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Supplemental Figure S1. General mechanism of Fe(II)- and α-ketoglutarate-dependent 

dioxygenases including demethylases of amino (N)-methylation. 

(a) Overview of protein lysine methylation by AdoMet-dependent methyltransferases and 

demethylation reactions catalyzed by Jumonji dioxygenases. For protein lysine demethylation, 

the Fe(II)- and α-ketoglutarate-dependent Jumonji dioxygenases (1) generate a hydroxymethyl 

intermediate (N-CH2OH) for each reaction that subsequently decomposes to release a 

formaldehyde spontaneously (without additional enzymatic activities) and the demethylated 

lysine (with one methyl group removed). In fact, in search of enzymes capable of reversing 

methylated lysines in histones, the purification of JHDM1, the first identified Jumonji domain-

containing histone demethylase, used a biochemical assay based on the detection of 

formaldehyde, one of the predicted reaction products (2). (b) Demethylation of N3-
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methylcytosine (N3mC) by AlkB dioxygenase is involved in the direct reversal of alkylation 

damage, and results in the production of formaldehyde and unmodified cytosine. The same basic 

mechanism applies to demethylation of other N-methylated nucleic acids (e.g. N3-

methylthymine, N1-methyladenine and N6-methyladenine) (3-6). (c) Model of DNA N6-adenine 

methylation by methyltransferase (MTase), generating N6-methyladenine (N6mA), and 

demethylation reaction product recently discovered in worms, flies and green algae (7-9). The 

same basic mechanism applies to demethylation of N6mA in mRNA by ALKBH5 and FTO 

(10,11).  
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Supplemental Figure S2. Structures of the Tet enzymes. 

(a) Structure of human TET2-5mC DNA complex (PDB 4NM6). The secondary structure 

elements are labeled according to the NgTet1 structure (panel b). Note the large insertion in 

hTET2 between strands 8 and 9 (magenta), which is indicated by a magenta arrow in panel b. (b) 

Structure of NgTet1-5mC DNA complex (PDB 4LT5). The NgTet1 protein folds in a three-

layered jelly-roll structure. (c) Schematic representation of human TET2 (hTET2) C-terminal 

catalytic domain and NgTet1. The 5mC dioxygenases can be divided into two sub-families based 

on size: the larger, multi-domain Tet proteins including mammalian Tet1-3 (12), and Tet 

homologs from honey bee (Apis mellifera) (13) and Drosophila melanogaster (CG43444) (14), 

and the smaller, single domain proteins from Naegleria (NgTet1) and mushroom (Coprinopsis 
cinerea) (15). The Drosophila Tet homolog catalyzes demethylation of N6mA in DNA both in 
vivo and in vitro as well as 5mC in vitro (8). In addition, single domain proteins of the AlkB 

family including E. coli AlkB and C. elegans ALKBH4 (F09F7.7) are active on DNA N6mA 

demethylation (5-7). 
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Supplemental Figure S3. (a) A Novex® 10–20% Tris-Glycine polyacrylamide gel 

(ThermoFisher Scientific; EC61352) showing the proteins used for activity. NEB protein ladder 

(New England Biolabs; P7702) was used as molecular weight markers. (b) LC–MS traces of a 

sample reaction mix on the 5mC–containing DNA with A212V (red) or wild-type (WT) enzyme 

(blue). Arrows indicate peaks of 5mC, 5hmC, 5fC and 5caC as well as A, T, G, C. Identities of 

the peaks are confirmed by comparing the retention time with the standard as well as by mass 

spectrometry. 
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Supplemental Figure S4. NgTet1 protein-protein interactions in crystals. 

(a) In both crystal forms (I212121, and P3221), the DNA is bound to the inner β-sheet surface of 

the protein with substantial protein-induced distortions from B-form DNA. The phosphate 

backbone flanking the modified cytosine is kinked ~60° and concurrently, the modified 

nucleotide flips out. Electron density 2Fo – Fc, contoured at 1σ above the mean, is shown for the 

entire 14-bp DNA with a flipped out 5hmC in the I212121 space group. (b) In the I212121 space 

group, the bent duplex stacks head-to-head with one neighboring DNA molecule at each end 

forming a zigzag superhelix. The axis of the superhelix formed by the assembly of the 

oligonucleotide is parallel to the crystal a-axis. The assembled superhelices are connected via 

NgTet1 molecules through the protein-to-protein interfaces along the b and c axes that complete 

84 Å (a-axis) 
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the formation of the crystal. (c) One of the protein interfaces in the I212121 space group is 

mediated by the outer helical surface. (d) In the P3221 space group formed by NgTet1-5mC 

complex with a 12-bp DNA plus a 5’- thymine overhang, the crystallographic asymmetric unit 

contains two NgTet1-DNA complexes, using the same outer helical interface as in panel c. The 

interface of ~869 Å2 is within the range (584-2786 Å2), though in the lower end, of the 

homodimer interfaces examined (16). The interface involves two pairs of aromatic tyrosines 

(Y176 and Y201), hydrophobic L207 and I190 (not shown), and a network of hydrogen bonds 

formed by the side chain amine of N175 and hydroxyl oxygen atom of Y201. Although the 

functional significance, if any, of the NgTet1 ‘crystallographic dimer’ is unclear, the NgTet1-

DNA packing is very similar to that of the HinP1I endonuclease-DNA interaction (17) and DNA 

bridge factors that induce DNA condensation by two DNA binding motifs located on the 

opposite surfaces of a bridge dimer (18). There are also known DNA methyltransferases exist as 

a dimer: mammalian Dnmt3a-3L complex (19), group β DNA amino (N4-cytosine or N6-

adenine) methyltransferases [PvuII (20), RsrI (21), and MboIIA (22)], but no nucleic acid 

dioxygenases have been found to act as a dimer. 
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