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Supplementary Figure S1: Correlation between siRNA transfected and cellular uptake of siRNA. 
Twenty four hours prior to transfection, HTO cells were seeded into 12 well plates at about 4 x 105 
cells/well. siR206 was transfected at different concentrations with 10 µg/ml LF2000. Twenty four hours 
past transfection the amount of siRNA taken up by the cells was determined applying a liquid hybridisation 
assay. For experimental details see Materials and Methods. The graph shows one representative 
experiment in duplicates. Logarithmic scale to the left and linear scale to the right.  
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Supplementary Figure S8: Comparison of simulated and experimentally determined time resolved 
siRNA-mediated target knockdown. HTO cells were transfected for 4 h with 100 ng/well pTRE2hyg-luc 
plasmid in 96 well plates. This concentration of plasmid in the LF2000 transfection mix translates into 560 
(± 107) luciferase mRNA copies per cell as determined by qPCR. 24 h post plasmid transfection cells were 
again transfected with 0.75 nM siR206 or a scrambled siRNA control (sisc: see Supplementary Figure S7)  
for 1 h. 0.75 nM siRNA in the transfection mix translates into 470 copies of bioavailable siR206 per cell 
(Supplementary Figure S1). At time intervals given luminescence was measured in a microplate reader. 
Luminescence was normalised to cell viability (FDA) to account for cell loss due to cytotoxicity or washing 
procedures, and to the scrambled siRNA control to account for potential fluctuations in reporter signal 
caused by the transfection procedure. Measurements were performed in quadruplicate. SD is given by 
error bars. Simulation results of the dissociative (green line) and associative (red line) model at 560 and 
470 copies/cell of target and siRNA, respectively, are shown for comparison.  
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parameter S C value unit ref. 

cytoplasm volume Vcyto - 2.5 × 10−12 l (3-7) 

initial siRNA [S]0 Vcyto 
30 

4.98 × 10−5 

copies/cell 

nM 
sample value 

basal hAgo2 level [A]0 Vcyto 
200,000 

132.84 

copies/cell 

nM 
(8,9) 

basal target mRNA level [T]0 Vcyto 
1−10,000 

6×10−5 −67 

copies/cell 

nM 
(10) 

target degradation rate kdeg - 6.40 × 10−5 s−1 (11,12) 

target synthesis rate vsynth - 1.27 × 10−14 M s−1 (10) 

 

 

Supplementary Table S2: Reaction compartment volume and species concentrations used for 
modelling. Column ’S’ provides the parameters’ symbols. In case of concentration, column ’C’ indicates 
the compartment for which it is given. Calculated from (9), a human cell comprises ~ 1.4 × 105 to 1.7 × 105 
Argonautes per cell, where Ago2 is the most abundant of the four Ago-subtypes. According to own 
measurements, there are ~ 2.5 × 105 copies Ago2 per human cell (13). The basal target mRNA level and 
initial siRNA concentrations are varied depending on model objective or modelled experimental set up. 
Physiological mRNA level can vary between 1 and 10,000 copies per human cell (10). Small RNAs 
involved in RNAi occur in 5 - 500 copies per human cell (14). The minimal number of siRNA molecules 
(siR206) per cell necessary to trigger half maximal luciferase reporter target knockdown has been 
determined by microinjection to be of less than 20 copies (15,16).  
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To examine the time-dependent concentration changes of reactants, intermediates and products 
over a given time interval, the system of ODEs is numerically integrated using the deterministic 
LSODA (17) algorithm of the ODEPACK library (18) within the Copasi package (19). LSODA 
stands for Livermore Solver for Ordinary Differential Equations and solves stiff and non-stiff 
systems of explicitly given ODEs. It starts using the non-stiff Adams integration method before 
dynamically deciding whether to switch to a non-stiff approach based on backward differentiation 
formula (BDF) for dense or banded Jacobians. Resulting linear systems are then solved by 
Factor-solve approach with LU factorization. For all time course simulations, relative and 
absolute tolerance is set to 10-6 and 10-12, respectively. The maximum number of internal steps is 
fixed at 104, the option to integrate the reduced model is switched off. LSODA is a fast and 
reliable algorithm and the solution for a 432000 sec (4 d) time course of the described ODE 
systems with 10 or 13 ODEs and 20 or 29 parameters for the dissociative and the associative 
models, respectively, can be obtained within a few seconds on a MacBook Pro with 2.66 GHz 
Intel Core 2 Duo processor and 8 GB 1067 MHz DDR3 RAM, running Copasi 4.11 (Build 60, 64 
Bit version).  

 

Time of half-maximal target knockdown (t1/2)  

t1/2 is defined as the time of half-maximal target knockdown, where target concentration [T]t1/2 = 
[T]0/2, starting with basal target concentration [T]0 at the time of siRNA administration. It is used 
as a contracted measure of time-resolved target knockdown to be able to relate model behaviour 
with two variables, i.e. basal target level and initial siRNA concentration in 3D-plots.  

 

Computation of IC50 values from models by parameter optimisation 

In case of models, IC50 values can be either extracted from dose-response curves relating the 
initial siRNA concentration in copies/cell to target gene activity in percent after 24 h time course 
simulation. A faster way of calculating a large number of IC50 for different initial conditions is via 
parameter optimisation algorithm. Here, the free parameter IC50 is set as the initial siRNA 
concentration [siRNA]0 that minimises the expression |[target]t=24h (%) - 50%| while all other 
parameters are kept fixed during a 24h time course simulation. A simple and robust iterative 
algorithm (downhill simplex algorithm (20)) is used to solve the optimisation problem for a large 
number of initial conditions. In the few cases (< 1%), when no convergence was reached in 
reasonable computation time, the optimisation was repeated using a slower heuristic method 
(i.e. a genetic algorithm (21-24)).  

 

Sensitivity analysis 

The sensitivity analysis describes how small deviations of specific model parameters change the 
overall behaviour of the model. In this regard the analysis is closely related to Metabolic Control 
Analysis (MCA) (25,26). However, MCA looks into steady state properties of biochemical 
networks, whereas this analysis is designed to comprehend the time-resolved properties of the 
modelled RNAi pathway. The global response of the system (i.e. target knockdown efficacy 24h 
post siRNA transfection) to perturbations from the network structure given its parameters (i.e. 
kinetic rate constants, initial concentrations of reactants and reaction volumes) is analysed. 
Sensitivity coefficients εk

i quantify the sensitivity of a 24 h time course of target concentration to 
small parameter changes Si as a function of basal target concentration [T]0 = Ck. The relative 
target concentration (in %) during the time course is differentiated with respect to the 
investigated parameters Si using finite differences with delta factor 0.001 and delta minimum 
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10−12. Investigated parameters Si are kinetic rate constants, initial concentrations of reactants, as 
well as, cytoplasm volume. Sensitivity coefficients are normalised between -1 and 1. 

The sensitivity analysis yields important information's about specific parameter values. If a 
parameter is found not to affect the system considerably, a rough guess of its value may be 
sufficient. However, if on the other hand a parameter influences the behaviour of the model 
substantively, steps must be taken to determine its value more accurately. Furthermore, 
sensitivity analysis gives information about which parameters should be changed (or kept as 
constant as possible) to achieve a specific effect (or avoid a specific effect). Additionally, 
robustness of system against external influences, i.e. transfection of siRNA, target levels, target 
metabolism etc. can be determined via sensitivity analyses. 

Given the results for the associative model in Supplementary Figure S6 for typical target 
concentrations of 1–100 copies/cell, increase of siRNA concentration does not lead to better 
target knock-down efficacy. Thus, it is not worth to risk off-target and side effects associated with 
transfection of high amounts of siRNA. The dissociative model is sensitive to changes in rate 
constants of binary complex formation (k+2, k−2, k+3, and k−3), as well as ternary complex 
formation (k+4, k−4, k+5, k−5, and k+6). These parameters limit knockdown efficacy for low target 
concentrations up to 1,000 or 2,000 copies/cell (for 30 or 300 siRNAs/cell, respectively). At 
higher target concentrations the knockdown efficacy is practically zero (no target knock-down 
after 24 h). Thus, changes of any rate constant will not lead to rescue of the knockdown efficacy 
(sensitivity is zero as shown by the green colour in Supplement Figure S6 for all the 
parameters). Just before this breakdown in efficacy occurs, the system becomes sensitive to k+10 
(i.e. product release), which can be identified as the limiting step / bottleneck for knock-down 
efficacy when increasing target concentration. In comparing the two models, it becomes evident 
the associative model is far less sensitive to changes of binary or ternary complex formation at 
low target concentrations. In contrast to the dissociative model, the knock-down efficacy is 
sustained even for higher target concentrations. Here, product release does not become the 
limiting step. However, association/dissociation of target into the reaction complex (i.e. 
quaternary complex formation; k+11, k−11, k+12, k−12 and k+13) might eventually limit efficacy. 
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