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1 Mixture of Gaussians under truncated Dirichlet process priors

We use the truncated Dirichlet process Gaussian mixture model Ishwaran and James (2001) in
which p−vector observations x follow the model

g(x|Θ) =
J∑

j=1

πjN(µj ,Σj) (1)

with prior hierarchically defined as follows:

π1 = V1, πj = (1− V1), ..., (1− Vj−1)Vj , 1 < j < J,

Vj | α ∼ B(1, a), j = 1, ..., J − 1,

a ∼ G(e, f),

µj | Σj ∼ N(m, tΣj),

Σj ∼ IW (k + 2, kK)

for specified hyperparameters (e, f,m, t, k,K) and some fixed (large) upper bound J on the number
of effective components. Based on observing the random sample x1:n = {x1, ..., xn} we simulate
the full posterior for Θ = {µ1:J ,Σ1:J , V1:J−1} and latent variables (a, z1:n) where z1:n = {z1, ..., zn}
is the set of latent configuration indicators, viz. zi = j if, and only if, xi comes from normal
component j. The standard blocked Gibbs sampler (Ishwaran and James, 2001; Ji et al., 2009) for
this model is effective, widely used and implemented in efficient serial and parallel code (Suchard
et al., 2010; Wang et al., 2010).
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2 Component relabelling in MCMC analysis of mixtures

To resolve the well-known component label switching problem (e.g. West, 1997; Stephens, 2000;
Yao and Lindsay, 2009) our Gibbs sampler imposes a per iterate relabelling based on the efficient
and effective method of Cron and West (2011). The code used for the analysis incorporates this as
a default (Wang et al., 2010), and the essential idea is summarized here.

At each Gibbs iterate let M be the n × J binary classification matrix with elements Mij = 1
where j = argmaxJr=1{πr(xi)} based on current values of the component posterior classification
probabilities πr(x) = πrfr(xi)/g(xi) under equation (1). Let M0 denote a reference classification
matrix obtained this way but using parameters Θ obtained as highest posterior modes following a
Bayesian expectation-maximization based search. At the current simulation iterate, relabel compo-
nents as follows.

1. Reorder components so that π1 > π2 > · · · > πJ , reordering µ1:J ,Σ1:J and the columns of M
accordingly.

2. Beginning with column 1 of M0, find column r1 of M such that the two columns have the
best match:

r1 = argmaxJj=1

n∑
1=1

M0(i, 1)M(i, j).

Delete column 1 from M0 and column r1 from M. Repeat to assign a match of column 2 of
the original M0 with r2 of the original M. Continue this to define the complete assignment of
columns [r1, ..., rJ ] and use this to reorder π1:J , µ1:J ,Σ1:J and reassign the zi accordingly.

3 Bayesian EM algorithm in Dirichlet process mixtures

Numerical search to identify modes of the posterior p(Θ|x1:n) uses a new expectation-maximization
procedure for truncated Dirichlet mixture models, as follows. This extends the standard method
treating the latent variables (a, z1:n) as missing data, iterating over t = 0, 1, . . . , based on starting
parameter values Θ(0), as follows. At iterate t+ 1:

E-step: Define Q(Θ|Θ(t)) = E[ log{p(Θ, z1:n, a|x1:n)}| Θ(t), x1:n ].
For given parameters Θ, denote the posterior classification probabilities by πij = πj(xi) =

πjN(xi|µj ,Σj)/g(xi|Θ) and define â = E[a|Θ, x1:n] = (J + e − 1)/(f −
∑J−1

j=1 log(1 − Vj)). Then
Q(Θ|Θ(t)) is given, up to a constant, by

Q(Θ|Θ(t)) = c+

J∑
j=1

[ n∑
i=1

π
(t)
ij log{πjN(xi|µj ,Σj) + log[p(µj |Σj)p(Σj)]}

]

+

J−1∑
j=1

(â(t) − 1)log(1− Vj).
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M-step: Compute Θ(t+1) = argmaxΘQ(Θ|Θ(t)). Letting c(t)
j =

∑n
i=1 π

(t)
ij , this yields the follow-

ing, with index j running from j = 1, . . . , J except as noted for the Vj terms:

V
(t+1)
j = min{1, c(t)

j /[â(t) − 1 +
J∑

r=j

c(t)
r ] };

π1
(t+1) = V

(t+1)
1 , πj

(t+1) = (1− V1
(t+1)) · · · (1− Vj−1

(t+1))Vj
(t+1), j = 2, ..., J ;

µ
(t+1)
j = (m+ tc

(t)
j x̄j)/(1 + tc

(t)
j ) where x̄j =

n∑
i=1

πij
(t)xi/c

(t)
j ;

Σ
(t+1)
j = S

(t)
j /(c

(t)
j + k + 2p+ 3) where

S
(t)
j = kK + c

(t)
j (x̄j −m)(x̄j −m)′/(1 + tc

(t)
j ) +

n∑
i=1

π
(t)
ij (xi − x̄j)(xi − x̄j)′.

A key practical point to note is that an identified posterior mode will typically identify fewer
than the maximum specified number of components, so providing an automatic indicator of effec-
tive number of components from a mode search. This arises when the M-step optimization over the
Vj yields Vj = 1 for j ≥ J ′, for some J ′ < J.

4 Non-Gaussian component mixtures via aggregating normals

Given a set of parameters, whether posterior mode estimates or a sample from the posterior, for the
Gaussian mixture of equation (1), we follow previous work (Chan et al., 2008; Finak et al., 2009)
in defining subpopulations by aggregating proximate normal components. That is, identify C ≤ J
subpopulations with index sets Ic containing components indices j for each subtype c = 1 : C.
Then αc =

∑
j∈Ic πj and

g(x) =

C∑
c=1

αcfc(x) where fc(x) =
∑
j∈Ic

(πj/αc)N(xi|µj ,Σj), c = 1, . . . , C.

Grouping components into clusters can be done by associating each of the normal components with
the closest mode of g(x). By running an efficient modal search beginning at each of the µj we can
swiftly identify the set of modes in g(x) together with the indicators of which mode each normal
component is attracted too. The number of modes so identified is C, taken as the realized number
of subpopulations in the mixture.

Efficient numerical optimization uses the mode trace function for Gaussian mixtures. Define
precision matrices Ωj = Σ−1

j . Mode search start with iteration index i = 0 and a point x0 in data
space and then, for i = 1, 2, ... iteratively computes

xi+1 = A(xi)−1
J∑

j=1

γj(x
i)Ωjµj

where A(x) =
∑J

j=1 γj(x)Ωj and γj(x) = πjN(x|µj ,Σj). This is a convergent local mode search
that is broadly useful to quickly identify modes, antimodes and ridge lines between them in the
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contours of Gaussian mixtures, and typically takes just a few iterates. A second derivative of g(x)
evaluated at any identified stationary point then identifies it as a mode or antimode. Rather than
being interested in all modes of g(x), we are here only interested in those that define basins of
attraction for the mixture components in order to find the sets Ic of component indicators related
to different modes. Hence we run this numerical search J times, initializing at x0 = µj , j = 1 : J
in turn, and record the unique modes so identified as well as the sets Ic of Gaussian components
attracted to each in this search.

5 Approximations to αc+ and αc−

As a simple but illuminating example, take p = 1 : 10, C = 2, α1 = α2 = 0.5, f1(x) = N(x|0p, I)
and f2(x) = N(x|mp, I) for some m 6= 0. In this special case, ∆c = ∆−c = exp(−p × m2/4) and
τc− = 1 − τc+ where τc+ = 1/(1 + exp(−p × m2/4)) for each c = 1, 2. Supplementary Figure
1 plots these values for c = 1. We also show Monte Carlo estimates of the expected posterior
classification probabilities αc+, αc−, computed by importance sampling using 10,000 draws from a
Cauchy importance sampling distribution.

Supplementary Figure 1. Example with p ranging from 1 to 10, C = 2, αc = 0.5 for each c = 1, 2,
and where f1(x) = N(x|0p, I) and f2(x) = N(x|mp, I). In this special case, ∆c = ∆−c = exp(−p×
m2/4) and τc− = 1− τc+ with τc+ = 1/(1 + exp(−p×m2/4)) for each c = 1, 2.

6 Estimation of discriminative measures

If all mixture components of interest are normal, the effective number of components is C and
each of the component densities fc(x) is normal. Then each DIME measure ∆∗ is easily computable
based on given mean vectors and variance matrices for components, and hence we can easily com-
pute discriminative probabilities given the αc parameters. Posterior analysis using MCMC methods
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(see supplementary material and references) generates posterior samples of all model parameters,
including C, and so we can directly compute the corresponding posterior samples for all discrim-
inative measures of interest. Summary estimates of the ∆∗, τ∗ and A∗ quantities are based on
approximate posterior means from these MCMC outputs in our examples below.

It is also of interest to consider plug-in estimates of the parameters based on posterior modes for
the mixture model parameters. The supplementary material also details a new Bayesian expectation-
maximization algorithm for finding posterior modes in truncated Dirichlet process mixtures of nor-
mals. This is an efficient numerical search strategy that can be run from multiple starting values to
determine posterior modes. We use this to compare the resulting plug-in estimates of discrimina-
tive quantities with their MCMC-based posteriors and approximate posterior means; the Bayesian
EM algorithm is also useful for quickly generating initial parameter values as starting values for
the standard MCMC. Both MCMC and the Bayesian EM algorithm are particularly effective for
problems with larger dimensions, numbers of components and sample sizes when exploiting the
parallelization opportunities using GPU implementations (Suchard et al., 2010; Wang et al., 2010).

Under the contexts where practically relevant component densities fc may have quite non-
Gaussian forms. In the flow cytometry study, biologically relevant components are assumed to
represent distributions of cell surface markers on specific cellular subtypes and these can exhibit
markedly non-normal forms. Here we use the emerging standard strategy of assuming each fc(x)
is itself a mixture of multivariate normals, i.e., g(x) is a mixture of mixtures (Cao and West, 1996;
Chan et al., 2008; Frelinger et al., 2010; Finak et al., 2009). This is operationally defined by setting
g(x) to be a mixture of multivariate normals with a large number of components, again utilizing the
inherent parsimony of the Bayesian truncated Dirichlet process mixture to automatically cut-back
to smaller numbers of components deemed relevant by the data. Then, given any set of components
and their parameters, we use the modal aggregation strategy (e.g. Chan et al., 2008; Finak et al.,
2009) to identify C sets of subsets of the normal densities and take each fc(x) as the implied
conditional mixture of normals of one of these subsets; see Supplementary section 4. Whether
using plug-in estimates from posterior modes or repeat evaluations using MCMC outputs, the ∆∗
quantities are then easily evaluated since the underlying concordance measures δa,b between two
mixtures of multivariate normals fa(x), fb(x) with given parameters are analytically available.

7 Forward Search Algorithm

A simple forward search over subsets operates as follows. This applies separately– and in parallel–
to each chosen component c of interest. Starting at k = 0 and with an initial empty variable subset
h ≡ hc0 = ∅, move over a series of iterates, at each staging updating the variable subset. Suppose
that at iterate k ≥ 0 we have a current subset of variables hck ⊆ {1 : p}. Then at step k + 1 :

1. For each j /∈ hck, compute Ac(j, hck);

2. Identify j∗ck = argmaxj /∈hck
Ac(j, hck);

3. Update k to k + 1 and the current variable subset to (j∗ck, hck);

4. Continue to the next iterate, or stop.

We might simply continue this process until all variables are selected, or stop at point 4 if the
increase in Ac(∗) is below a chosen threshold ε and/or if Ac(∗) exceeds a specified high probability.
We can also address potential masking issues by modifications that have multiple branching subsets
of selected variables by considering two or more different additional variables at step 3.
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8 Two synthetic examples

8.1 A simple example

This simple example involves sample of size n = 5, 000 drawn from p = 3−dimensional mixtures
of C = 2 normal distributions. Only the first 2 variables carry primary discriminative information.
The model and analysis allows up to 9 components using default, relatively vague priors in the
truncated Dirichlet process mixture. The Bayesian expectation-maximization algorithm (Supple-
mentary section 3) was run repeatedly from many random starting points. The posterior mode
identified the correct number of components and parameters perfectly consistent with the known,
true values underlying the synthetic data generation. MCMC analysis, as in Supplementary section
1 and 2, was initialized at the posterior mode identified by the Bayesian EM analysis, and run to
generate posterior simulations of size 10,000 following additional burn-in iterates.

Supplementary Example 1. In this example, variables 1 and 2 together discriminate the 2 normal
components while variable 3 is redundant. A data scatter plot appears in Supplementary Figure 2.

Supplementary Table 1 displays MCMC-based posterior means of discriminative measures. This
clearly shows the τc+(h) and τc,1(h) correctly identify the first 2 variables as highly discriminative
and that the 3rd variable is redundant. Note that τc+ is close to 1 for h = (1, 2) and less than 0.9
for other subsets of just 1 or 2 variables; similarly, τc− is close to 0 for h = (1, 2) and greater than
0.1 for other subsets of just 1 or 2 variables; adding variable 3 to (1, 2) makes no practical change.
In addition, the data was generated such that the difference between the two normal mean vectors
(µ1 and µ2 for the two normal components) for variable 1 (|µ1(1)−µ2(1)|) is slightly larger than the
difference for variable 2 (|µ1(2) − µ2(2)|), given that the variances are the same for both variable
1 and 2 among each of the normal component. Hence, Supplementary Table 1 also shows variable
1 alone discriminated better than variable 2 alone. Supplementary Figure 3 displays full posteriors
for some of the τc+(h) and τc−(h) indicating very high concentration of posterior margins in this
example.

In all cases, plug-in values based on the posterior modal parameters identified via the Bayesian
EM search are very close to the MCMC-based posterior means for the DIME, τc+(h) and τc−(h)
measures. In this example, all differences all well below 0.01 for the discriminative probabilities
and most are much smaller. This is found in other examples, but as the mixture model dimension
and complexity increase, we have found much more divergence between MCMC-based posterior
means and plug-in values based on identified posterior modes. Hence as a routine we use MCMC,
utilizing the EM search for initial exploratory analysis and initializing MCMC.
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Supplementary Figure 2. Pairwise scatter plots of a randomly selected subset of the n = 5, 000
observations in Supplementary Example 1. Dimensions 1 and 2 together discriminate the 2 normal
components while dimension 3 is redundant.

Supplementary Table 1. MCMC-based posterior means for DIME measures and discriminative
threshold probabilities τc+(h) and τc−(h) in Supplementary Example 1.

h 1,2,3 1,2 1,3 2,3 1 2 3
τ1+(h) 0.998 0.997 0.877 0.734 0.750 0.530 0.714
τ1−(h) 0.001 0.001 0.108 0.2380 0.173 0.356 0.371
∆1(h) 0.002 0.003 0.145 0.373 0.345 0.911 0.413

∆−1(h) 0.001 0.001 0.118 0.304 0.203 0.537 0.573

τ2+(h) 0.999 0.999 0.892 0.762 0.827 0.644 0.629
τ2−(h) 0.002 0.003 0.123 0.266 0.251 0.470 0.286
∆2(h) 0.001 0.001 0.118 0.304 0.203 0.537 0.573

∆−2(h) 0.002 0.003 0.145 0.373 0.345 0.911 0.416
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Supplementary Figure 3. MCMC-based histograms representing the posteriors for discriminative
threshold probabilities in Supplementary Example 1. The upper two frames display posteriors for
τ2+(h) and τ2−(h), respectively, when h = (1, 2, 3), while the lower two frames show the corre-
sponding posteriors when h = (1, 2).

8.2 A more challenging mixture and comparison with related approaches

This more challenging mixture example comparing the analysis with the ridgeline-based separabil-
ity measure (RSM) of Lee and Li (2012). Logistically, we follow the forward selected strategy and
recommendations in Lee and Li (2012), evaluating variables to add to a current discriminatory sub-
set if the increase in RSM exceeds 0.01 at each step, and stopping otherwise. MCMC analyses were
initialized at the Bayesian EM-based posterior modes, and we generated posterior simulations of
size 10,000 following additional burn-in iterates. For most direct comparison, RSM measures were
evaluated using mixture model parameters estimated by MCMC-based posterior means.

Supplementary Example 2. This proof-of-principle example, where DIME and RSM approaches
agree in identifying a single subset of discriminative variables for each of the components, fol-
lows Lee and Li (2012) in simulating 6,000 observations from the following 8−dimensional dis-
tribution: the first two dimension are generated according to 1/3N((3, 9), I) + 1/3N((5, 6), I) +
1/3Unif([0, 8] × [4, 12]), where the uniform distribution serves to weaken the separation between
the two primary normal components. The other six dimensions are non-informative, the variables
being independent standard normals. Supplementary Figure 4 displays pairwise scatter plots of
standardized data.
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The model allowed up to 16 components and analysis used default, relatively vague priors.
MCMC-based posterior outputs identify two main modes of concentration following aggregation of
normal components (Supplementary section 4), with additional structure representing noise. More
specifically, given the fitted 16-component mixture model, we identify modes by clustering the nor-
mal components into groups; this assigns each of the 16 components of the mixture to the closest
mode of the fitted mixture model. Investigation of MCMC outputs (not shown) clearly show that
the two components concentrate in regions consistent with those of the underlying distribution that
generated the synthetic data. Discriminative analysis summaries are shown in Supplementary Table
2. Applying our stopping rule requiring a change of at least 0.01 on the classification probability
scale for the accuracy measure Ac(h) yields discriminative variable subsets h = (1, 2) for each of
the two components, correctly identifying the structure underlying the data. This agrees the RSM
result that identifies (1, 2) for both components simultaneously. This example highlights the abil-
ity of DIME-based analysis to perform as well as the existing method, while providing additional
information: the table shows an average probability classification rate of about 92% for each com-
ponent using variables (1, 2), that variable 2 alone (or, in fact, variable 1 alone) would yield around
80-82% accuracies, and quite evidently the other variables only add noise to the discrimination.

Supplementary Figure 4. Pairwise scatter plots of a randomly selected subset of the n = 6, 000
observations in Supplementary Example 2.
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Supplementary Table 2. Accuracy Ac(h), (c = 1, 2), in Supplementary Example 2. Variables
are ordered according to the forward search based on accuracy Ac(∗) for DIME-based analysis to
compare with the order and variables identified using the RSM approach. For each component, †

indicates the last variable whose addition increases the accuracy probability by at least 0.01. RSM
variables and values are defined as in Lee and Li (2012), computed at the posterior means of model
parameters; underlining indicates the index of the last variable entered into the discriminative set
using RSM.

Step: 1 2 3 4 5 6 7 8

Variable: 2 1† 6 4 7 3 8 5
A1(h): 0.808 0.928 0.928 0.928 0.927 0.927 0.926 0.924
τ1+(h) 0.792 0.923 0.923 0.923 0.922 0.921 0.920 0.918
τ1−(h) 0.179 0.069 0.068 0.068 0.068 0.068 0.069 0.070
∆1(h) 0.232 0.073 0.074 0.074 0.075 0.076 0.077 0.079

∆−1(h) 0.247 0.084 0.083 0.082 0.083 0.083 0.084 0.086

Variable: 2 1† 6 8 7 5 3 4
A2(h): 0.824 0.925 0.925 0.925 0.925 0.925 0.924 0.923
τ2+(h) 0.799 0.924 0.924 0.924 0.924 0.923 0.922 0.921
τ2−(h) 0.157 0.074 0.074 0.074 0.074 0.074 0.074 0.076
∆2(h) 0.182 0.060 0.060 0.059 0.060 0.060 0.061 0.062

∆−2(h) 0.258 0.111 0.111 0.111 0.111 0.111 0.112 0.114

Variable: 2 1 5 8 3 7 6 4
RSM : 0.133 0.192 0.194 0.195 0.195 0.195 0.195 0.195
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