The American Journal of Human Genetics Supplemental Data

De Novo GMNN Mutations Cause

Autosomal-Dominant Primordial Dwarfism

Associated with Meier-Gorlin Syndrome

Lindsay C. Burrage, Wu-Lin Charng, Mohammad K. Eldomery, Jason R. Willer, Erica E. Davis, Dorien Lugtenberg, Wenmiao Zhu, Magalie S. Leduc, Zeynep C. Akdemir, Mahshid Azamian, Gladys Zapata, Patricia P. Hernandez, Jeroen Schoots, Sonja A. de Munnik, Ronald Roepman, Jillian N. Pearring, Shalini Jhangiani, Nicholas Katsanis, Lisenka E.L.M. Vissers, Han G. Brunner, Arthur L. Beaudet, Jill A. Rosenfeld, Donna M. Muzny, Richard A. Gibbs, Christine M. Eng, Fan Xia, Seema R. Lalani, James R. Lupski, Ernie M.H.F. Bongers, and Yaping Yang

Table S1. WES Sequencing Data of Subjects 1 and 2

Subjec	Illumina Platform	Unique	Total Pass Filter (Mb) ^b	Avg %	Avg %	Avg %	Avg %	Unique- ness % ^g	Dupli-	Total Reads	Avg Coucrago ^j	Reads Hit	Bases 20+
L		Aligned (Mb) ^ª	Filter (IVID)	Align (PF) Read 1 ^c	Align (PF) Read 2 ^d	Error Rate Read 1 ^e	Error Rate Read 2 ^f	ness %	cate %"	Aligned %'	Coverage	Target/ Buffer ^k	Coverage'
1	HiSeq2000	17,066	18,622	98%	97%	0.5%	1.0%	94%	9%	98%	226	75%	97%
2	HiSeq2000	9,369	10,366	94%	94%	0.9%	1.4%	96%	7%	94%	116	80%	92%

^aUnique Aligned (Mbp): the total number of base-pairs in reads that align best to a single location in the reference genome

^bTotal Pass Filter (Mbp): the total number of base-pairs in reads that pass the Illumina quality filters

^cAvg % Align (PF) Read 1: the average percentage of pass filter base-pairs in Read 1 that align best to a single location in the reference genome

^dAvg % Align (PF) Read 2: the average percentage of pass filter base-pairs in Read 2 that align best to a single location in the reference genome

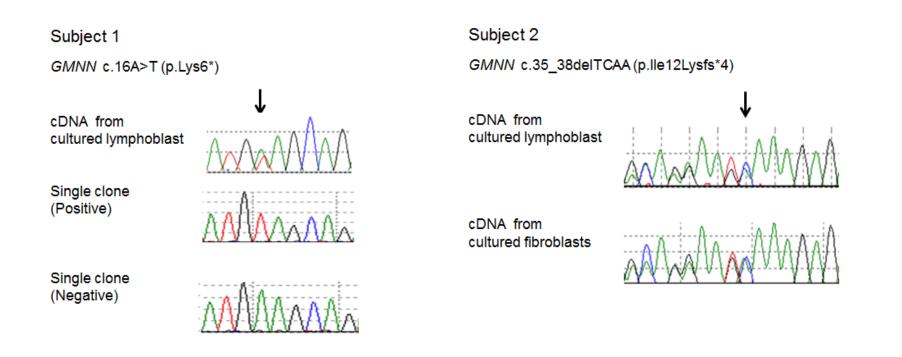
^eAvg % Error rate Read 1: the calculated error rate of bases on Read 1, as determined by aligning to reference genome

^fAvg % Error rate Read 2: the calculated error rate of bases on Read 2, as determined by aligning to reference genome

^gpercentage of unique reads

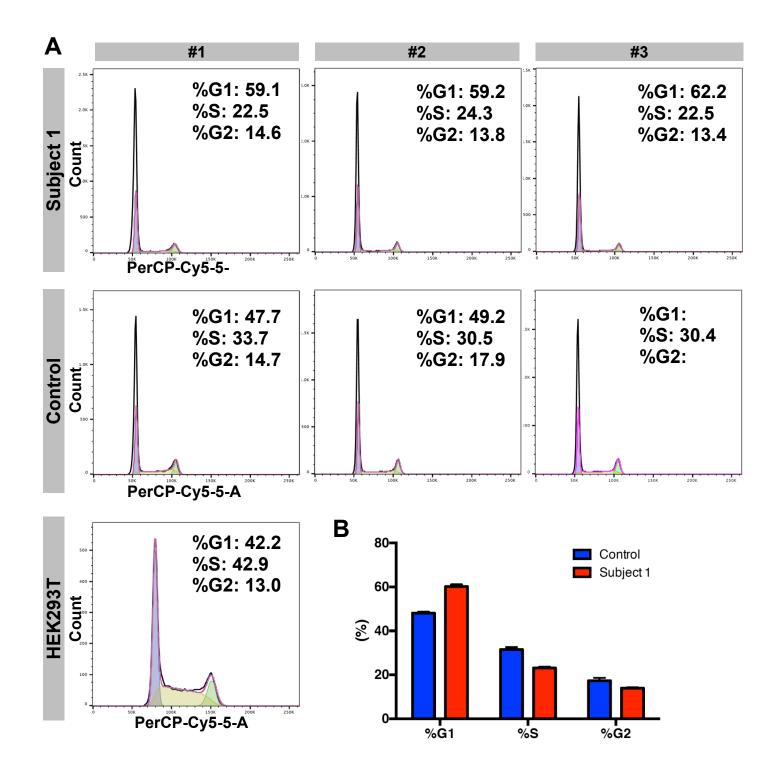
^hduplicate %: fraction of reads that are identified as duplicate reads – reads whose alignment location is identical to other reads from the same library

¹Total Reads Aligned: the number of reads that align to the reference genome


^jAverage Coverage: the total number of uniquely aligned bases to the reference genome divided by the size of the reference genome

^kReads hit target/buffer: the number of reads whose alignments overlap either a region targeted by the capture reagent, or the 100bp buffer (or both)

¹Bases 20+ Coverage: the fraction of bases targeted by the capture reagent that are covered by 20 or 40 times or more uniquely aligned reads.


Table S2. Primer information

		Forward/					
Gene	Target	Reverse	Chr.	Start Position	End Position	Primer sequence (5' to 3')	Purpose
GMNN	Exon 01	F	6	24775062	24775082	cggtcctcaagtactcgctac	genomic sequencing of patient 3
GMNN	Exon 01	R	6	24775481	24775498	accgttcaacaaccccttc	genomic sequencing of patient 3
GMNN	Exon 02	F	6	24777312	24777331	attgacagggctgagtttgg	genomic sequencing of patient 2 and 3
GMNN	Exon 02	R	6	24777559	24777578	cttttagccccatgctttct	genomic sequencing of patient 2 and 3
GMNN	Exon 03	F	6	24780770	24780789	tgttccttttccacccctaa	genomic sequencing of patient 3
GMNN	Exon 03	R	6	24781138	24781157	tgcacccgacgaacttctta	genomic sequencing of patient 3
GMNN	Exon 04	F	6	24781584	24781608	gatccagagatgtgaaaaagttaga	genomic sequencing of patient 3
GMNN	Exon 04	R	6	24782022	24782041	actgggcctccttttcctaa	genomic sequencing of patient 3
GMNN	Exon 05	F	6	24784224	24784244	tgggggtactaagattggaaa	genomic sequencing of patient 3
GMNN	Exon 05	R	6	24784469	24784489	aaagctagcccatattgctct	genomic sequencing of patient 3
GMNN	Exon 06	F	6	24784577	24784596	gctgcatgtcctccatgtta	genomic sequencing of patient 3
GMNN	Exon 06	R	6	24784835	24784860	caaagtgatcacactacactacctca	genomic sequencing of patient 3
GMNN	Exon 07	F	6	24785781	24785805	tgctatacgggtcagctatatcagt	genomic sequencing of patient 3
GMNN	Exon 07	R	6	24786058	24786078	tggaggtaaacttcggcagta	genomic sequencing of patient 3
GMNN	Exon 02	F	6	24777385	24777415	tgtaagtattttaaacctagactccaccttc	genomic sequencing of patient 1
GMNN	Exon 02	R	6	24777557	24777579	acttttagccccatgctttctac	genomic sequencing of patient 1
GMNN	cDNA	F	6	24777461	24777486	tcaccatctacataatgaatcccagt	cDNA sequencing of patient 1
GMNN	cDNA	R	6	24781754	24781773	cccagggctggaagttgtag	cDNA sequencing of patient 1
GMNN	cDNA	F	6	24777446	24777467	ctggtcttctgtgcttcaccat	cDNA sequencing of single clones for patient 1
GMNN	cDNA	R	6	24786056	24786078	tggaggtaaacttcggcagtaaa	cDNA sequencing of single clones for patient 1
GMNN	cDNA	F	6	24777480	24777501	tcccagtatgaagcagaaacaa	cDNA sequencing of patient 2
GMNN	cDNA	R	6	24785869	24785888	tccagaggttcaccattcag	cDNA sequencing of patient 2

Figure S1. mRNA studies of subjects 1 and 2.

Sequence traces of RT-PCR products from cell lines of subjects 1 and 2 show the presence of both mutant and wild type sequence at about 1:1 ratio. TOPO TA-cloning of the RT-PCR product from subject 1 and Sanger sequencing of individual clones (8 total) indicates that the mutant allele is present in 50% (4 out of 8) of GMNN transcripts. The data suggest that the mutant alleles are not subject to NMD.

Figure S3. Flow cytometric analysis of cell cycle phases.

(A) Flow cytometric analyses of lymphoblast of subject 1 and the father (as a control) stained by propidium iodide (PI) (control). X axis presents the cell content as determined by intensity of Propidium Iodide (PI) staining corresponding to 2n (G1 phase), 4n (G2 phase), and areas in between (S phase). Y axis presents cell number. Non-synchronized HEK293T cell was used as a control for cell cycle PI staining. The data were obtained from three independent experiments (labeled as #1, #2, #3 in the figure).The statistical analyses were performed using Student's *t*-test.

(B) Histogram of cell distributions in G1 (60.2%±1.8% vs. 48.1%±0.9%), S (23.1%±1.0% vs. 31.5%±1.9%), and G2 (13.9%± 0.6% vs. 17.3%± 2.4%) phases in lymphoblast of subject 1 and the father (as a control) respectively. Values for the bars represent means for the three independent experiments ± 1 standard deviation (1 SD).