



estimator estimate ×108

µ̂o,intercept 2.05± 0.103
µ̂o,slope 2.05± 0.103
µ̂n,slope 2.07± 0.103

(a) Estimates in simulations.

estimator estimate ×108

µ̂o,slope 1.64± 0.0408
µ̂n,slope 1.65± 0.0404

(b) Estimates in GoNL.

Table S2: Effects of non-independent observations on MaAF regression. (a)
We performed 500 independent simulations of 200 samples for 100 cM using
the GoNL demographic model, a mutation rate of 2 × 10−8 and a gene con-
version rate of 6 × 10−6 per generation, per base. IBD was detected using
GERMLINE (het=2), as described in Figure 5. The gene conversion corrected
mutation rate is inferred using three estimators. The estimator µ̂o,intercept is
obtained from the MaAF regression intercept, as detailed in the main text.
The estimator µ̂o,slope is obtained by first computing the MaAF regression

slope, β̂, and then subtracting 0.5 × β̂ from the uncorrected mutation rate
estimate, which is inflated by gene conversion events. Note that this is closely
related to the intercept of the regression (estimator µ̂o,intercept), and has the
same performance. Both estimators use overlapping frequency bins, due to the
use of maximum allele frequency cutoffs. µ̂n,slope is obtained the same way, but
the MaAF slope is calculated by taking the average of non-overlapping allele
frequency cutoffs, where mutation rates are only computed using mismatching
sites for which the allele frequency is contained within a frequency range. For
all simulations, we used MaAF frequency values from 0.1 to 0.5, with inter-
vals of 0.02. Consistent with Figure 5, a small upward bias is obtained for
(het=2). Because the allele frequency spectrum in the simulations reflects re-
cent exponential expansion, the µ̂o,intercept estimator provides a slightly better
correction than µ̂n,slope, although by a minimal amount, as the slope is inferred
with more weight on low frequency cutoffs. Note that the demographic model
reconstructed using IBD reflects expansion in the recent (∼ 100) generations,
but neglects demographic events at deeper time scales. The full GoNL spec-
trum, however, presents small deviations from linearity at intermediate MaAF
values, likely due to demographic events (e.g. bottlenecks) at deeper times
scales (Figure S2). (b) µ̂o,slope and µ̂n,slope estimates for segments between
1.6− 10 cM in real data are negligibly different. Real data estimators rely on
nested length bins for the tMRCA regression (see Table S1).



Annotation Short name Reference Size (Mb) bias Raw µ s.e. Z-score Trinucleotide
factor

Trinucleotide-
corrected µ

s.e. Z-score

Coding regions Coding [1] 29 0.99 1.71E-08 1.30E-09 0.42 1.23 1.40E-08 1.06E-09 -2.30
Conserved-
unconserved regions

ConservedUnconserved [2] 1177 1.00 1.66E-08 4.07E-10 0.03 1.00 1.66E-08 4.07E-10 0.05

Conserved regions Conserved [2] 68 1.03 1.47E-08 8.41E-10 -1.95 1.04 1.41E-08 8.07E-10 -2.69
Digital Genomic Foot-
printing assay

DGF-ENCODE [3, 4] 192 1.00 1.69E-08 7.05E-10 0.44 1.08 1.57E-08 6.52E-10 -1.18

DNAseI hyper sensitiv-
ity sites (Maurano)

DHS-Maurano [5] 556 1.00 1.66E-08 5.27E-10 0.11 1.04 1.60E-08 5.08E-10 -0.82

DNAseI hyper sensitiv-
ity sites (Trynka)

DHS-Trynka [6] 262 1.01 1.74E-08 7.06E-10 0.98 1.08 1.61E-08 6.54E-10 -0.63

DNAseI hyper sensitiv-
ity sites, peaks

DHS-peaks [7] 175 1.00 1.91E-08 1.51E-09 1.63 1.11 1.73E-08 1.37E-09 0.50

DNAseI hyper sensitiv-
ity sites, Promoter

DHSPromoter [5] 37 1.00 1.81E-08 1.19E-09 1.21 1.06 1.71E-08 1.12E-09 0.41

Enhancers (Anders-
son)

Enhancer-And [7] 6 1.00 1.68E-08 4.45E-09 0.05 1.12 1.50E-08 3.97E-09 -0.40

Enhancers (Hoffman) Enhancer-Hoff [8] 87 1.00 1.63E-08 1.27E-09 -0.22 1.10 1.48E-08 1.16E-09 -1.45
Fetal DNAseI hyper
sensitivity sites

fetal-DHS [6] 135 1.00 1.71E-08 8.42E-10 0.54 1.09 1.57E-08 7.72E-10 -1.04

Histone modification
H3K27ac-Hnisz

H3K27ac-Hnisz [9] 493 1.00 1.66E-08 4.42E-10 0.12 1.04 1.60E-08 4.26E-10 -0.89

Histone modification
H3K27ac-PGC2

H3K27ac-PGC2 [10] 356 1.00 1.60E-08 5.00E-10 -0.86 1.05 1.53E-08 4.79E-10 -1.98

Histone modification
H3K4me1, peaks

H3K4me1-peaks [6] 250 1.01 1.75E-08 7.50E-10 1.13 1.08 1.63E-08 6.96E-10 -0.37

Histone modification
H3K4me1

H3K4me1 [6] 592 1.00 1.65E-08 4.20E-10 -0.06 1.04 1.59E-08 4.05E-10 -1.07

Histone modification
H3K4me3, peaks

H3K4me3-peaks [6] 57 1.00 1.67E-08 1.76E-09 0.10 1.17 1.43E-08 1.50E-09 -1.46

Histone modification
H3K4me3

H3K4me3 [6] 180 1.00 1.61E-08 6.39E-10 -0.58 1.10 1.47E-08 5.81E-10 -2.68

Histone modification
H3K9ac, peaks

H3K9ac-peaks [6] 55 1.01 1.81E-08 1.84E-09 0.84 1.17 1.55E-08 1.57E-09 -0.65

Histone modification
H3K9ac

H3K9ac [6] 176 1.00 1.62E-08 5.82E-10 -0.54 1.11 1.46E-08 5.25E-10 -2.97

Intron Intron [1] 513 0.99 1.64E-08 6.60E-10 -0.18 1.00 1.64E-08 6.57E-10 -0.27
Late replication LateReplication [11] 14 0.98 2.19E-08 3.75E-09 1.43 1.13 1.95E-08 3.33E-09 0.87
Large intergenic non-
coding RNAs

lincRNAs-transcripts [12] 55 0.96 1.73E-08 2.10E-09 0.34 0.99 1.75E-08 2.12E-09 0.42

Neanderthal-depleted
in Europeans

NeanderthalDepleted [13] 21 1.04 1.37E-08 3.72E-09 -0.77 0.95 1.43E-08 3.90E-09 -0.57

Neanderthal-enriched
in Europeans

NeanderthalEnriched [13] 1181 1.00 1.66E-08 4.07E-10 0.06 1.00 1.66E-08 4.07E-10 0.06

Promoter Promoter [1] 38 0.98 1.57E-08 2.04E-09 -0.40 1.15 1.37E-08 1.78E-09 -1.57
Constrained genes ConstrainedGenes [14] 1 0.89 1.06E-08 1.80E-08 -0.33 1.20 8.81E-09 1.50E-08 -0.52
Segway-chromHMM
CTCF Binding Site

segment.CTCF [8] 28 1.00 1.51E-08 1.80E-09 -0.78 1.09 1.39E-08 1.66E-09 -1.56

Segway-chromHMM
enhancer

segment.E [8] 58 1.00 1.34E-08 1.46E-09 -2.09 1.11 1.21E-08 1.32E-09 -3.27

Segway-chromHMM
promoter flanking

segment.PF [8] 12 1.01 1.49E-08 2.22E-09 -0.71 1.06 1.41E-08 2.10E-09 -1.15

Segway-chromHMM
repressed/inactive
region

segment.R [8] 532 1.00 1.61E-08 4.64E-10 -0.80 0.97 1.66E-08 4.79E-10 0.08

Segway-chromHMM
transcribed region

segment.T [8] 424 1.00 1.70E-08 5.74E-10 0.59 1.01 1.68E-08 5.69E-10 0.39



Segway-chromHMM
transcription start site

segment.TSS [8] 21 0.99 9.50E-09 4.15E-09 -1.70 1.33 7.15E-09 3.12E-09 -2.99

Segway-chromHMM
weak enhancer

segment.WE [8] 29 1.00 2.01E-08 2.64E-09 1.33 1.10 1.83E-08 2.40E-09 0.72

Transcription factor
binding sites

TFBS [3] 179 1.00 1.67E-08 7.65E-10 0.16 1.08 1.54E-08 7.06E-10 -1.41

Untranslated regions 3’ UTR-3 [1] 18 0.99 1.32E-08 1.88E-09 -1.74 1.08 1.22E-08 1.73E-09 -2.47
Untranslated regions 5’ UTR-5 [1] 7 1.00 1.69E-08 3.41E-09 0.10 1.26 1.34E-08 2.70E-09 -1.16
Untranslated regions UTR [1] 17 0.99 1.55E-08 1.85E-09 -0.55 1.13 1.38E-08 1.64E-09 -1.65

Table S3: List of annotations, mutation rates and bias/trinucleotide factors used to correct estimates. Trinucleotide factors were computed to
control for trinucleotide substitution rate heterogeneity [15, 16]. When analyzing mutation rates within different genomic regions, we computed
annotation-specific correction factors to account for the differences in mutation rates that are expected as a result of trinucleotide context vari-
ation. We used the trinucleotide context-specific mutation-rate matrix of Kryukov [16]. We denote the substitution rate of trinucleotides of the
form XY Z as φXY Z =

∑
V ∈{A,C,G,T}|V 6=Y φXY ZV , where φXY ZV is the substitution rate of XY Z → XV Z and {A,C,G, T} represent the four pos-

sible bases. We then use the Human Genome h19 consensus sequence from the UCSC Genome Browser to determine the trinucleotide context
of the considered annotations. Denoting the fraction of trinucleotides XY Z contained in annotation α as fXY Zα , we compute a correction factor
λα =

(∑
XY Z∈Γ f

XY Z
α φXY Z

)
/
(∑

XY Z∈Γ f
XY Z
GW φXY Z

)
, where GW denotes the genome-wide annotation and Γ is the set of 64 possible trinucleotide

combinations. We then scaled the obtained local mutation rate by 1/λα to obtain a context-corrected estimate of the mutation rate. To correct for
the small-annotation bias (see Figure S12) reported in the table, permutations were computed until a standard error smaller than 10−10 was obtained
for all annotations. We then scaled the annotation-specific mutation rate by the inverse of the computed bias to correct the estimate. 95% confidence
intervals for genome-wide and annotation specific rates were computed based on standard errors estimated using weighted block jackknife, using the
26 independent chromosomal regions obtained as previously described. For almost all considered annotations, the computed bias was found to be
extremely small.



108µm 108µf 108ρm 108ρf Nm Nf 108µ̂a 108α̂ fm

2 2 1.5 1.5 10 4990 1.989± 0.004 1.657± 0.13 0.553
2 2 1.5 1.5 100 4900 1.993± 0.003 1.790± 0.15 0.536
2 2 1.5 1.5 1500 3500 2.001± 0.003 1.538± 0.16 0.514
2 2 1.5 1.5 2500 2500 2.001± 0.003 1.389± 0.16 0.500
3 1 1.5 1.5 10 4990 1.960± 0.004 3.798± 0.13 0.553
3 1 1.5 1.5 100 4900 1.999± 0.003 3.379± 0.16 0.536
3 1 1.5 1.5 1500 3500 2.000± 0.003 2.297± 0.17 0.514
3 1 1.5 1.5 2500 2500 1.998± 0.003 1.513± 0.16 0.500
3 1 1 2 10 4990 1.946± 0.004 4.519± 0.13 0.554
3 1 1 2 100 4900 1.991± 0.003 4.236± 0.16 0.537
3 1 1 2 1500 3500 2.000± 0.003 2.812± 0.16 0.516
3 1 1 2 2500 2500 2.002± 0.003 1.952± 0.16 0.500

Table S4: Effects of sex-averaging on inferred rates. We simulated IBD segments from a
population composed of Nm males and Nf females, which have mutation and recombination
rates µm, µf and ρm, ρf , respectively. The simulated differences in male/female mutation
and recombination rates are similar to those of Table S9 and [17]. Given two randomly
chosen individuals from the population, the simulation iteratively samples ancestral lineages
from generation t to generation t + 1 in the past. Each ancestor is sampled male or female
with probability 1/2. At each generation, and for both lineages, the closest recombination
event on either side of the site is sampled from a geometric distribution using the sex-specific
recombination rate, and the distance to the first recombination event in either direction is
stored. The physical length of IBD segments is then used to obtain a length in units of
sex-averaged recombination. The sampling proceeds until either a MRCA is found, or the
IBD segment becomes smaller than the detectable threshold. The number of mutations on
IBD segments is determined by sampling a Poisson distribution with rate µ = Tmµm +Tfµf ,
where Tm is the number of meioses occurring in males. tMRCA regression is then performed
using sex-averaged genetic lengths and observed mutation rates on the sampled segments,
as described in the Methods section. In this model, coalescence occurs if both individual
select the same ancestor, at rate 1

4
× 1

Nf
+ 1

4
× 1

Nm
+ 1

2
× 0 =

Nf+Nm

4NfNm
, implying an effective

population size of Ne =
4NfNm

Nf+Nm
, [18], which we use to compute the posterior mean tMRCA

estimate. We report the mean and standard error for the inferred mutation rates, µ̂a, the
tMRCA regression intercept α̂, and the fraction fm of meiotic events occurring in males in
the ancestral lineages of segments longer than 1.6 cM. We omit the s.e. for the latter, which
was ∼ 10−4 for all entries. 300 independent simulations were run, each sampling 50, 000 IBD
segments. A small but significant difference between the flat average of sex-specific mutation
rates and the tMRCA slope is observed only for very extreme differences between male and
female effective population sizes (Nm/(Nm +Nf ) = 0.002). The tMRCA intercept increases
with larger mutation rate and effective population size differences.



chromosome from bp to bp estimate (×108)

1 66, 874, 699 118, 837, 888 1.53
2 17, 246, 473 85, 384, 179 1.95
2 193, 010, 478 235, 351, 139 1.80
3 678, 347 176, 030, 190 1.62
4 85, 315, 581 189, 657, 996 1.43
5 22, 657, 926 141, 420, 437 1.60
6 33, 954, 192 103, 983, 460 1.62
6 139, 903, 959 170, 245, 872 1.89
7 962, 247 38, 722, 532 1.85
7 41, 688, 961 152, 254, 508 1.79
8 55, 170, 178 139, 553, 601 1.54
9 72, 512, 292 132, 515, 730 1.30
10 19, 570, 732 134, 866, 854 2.00
11 2, 047, 054 134, 587, 122 1.53
12 6, 476, 123 75, 656, 510 1.57
12 82, 586, 486 128, 401, 829 1.80
13 20, 518, 406 114, 094, 544 1.51
14 20, 545, 390 59, 184, 876 1.29
14 63, 846, 103 104, 808, 535 1.63
15 50, 284, 344 101, 969, 749 1.73
17 163, 278 55, 936, 970 1.89
18 11, 962, 813 59, 189, 703 1.21
19 7, 857, 579 58, 513, 172 1.70
20 5, 649, 902 52, 818, 462 1.52
21 15, 636, 220 47, 031, 048 1.93
22 23, 874, 416 50, 493, 062 1.72

Table S5: Region-specific estimates of mutation rate (mean: 1.65× 10−8, s.e.:
0.04× 10−8).



chromosome from bp to bp estimate (×108)

1 66, 874, 699 88, 238, 750 1.61
1 88, 238, 751 108, 526, 486 9.91
2 17, 246, 473 34, 280, 051 1.30
2 34, 280, 052 49, 009, 386 2.11
2 49, 009, 387 69, 293, 237 1.44
2 193, 010, 478 216, 555, 564 2.01
2 216, 555, 565 230, 068, 380 1.60
3 678, 347 7, 867, 058 1.05
3 7, 867, 059 21, 680, 325 1.80
3 21, 680, 326 36, 948, 001 1.55
3 36, 948, 002 61, 394, 898 1.63
3 61, 394, 899 73, 519, 262 1.42
3 73, 519, 263 109, 288, 895 1.94
3 109, 288, 896 127, 471, 868 1.85
3 127, 471, 869 147, 679, 411 2.62
3 147, 679, 412 171, 161, 266 1.53
4 85, 315, 581 109, 663, 976 1.30
4 109, 663, 977 132, 801, 458 1.39
4 132, 801, 459 153, 995, 617 1.90
4 153, 995, 618 171, 817, 565 1.41
4 171, 817, 566 183, 599, 323 1.36
5 22, 657, 926 37, 949, 446 1.62
5 37, 949, 447 67, 185, 960 1.58
5 67, 185, 961 82, 957, 503 1.77
5 82, 957, 504 110, 480, 596 1.50
5 110, 480, 597 128, 743, 448 2.04
6 33, 954, 192 48, 250, 743 1.50
6 48, 250, 744 84, 668, 623 1.51
6 139, 903, 959 155, 635, 584 1.04
6 155, 635, 585 166, 874, 299 2.49
7 962, 247 11, 388, 991 1.19
7 11, 388, 992 23, 827, 910 1.95
7 23, 827, 911 37, 498, 171 1.61
7 41, 688, 961 68, 729, 788 1.96
7 68, 729, 789 89, 724, 984 1.72
7 89, 724, 985 109, 644, 709 1.29
7 109, 644, 710 135, 508, 955 1.49
7 135, 508, 956 149, 826, 715 1.80



8 55, 170, 178 73, 892, 270 1.83
8 73, 892, 271 99, 400, 617 9.96
8 99, 400, 618 122, 503, 061 1.65
8 122, 503, 062 134, 271, 328 2.27
9 72, 512, 292 87, 943, 421 1.34
9 87, 943, 422 106, 603, 815 1.36
9 106, 603, 816 120, 062, 948 1.20
10 19, 570, 732 35, 924, 606 2.22
10 35, 924, 607 61, 715, 654 2.38
10 61, 715, 655 79, 857, 311 1.52
10 79, 857, 312 97, 321, 680 1.97
10 97, 321, 681 117, 955, 613 2.11
10 117, 955, 614 128, 006, 669 1.45
11 20, 470, 54 12, 359, 828 1.65
11 12, 359, 829 25, 940, 249 2.02
11 25, 940, 250 44, 965, 371 1.65
11 44, 965, 372 76, 910, 242 1.51
11 76, 910, 243 96, 579, 605 1.50
11 96, 579, 606 116, 325, 155 1.44
11 116, 325, 156 127, 550, 767 1.55
12 6, 476, 123 20, 195, 998 1.17
12 20, 195, 999 42, 284, 690 1.65
12 42, 284, 691 63, 497, 675 1.80
12 82, 586, 486 101, 536, 560 2.27
12 101, 536, 561 116, 921, 218 1.90
13 20, 518, 406 28, 691, 009 1.09
13 28, 691, 010 40, 724, 913 1.84
13 40, 724, 914 62, 072, 103 1.50
13 62, 072, 104 82, 940, 941 1.43
13 82, 940, 942 102, 214, 268 1.95
13 102, 214, 269 110, 883, 495 5.53
14 20, 545, 390 29, 913, 958 1.31
14 29, 913, 959 47, 564, 047 1.21
14 63, 846, 103 83, 501, 046 1.07
14 83, 501, 047 96, 262, 155 2.12
15 50, 284, 344 66, 967, 905 1.70
15 66, 967, 906 86, 564, 188 1.82
15 86, 564, 189 94, 855, 437 1.79
17 163, 278 8, 583, 495 1.07
17 8, 583, 496 15, 014, 380 1.92



17 15, 014, 381 35, 509, 268 2.49
17 35, 509, 269 54, 833, 347 2.20
18 11, 962, 813 35, 726, 545 9.99
18 35, 726, 546 55, 512, 688 1.28
19 7, 857, 579 19, 249, 992 1.64
19 19, 249, 993 41, 845, 871 1.59
19 41, 845, 872 52, 143, 902 1.55
20 5, 649, 902 16, 025, 762 1.76
20 16, 025, 763 39, 217, 325 1.48
20 39, 217, 326 50, 714, 875 1.28
21 15, 636, 220 25, 900, 943 2.36
21 25, 900, 944 38, 711, 179 1.81
21 38, 711, 180 46, 359, 224 2.12
22 23, 874, 416 35, 756, 706 1.54
22 35, 756, 707 46, 950, 433 1.98

Table S6: Estimates of mutation rate for regions of ∼ 20 cM (mean: 1.64 ×
10−8, s.e.: 0.04× 10−8).



Type Mutation rate

Transition at non-CpG 9.28± 0.27× 10−9

Transition at CpG 1.68± 0.12× 10−7

Transversion at non-CpG 4.93± 0.15× 10−9

Transversion at CpG 1.30± 0.13× 10−8

Table S7: Mutation rates for CpG/non-CpG transitions/transversions.



Perturbation of demographic parameter Effect on mutation rate estimate

Ancestral size decreased by 50% −10.7%
Ancestral size decreased by 30% −5.9%
Ancestral size decreased by 10% −1.8%
Ancestral size increased by 10% +1.7%
Ancestral size increased by 30% +4.9%
Ancestral size increased by 50% +7.9%
Current size changed by 10% less than 0.01% difference
Current size divided by 100 −0.4%

Table S8: Effects of changes in the reconstructed demographic model on the
estimated mutation rate in GoNL.



βy G 108µ̂f,g 108µ̂m,g 108µ̂a,g→28 108µ̂a,g→30 108µ̂a,g→32

1.0/(2.681× 109) 28 1.09 2.22 1.66 1.69 1.73
30 1.06 2.25 1.62 1.66 1.69
32 1.03 2.28 1.58 1.62 1.66
36 0.97 2.34 1.51 1.54 1.58

2.0/(2.681× 109) 28 0.87 2.44 1.66 1.73 1.81
30 0.81 2.50 1.58 1.66 1.73
32 0.75 2.56 1.51 1.58 1.66
36 0.63 2.68 1.36 1.43 1.51

3.0/(2.681× 109) 28 0.65 2.66 1.66 1.77 1.88
30 0.56 2.75 1.54 1.66 1.77
32 0.47 2.84 1.43 1.54 1.66
36 0.29 3.02 1.21 1.32 1.43

Table S9: Effects of historical paternal age. We express the sex-averaged per
generation, per base mutation rate as µa,g = 1

2
(µm,g + µf,g), where µm,g and

µf,g are the per generation male and female mutation rates, respectively. We
assume the linear model µm,g = Cµf,g + βy(G− P ) for the paternal mutation
rate [19], where βy represents the per year, per base paternal age effect on
mutation rate, G represents the father’s age at reproduction, P = 13 represents
puberty onset [20], and C = 35/23 is a scaling constant to account for the
different number of cell divisions in males and females at birth [21]. Using this
model, µa,g = 1

2
[µf,g(1 + C) + βy(G− P )]. Given our estimate of historical

sex-averaged mutation rate µ̂a,g = 1.66×10−8, and an estimate of the per year
paternal age effect βy, we compute the maternal and paternal contributions to
the sex-averaged rate as µ̂f,g = 1

1+C
[2µ̂a,g − βy(G− P )] and µ̂m,g = Cµ̂f,g +

βy(G−P ). For βy, [22] reported an effect of∼ 2 mutations for a haploid genome
of ∼ 2.681× 109. We report results for values in {1.0, 2.0, 3.0}/(2.681× 109).
We then compute a projected sex-averaged mutation rate which assumes a
reproductive paternal age different from the historical average for which µ̂a,g
was measured. To this end, we use the same linear model, µ̂m,g = Cµ̂f,g +
βy(G− P ), but using G ∈ {28, 30, 32}.
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