Supporting Information

Understanding hydrothermal transformation from Mn₂O₃ particles to Na_{0.55}Mn₂O₄·1.5H₂O nanosheets, nanobelts, and single crystalline ultra-long Na₄Mn₉O₁₈ nanowires

Yohan Park,^{1,+} Sung Woo Lee,^{2,+} Ki-Hyeon Kim,³ Bong-Ki Min,⁴ Arpan

Kumar Nayak,⁵ Debabrata Pradhan,^{5,*} and Youngku Sohn^{1,*}

 ¹Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
²Center for Research Facilities & Department of Materials Science and Engineering Chungnam National University, Daejeon 34134, Republic of Korea
³Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
⁴Center for Research Facilities, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
⁵Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302, W.B., India

* Corresponding author e-mails:youngkusohn@ynu.ac.kr; deb@matsc.iitkgp.ernet.in + There authors equally contributed to this work.

Fig. S1. XRD patterns of the starting materials and the synthesized materials with reaction time in 1.0 and 10 M NaOH solution conditions.

Fig. S2. Standard XRD patterns of Mn_3O_4 , Mn_2O_3 , $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$, and $Na_4Mn_9O_{18}$.

Fig. S3a. Mixed (two crystal phases) XRD patterns and resolved two pure XRD patterns. The mixed sample showed a composition ratio of 24.19%:75.81% of Na_{0.55}Mn₂O₄·1.5H₂O:Na₄Mn₉O₁₈.

Fig. S3b. Observed (O) and Rietveld refinement X-ray powder diffraction patterns of a mixed phase sample (**Fig. S3a**). The difference plot (blue –) is shown at the bottom. Tick marks (green and pink | for $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ and $Na_4Mn_9O_{18}$, respectively) above the difference plot indicate the Bragg reflection positions, identified by Rietveld analysis. The red solid line is the calculated pattern.

Table S1. Refined crystal structural parameters of $Na_4Mn_9O_{18}$ and $Na_{0.55}Mn_2O_4 \cdot H_2O$ obtained using the Rietveld refinement analysis of X-ray powder diffraction data acquired at room temperature. The Oc and *B* iso represent the occupation and isotropic thermal parameters, respectively. The numbers in parentheses are the estimated standard deviations of the last significant digit. The atom crystallographic position, R-factors and a-lattice parameters are summarized in Table. The isotropic temperature factors (B) were obtained.

Reliability factors and goodness of fit

Rexp = 3.75%, Rwp = 4.35, Rp = 3.30, GOF = 1.16

Atom	site	x	У	Ζ	Ос	Biso
Nal	4g	0.2200(29)	0.2125(13)	0.00000	0.630(21)	1
Na2	4h	0.7099(39)	0.0791(15)	0.50000	0.481(25)	1
Na3	4g	0.1175(11)	-0.0105(78)	0.00000	0.570(21)	1
Na4	4g	0.8369(88)	0.0620(34)	0.00000	0.228(26)	1
Mn1	4h	0.87688(99)	0.19177(34)	0.50000	1	1
Mn2	2c	0.50000	0.00000	0.00000	1	1
Mn3	4g	0.53908(73)	0.19259(32)	0.00000	1	1
Mn4	4h	0.37009(92)	0.08883(32)	0.50000	1	1
Mn5	4g	0.0296(10)	0.11004(29)	0.00000	1	1
01	4h	0.9820(31)	0.07606(81)	0.50000	1	1
O2	4g	0.9142(37)	0.23325(83)	0.00000	1	1
O3	4h	0.0766(33)	0.15628(87)	0.50000	1	1
O4	4g	0.5092(30)	0.07300(98)	0.00000	1	1
O5	4g	0.2625(28)	0.0902(11)	0.00000	1	1
O6	4h	0.3649(32)	0.0080(11)	0.50000	1	1
O7	4h	0.4475(32)	0.16866(97)	0.50000	1	1
08	4h	0.6612(28)	0.2128(11)	0.50000	1	1
09	4g	0.8549(33)	0.1456(10)	0.00000	1	1

Refined crystal structural parameters of Na₄Mn₉O₁₈

Space group: *Pbam* (No.55)

 $a = 9.09544(63) b = 26.0536(21) c = 2.82987(14) Å, R_{Bragg} = 1.020$

Phase composition (wt%) via Rietveld refinement : 75.81%

Refined crystal structural parameters of Na_{0.55}Mn₂O₄·H₂O

Atom	site	x	y	Z	0	Biso
Mn	2a	0.00000	0.00000	0.00000	1	18.4(39)
0	4i	0.366(14)	0.00000	0.2893(92)	1	1
Na	4i	0.727(13)	0.00000	0.50000	0.70(16)	15.7(18)
Wat.1	4i	0.727(13)	0.00000	0.50000	0.30(16)	15.7(18)
Wat.2	2c	0.00000	0.00000	0.50000	1	15.8(24)

Space group: C12/m1 (No.12) a = 5.0621(72) b = 2.9029(29) c = 7.2498(10) Å, β = 100.85(10), R_{Bragg} = 0.259 Phase composition(wt%) via Rietveld refinement : 24.19%

Na₄Mn₉O₁₈ $Na_{0.55}Mn_2O_4 \cdot H_2O$ Mn-O d(Å) Mn-O d(Å) Mn(1) - O(2)1.813(3)(x2)Mn(1)-O1 2.524(x6) O(3) 2.038(2)(x1)2.739(x8) O(8) 2.036(2)(x1)<Mean value> 2.63 O(9) 1.868(3)(x2)<Mean value> 1.94 Mn(2)-O(4)1.904(4)(x2)O(6) 1.886(2)(x4)<Mean value> 1.89 Mn(3)-O(2)2.242(2)(x1)O(7) 1.757(3) (x4) 1.874(2) (x2) O(8) <Mean value> 1.96

Table S2. Selected bond distances (Å)

Mn(4)- O(4)	1.941(4) (x2)		
O(5)	1.721(3) (x2)		
O(6)	2.107(3) (x1)		
O(7)	2.195(3) (x1)		
<mean value=""></mean>	1.99		
Mn(5)-O(1)	1.724(3) (x2)		
O(3)	1.907(3) (x2)		
O(5)	2.181(3) (x1)		
O(7)	1.840(3) (x1)		

O(7) 1.840(3) (x1) <Mean value> 1.91

Fig. S4. SEM images of the materials synthesized in 1.0 M NaOH, LiOH, and KOH solutions for 24 hours.

Fig. S5. TEM and HRTEM images of the ultrathin nanosheets prepared in 0.1 M NaOH solution. Bulk Mn₂O₃ nanoparticles are also present as well as the nanosheets.

Fig. S6. HAADF image (left) of the sample and EDX profiles (right) of a nanowire edge.

Fig. S7. TEM and HRTEM image of the edges of nanosheets, HAADF image (bottom left), Illustrated (200) crystal plane (bottom right) showing [001] direction.

 $Mn_2O_3 + Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ <1 weeks

Fig. S8. SEM images of mixed samples upon reactions in 10 M NaOH solution for < 1 week.

1∼ 3 weeks Na_{0.55}Mn₂O₄•1.5H₂O + Na₄Mn₉O₁₈

Fig. S9. SEM images of mixed samples upon reactions in 10 M NaOH solution for 1 ~3 weeks.

Fig. S11. Optical microscope images of the starting materials and the synthesized samples with reaction time.

Fig. S12. Simulated electron diffractions patterns for orthorhombic $Na_4Mn_9O_{18}$ (left) and monoclinic $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ (right).

Fig. S13. TEM image (bottom left), SAED (top left), simulated (top right) patterns, and crystal model of unconverted Mn_2O_3 nanoparticles.

Fig. S14. FT-IR spectra of starting Mn_2O_3 nanoparticles and the synthesized materials with reaction time.

Fig. S15. Raman spectra of $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ and $Na_4Mn_9O_{18}$ before and after high power laser exposure (a laser wavelength of 532 nm, a 100×, 0.9NA microscope objective. a laser intensity of 0.19 mW, and 5 sec exposure time).

Fig. S16. Photoluminescence spectra of $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ and $Na_4Mn_9O_{18}$ taken using a high laser power of 2.7 mW.

Fig. S17. Raman spectra of $Na_{0.55}Mn_2O_4 \cdot 1.5H_2O$ with laser power (a laser wavelength of 532 nm, a 100×, 0.9NA microscope objective. a laser intensity of 0.19 mW, and 5 sec exposure time)

Fig. S18. Survey (top) normalized high resolution Mn 2p and O 1s (bottom) XPS spectra with a common baseline

Fig. S19. Magnetization (M-H) curves of $Na_4Mn_9O_{18}$ nanowires measured at various temperatures between -5 kOe and 5kOe.

Fig. S20. Surface resistance with sample temperature of $Na_4Mn_9O_8$ nanowires. Inset shows the SEM image of the ultra-long nanowires.

 Mn_2O_3 (a) $Na_{0.55}Mn_2O_4$ · 1.5 H_2O structures.