Two domain-disrupted hda6 alleles have opposite

epigenetic effects on transgenes and some

endogenous targets

Shoudong Zhang^{1,5}, Xiangqiang Zhan², Xiaoming Xu³, Peng Cui⁵, Jian-Kang

Zhu^{2,4,} Yiji Xia^{*1} and Liming Xiong^{*5}

¹ Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China. ² Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China. ³ College of life sciences, Nanjing Agricultural University, Nanjing, China. ⁴ Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.⁵ Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.

* To whom correspondence should be addressed. <u>liming.xiong@kaust.edu.sa</u>or <u>yxia@hkbu.edu.hk</u>

Figure S1. Identification and characterization of the *hda6-9* mutant. (A) *LUC* phenotypes of the wild type and the *ros1-1* single mutant. (B) *LUC* expression of 250 mM NaCl treated *hda6-9* leaves for 3 hours. (C) Genotyping of *hda6-9* and *hda6-10* in the *ros1-1* background.
(D) Examination of possible *RDM1* mutation in the *hda6-9* and *hda6-10* mutants. (E) AtSN1 CHH methylation status of *hda6-9* and *hda6-10*.

Figure S2. Expression of *CMT3*, *HDA6* and *HDA7* in *hda6* alleles. qRT-PCR detection of *CMT3*(A), *HDA6* (B) and *HDA7*(C) expression in wild type, *ros1-1*, *hda6-9* and *hda6-10*.
(D) RT-PCR amplification of the full-length *HDA6* from *ros1-1*, mutated *hda6-10* from the *hda6-10* mutant, and mutated *hda6-9* from the *hda6-9* mutant. (E) RT-PCR amplification of *ERT7* from *COL-0*, mutated *ros1hda6-6*.

Figure S3. DNA methylation analysis on the *RD29A* promoter and the *35S* promoter. (A-C) Bisulfite sequencing to determine the transgenic *RD29A* promoter DNA methylation levels in *ros1-1*, *hda6-9* and *hda6-10* mutants. Numbers on the x-axis indicate the nucleotide positions upstream of the translation start site. (D) Chop PCR with *Bam*HI and a methylation dependent enzyme *Mcr*Bc digestion following PCR to determine the DNA methylation level.

Figure S4. Bisulfite sequencing to determine the DNA methylation level of the *355* promoter. (A) CG methylation. (B) CHH methylation. (C) CHH methylation. Numbers on the x-axis indicate the nucleotide positions upstream of the translation start site.

Figure S5. Comparison of up- or down- regulated targets between two *hda6* alleles relative to the *ros1-1* mutant.

Table S1. Targets with significant difference between ros1hda6-10 and ros1hda6-9.

ros1hda6-10 vs ros1hda6-9

fold change greater than +2			fold change less than -2		
AGI gene	non-AGI	transponsable element	AGI gene	non-AGI	total
256	32	29	127	16	460

ros1hda6-9 VS ros1hda6-10

fold change greater than +2			fold change less than -2		
AGI gene	non-AGI	transponsable element	AGI gene	non-AGI	total
232	13	13	56	7	321

Table S2. Primers used in this study.

primers for q(RT)-PCR	qPCR-LUC-f	TGCAACTCCGATAAATAACGCGCC
	aPCR-LUC-r	AAATGTCCGTTCGGTTGGCAGAAG
	gPCR-RD29A-F	ACGACAAGAATTCTCCGATGGGCT
	aPCR-RD29A-R	
		taaataaastaaaataaa
	qPCR-NPTII-R	atactttctcggcaggagca
	qPCR-UBQ3-F	TCTCATGCACTTGGGAGGTGAACT
	qPCR-UBQ3-R	AATACAAAGGCCCGTTACAAGCCC
	qPCR-At5g41660-F	GACGTTGCTACTCTGCCATG
	qPCR-At5g41660-R	ATTCGCCGTTGGAAGTCGTGAG
	gPCR-Actin2-F	TGCTTATGTCGCTCTTGACTAC
	aPCR-Actin2-R	CTCTCAGCTCCGATGGTTATG
	aPCB-bda7-F	GCGATTGCGGTTGGAGAACAACTT
	aPCP_bda7_P	
	qPCR-hdab-F	GGAGACTACTACGGTCAAG
	qPCR-hda6-R	GGCTAGGGCGACTGATTTCTAAG
	qPCR-CMT3-f	AGACCTGCGACAAAGGATGACACT
	qPCR-CMT3-r	ATTGGCTCGTCTAGAAACCTCGCA
primers for RT-PCR	106B repeats-F	TTGATTGATAGATCCCTTCTGGA
	106B repeats-R	CGAGGATGGGGTAATTGAGT
	180bp-F	ΑΓΓΑΤΓΑΑΑGCCTTGAGAAGCA
	180bp-P	CCGTATGAGICTITGTCTTGTATCTTCT
	SOIO LIRA-R	
	Amplicon 1-F	CTCGAGGTTAAATGTTATTACTTGGTAAGATTCCGG
	Amplicon 1-R	TGGGTTTGTCATATTGAACGTTTGTGTTCATATCACC
	TA3 middle-F	GATTCTTACTGTAAAGAACATGGCATTGAGAGA
	TA3 middle-R	TCCAAATTTCCTGAGGTGCTTGTAACC
	TSI-F	CACTCTTGTTAATCCAAGTAGCTGACTCTCC
	TSI-R	GGGCTTTTGCCCATCTTCAATAGCT
	G1136-E	CTTCATCTCCGTACGCTCCTCA
	C1136-P	
	GIISO-K	CATCIAGATATIAGUGATICUGAAGAAG
	AtMul-F	GIGGATATACCAAAAACACAA
	AtMul-R	CAATGAGAAGGAGTATGGGAAGA
	IGN5B-F	CGCAGCGGAATTGACATCCTATC
	IGN5B-R	TCGGAAAGAGACTCTCCGCTAGAAA
	IGN6-F	GGGACATCTATTGGGTTTAGGCTGGATG
	IGN6-R	TTTGTAATTCTCAGTTCGGGTATCTGCTTG
	IGN15-F	CCATAGCATAGAAACTTGGCGATATATGAA
	IGN15-R	CGGAAAAGGTAAGGTGGTTGGAAAA
primers for Y2H	BD-bda6-Ndel-F	TTAAcatatgATGGAGGCAGACGAAAGC
	BD-bda6-EcoBL-R	
	BD-Huao-HN3467-ECORI-R	
	BD-nda6-DEL340-ECOrl-R	AAATIgaatteTTAACCAATAGAACCTCCGGC
	BD-hda6(1-46/aa)-EcoRI-R	AATIgaattcATTCACGTCTGGCTCTGG
	AD-MET1 R2FB-Ndel-F	TTAAcatatgATGGTGGCTGTAGGTGG
	AD-MET1 R2FB-XhoI-R	AATTctcgagTGGAAGACTAAAGAATCCC
Primers for Bisulfite sequencing	RD29AtransBi-F1	ATATGATGGGTTAATAGATATGGAT
	RD29AtransBi-F2	AATATTTAGTTTTTTGTAAATATA
	RD29AtransBi-R1	ATTCTATAATTTATATTCAACCCATATC
	RD29AtransBi-R2	ΑΑΑΤΑΤΤΟΟΑΟΑΤΑ ΟΑΤΑΑΤΑΤΤΟΑΟΟ
	35S promoterBi-F	aGTAGAAAAGGAAGGTGGtAtTAtAAATG
	35S promoterBi-R	GGGTGGAGAGGTTATTGGTTATG
Deine and fair share DCD	Chan DCD Amalian 2 5	
Primers for chop-PCR	chop-PCK-Amplicon 5-P	
	Chop-PCR-Amplicon 3-R	AACAGACATIGAAAIGICI
	Chop-PCR-35S promoter-F	ATCATTGCGATAAAGGAAAGG
	Chop-PCR-35S promoter-R	TGGAAGTATCACATCAATCC
	AtSN1-HaeIII-F	ACTTAATTAGCACTCAAATTAAACAAAATAAGT
	AtSN1-HaeIII-R	TTTAAACATAAGAAGAAGTTCCTTTTTCATCTAC
primers for CHIP	RD29A-chip-F	ATCAAGCCGACACAGACACGCG
,	BD29A-chip-B	AACAGAGGAGGGTCTCACTAAG
	35S promoter Chin-F	GGAAAGGCTATCATTCAAGATGCCTCTCC
	255 promoter Chip P	TGGAAGTATCACATCAATCCACTTCCTT
	sss promoter Chip-K	
primers for complementary	hdab-CP-r	
	nda6-cp-r	GGTGAGAGTCGGTTCGGATA
primers for genotypes	ID-hda6-DEL340-F	AATGTCGGTGAGGATTGTCC
	ID-hda6-DEL340-R	TTGATAGCGATATCAGCGTCC