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1Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Laboratoire de Biométrie et
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1. Related work

The difficulty of estimating unwanted variation depends on what is actually considered to be

observed and what is not.

1.1 When both the factor of interest and the unwanted factors are observed

If both the factor of interest and all the sources of unwanted variation (say technical batches or

different countries) are known and assuming a linear model, the problem boils down to a linear

regression: the expression of each gene is decomposed as an effect of the factor of interest plus an

effect of the unwanted factors. When the variance of each gene is assumed to be different within

each batch, this leads to so-called location and scale adjustments such as implemented in the

dChip software (Li and Wong, 2003) under “using standardized separators”.

c© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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Johnson and others (2007) shrink the unwanted variation and variance of all genes within

each batch using an empirical Bayes method. This leads to the widely used ComBat method

which generally perform well in this case.

Walker and others (2008) propose a version of ComBat which uses replicate samples to esti-

mate the batch effect. When replicate samples are available an alternative to centering, known as

the ratio-based method (Luo and others, 2010) is to remove the average of the replicate samples

within each batch rather than the average of all samples. Assuming that the factor of interest

is associated with the batch, this should ensure that centering the batches does not remove the

signal associated with the factor of interest.

1.2 Observed factor of interest, unobserved unwanted factors

Of course there is always a risk that some unknown sources also influence the gene expression.

Furthermore it is sometimes better when tackling the problem with linear models to consider

sources of unwanted variation which are actually known as unknown. The effect of these sources

may be strongly non-linear because they don’t affect all samples the same way or because they

interact with other sources, in which case modeling them as known or simply additive may give

poor results. When the sources of unwanted variation are modeled as unknown, the problem

becomes more difficult because one has to estimate the unwanted factors along with their effects

on the genes and because many estimates may explain the data equally well while leading to very

different conclusions.

ICE (Intersample Correlation Emended, Kang and others (2008)) models unwanted variation

as the combination of an observed fixed term and an unobserved random term. The covariance

of the random effect is taken to be the covariance of the gene expression matrix. The risk of this

approach is that some of the signal associated with the signal of interest may be lost because it

is included in the covariance of the gene expression matrix.
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SVA (Leek and Storey, 2007) addresses the problem by first estimating the effect of the factor

of interest on each gene then doing factor analysis on the residuals, which gives good results as

long as the unwanted factors are not too correlated with the factor of interest. Teschendorff and

others (2011) propose a variant of SVA where the factor analysis step is done by independent

component analysis (Hyvrinen and Oja, 2000) instead of singular value decomposition (SVD).

The same model as Leek and Storey (2007) is considered in a recent contribution of Gagnon-

Bartsch and Speed (2012) coined RUV-2, which proposes a general framework to correct for

unwanted variation in microarray data using negative control genes. These genes are assumed

not to be affected by the factor of interest and are used to estimate the unwanted variation

component of the model. Gagnon-Bartsch and Speed (2012) apply the method to several datasets

in an extensive study and show its very good behavior for differential analysis, in particular

comparable performances to state of the art methods such as ComBat (Johnson and others,

2007) or SVA (Leek and Storey, 2007).

Sun and others (2012) recently proposed LEAPP, which estimates the parameters of a similar

model in two steps: first the effect of the unwanted factors is estimated by SVD on the data

projected along the factor of interest, then the unwanted factors responsible for this effect and

the effect of the factor of interest are estimated jointly using an iterative coordinate descent

scheme. A sparsity-inducing penalty is added to the effect of the factor of interest in order to

make the model identifiable.

Yang and others (2013) adopt a related approach: they also use the sparsity-inducing penalty,

do not have the projection step and relax the rank constraint to a trace constraint which makes

the problem jointly convex in the unwanted variation and effect of the factor of interest.

Listgarten and others (2010) model the unwanted variation as a random effect term, like ICE.

The covariance of the random effect is estimated by iterating between a maximization of the

likelihood of the factor of interest (fixed effect) term for a given estimate of the covariance and
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a maximization of the likelihood of the covariance for a given estimate of the fixed effect term.

This is also shown to yield better results than ICE and SVA.

1.3 Unobserved factor of interest

Finally when the factor of interest is not observed, the problem is even more difficult. It can occur

if one is interested in unsupervised analyzes such as PCA or clustering. Suppose indeed that one

wants to use a large study to identify new cancer subtypes. If the study contains several technical

batches, includes different platforms or different labs or any unknown factor, the samples may

cluster according to one of these sources hence defeating the purpose of using a large set of samples

to identify more subtle subtypes. One may also simply want to “clean” a large dataset from its

unwanted variation without knowing in advance which downstream analyses will be performed

on the data. For example, in addition to clustering, survival or differential expression analyses

may be carried out. Admittedly in the latter case, any knowledgeable person may want to start

from the raw data and use the factor of interest once it becomes known to remove unwanted

variation.

Alter and others (2000); Nielsen and others (2002) use SVD on gene expression to identify

the unwanted factors without requiring the factor of interest, Price and others (2006) do so

using axes of principal variance observed on SNP data. These approaches may work well in

some cases but they rely on the prior belief that all unwanted factors explain more variance

than any factor of interest. They will fail however if the unwanted factors are too correlated

with the factor of interest. If the factor of interest is not observed but the unwanted factor is

assumed to be an observed batch, an alternative approach is to project the data along the batch

factors, equivalently to center the data by batch. This is conceptually similar to using one of the

location and scale adjustment methods such as implemented in dChip Li and Wong (2003) or

Johnson and others (2007) without specifying the factor of interest. Benito and others (2004);
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Marron and others (2007) propose a distance weighted discrimination (DWD) method which

uses a supervised learning algorithm to finds a hyperplane separating two batches and project

the data on this hyperplane.

These approaches may lead to poor estimation of the variation of interest if it is correlated

with the batch effect: if one of the batches contains most of one subtype and the second batch

contains most of the other subtype the projection step removes a large part of the subtype signal.

In addition, assuming that the unwanted variation is a linear function of the observed batch

may fail if other unwanted factors affect gene expression or if the effect of the batch is a more

complicated — possibly non-linear — function, or involves interaction with other sources.

Finally, Oncomine (Rhodes and others, 2004, 2007) regroups a large number of gene expression

studies which are processed by median centering and normalizing the standard deviation to one

for each array. This processing does not explicitly take into account a known unwanted factor or

try to estimate it. It removes scaling effects, e.g. if one dataset or part of a dataset has larger

values than others, but it does not correct for multivariate behavior such as the linear combination

of some genes being larger for some batch : in particular if a single gene a has large values —

compared to other genes — in a batch and low values in another batch, this will not be corrected.

On the other hand, the correction does not run the risk of removing biological signal of this form.

2. Alternatives for the estimation of W

In the main paper, we consider the estimate Ŵ2 used in RUV-2, which relies on the SVD of

the expression matrix restricted to its control genes. This estimate is shown to perform well for

differential analysis tasks on an observed factor of interest (Gagnon-Bartsch and Speed, 2012).

Unsupervised estimation of Xβ may be more sensitive to the influence of the factor of interest

X on the control genes: in the case of fixed α models, if the estimated Ŵ is very correlated with

X in the sense of the canonical correlation analysis (Hotelling, 1936), i.e., if there exists a linear
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combination of the columns of X which has high correlation with a linear combination of the

columns of Ŵ , then most of the association of the genes with X will be lost by the correction.

Random α models are expected to be less sensitive to the correlation of Ŵ with X but could be

more sensitive to poor estimates of the variance carried by each direction of unwanted variation.

This is also true regardless of the influence of X on the negative control genes if X is associated

with the population W .

This suggests that unsupervised estimation methods could benefit from better estimates of W .

We present here two directions that could lead to such estimators. The replicate-based correction

introduced in Section 3 of the main manuscript yields yet another estimator of W .

2.1 Using residuals

In the case where X is observed, a common way of estimating W known as feasible generalized

least squares (FGLS, Freedman (2005)) is to first do an ordinary regression of Y against X, then

compute the empirical covariance on the residuals Y −Xβ̂.

The estimators Ŵ2 of W that we introduced in Section 2 of the main manuscript works around

the estimation of Xβ by using genes for which β is known to be 0. Once we start estimating Xβ,

e.g., by iterating over Xβ and α as described at the end of Section 2.3 of the main manuscript

we can use a form of FGLS and re-estimate W using Y − X̂β. If the current estimator of Xβ is

correct, this amounts to making all the genes control genes.

In practice, we use 100 iterations over Xβ and α, and update W every 34 iterations, which

amounts to performing three runs of about 30 (Xβ, α) iterations each, with updated W at each

run. We found the procedure to be robust to changes in the iteration number, one simply needs

to make sure that W is not updated in the last few iterations. This is what would happen if we

did 100 iterations in total and updated after every 33 iterations: the last W update would occur

at iteration 99, and the resulting α would not be optimized for the new W , which could lead to
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poor estimation.

The total number of iterations is sometimes considered to be a regularization parameter itself

in so called early stopping strategies (Prechelt, 1997) and can therefore be chosen using similar

strategies as the ones we suggest for selecting the ridge parameter ν and the rank k of Wα in

Section 4. In practice, we found little difference when changing the number of iterations. Our

RUVnormalize R package, the user is free to control the amount of optimization by specifying a

maximum number of iterations, and a tolerance t such that optimization stops as soon as both

Wα and Xβ changed by less than t after one iteration.

2.2 Using a known W

In some cases we may want to consider that W is observed. For example, if the dataset contains

known technical batches, involves different platforms or labs, W could encode these factors instead

of being estimated from the data. In particular if the corresponding W is a partition of the

samples, then naively estimating α by regression using Xβ = 0 and removing Wα̂ from Y

corresponds to mean-centering the groups defined by W .

In most cases however, this procedure or its shrunken equivalent doesn’t yield good estimates

of Xβ. This was also observed by Gagnon-Bartsch and Speed (2012) for an observed factor of

interest. One reason is that this W only accounts for known unwanted variation when other

unobserved sources can influence the gene expression. The other one is that this approach leads

to a linear correction for the unwanted variation in the representation used in W .

If we know that gene expression is affected by the temperature of the scanner, setting a column

of W to be this temperature leads to a linear correction whereas the effect of the temperature

may be quadratic, or involve interactions with other sources. In this case, estimating W implic-

itly allows us to do a non-linear correction because the estimated W could fit any non-linear

representation of the observed unwanted variation which actually affects gene expression.
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Fig. 1. Naive RUV-2 (fixed α) and random α based corrections, with m = 2.

3. Naive fixed α RUV-2 vs random α RUV-2

As discussed in Section 2 of the main manuscript, the only difference between the naive RUV-2

estimator of Gagnon-Bartsch and Speed (2012) and the newly introduced random α RUV-2 is

the `2 penalty term: the former is a ridge regression against Ŵ2 — maximum a posteriori for a

random α model– whereas the latter is an ordinary regression – maximum likelihood for a fixed

α model. In this context where X is unobserved and Xβ is set to 0 to estimate α, this difference

can be important if X and W are correlated.

Figure 1 shows an example of such a case. The left panel represents genes for m = 2. Red

dots are control genes, gray ones are regular genes. The largest unwanted variation W1 correlates

with the factor of interest X.

In naive RUV-2 with k = 1, the correction projects the samples in the orthogonal space of

W1, which can remove a lot of the signal coming from the factor of interest. This is illustrated

on the center panel which shows the data corrected by naive RUV-2, i.e., by projecting the

genes on the orthogonal space of W1. The projection removes all effect coming from W1 but also

greatly reduces the association of genes with X. This is true regardless of the amount of variance

actually caused by W1: the result would be the same with an almost spherical unwanted variation

‖W1‖ ' ‖W2‖ because once W is identified, the projection step of naive RUV-2 does not take
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into account any variance information. On the other hand, the projection does not account at all

for the unwanted variation along W2.

By contrast, the random α correction shown on the right panel of Figure 1 takes variance

into account. The ridge regression removes only a limited amount of signal along each unwanted

variation direction, proportional to the amount of variance that was observed in the control genes.

4. Choice of the ridge parameter ν on gender data

As mentioned in Section 5.1 of the main manuscript, choosing the ridge parameter ν is a difficult

problem in general. In supervised tasks like classification, regularization parameters are often

chosen using cross-validation or hold-out procedures. For normalization or clustering tasks on

the other hand these procedures cannot be used, and different values of ν will lead to different

corrected datasets, which are hard to compare. In this Section, we show two indicators which

can be used to choose ν in general: RLE plots, and positive control genes. In the context of this

specific experiment (Section 5.2 of the main manuscript), the only honest way to pick ν would

be by using RLE plots, but we still discuss others like positive control genes and clustering error

as they can be useful for other applications.

4.1 RLE plots

RLE plots represent each array by a boxplot of the log intensities of its probes. Each log intensity

corrected by the median log intensity of the probe across all arrays. The fact that arrays have

very different boxplots can indicate the presence of unwanted variation. In addition, if all IQRs

become small, i.e., most probes are very close to their median, we can suspect that too much

signal has been removed by the normalization procedure. Unpublished experiments in our group

suggest that clean replicates of the same sample lead to RLE plots with IQR around 0.1 or 0.05.

Datasets formed by different biological samples are expected to have larger IQRs. However this



10

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

(a) Uncorrected

−2

−1

0

1

2

(b) Centered

Fig. 2. RLE plots for the gender data, uncorrected and after mean centering. Colors correspond to labs:
green is UC Davis , red is UC Irvine and blue is University of Michigan, Ann Arbor.
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Fig. 3. RLE plots for the gender data after naive RUV-2, replicate based and replicate + iterations
corrections. Colors correspond to labs: green is UC Davis , red is UC Irvine and blue is University of
Michigan, Ann Arbor.

approach can be misleading if the variation of interests involves only a few genes: if most genes

do not vary, IQRs can be very small.

Figures 2 and 3 show RLE plots before correction, after mean centering, naive RUV-2, and

replicate based corrections. The uncorrected data contains strong unwanted variation, leading

to boxes with very differents medians and amplitudes. All corrections lead to IQRs larger than

0.1. Figure 4 and 5 show RLE plots after correction with random α without and with iterations

respectively, and for various values of ν. As expected, smaller values of ν lead to smaller IQRs, as
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Fig. 4. RLE plots for the gender data after naive random RUV correction with different shrinkage levels.
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more variance is removed. Both with and without iterations, ν = 10−2σ1(WW>) is the smallest

value leading to IQRs larger than 0.1.

4.2 Positive control genes and clustering error

Clustering error 20 40 60
Uncorrected 1.000 13 13 14

Centered 0.973 12 18 18
Naive RUV-2 0.751 14 19 24

Naive + shrink 0.427 16 22 27
Replicates 0.770 16 23 29

Replicates + iter 0.486 19 25 28
Shrinkage + iter 0.091 15 22 26

Table 1. Clustering errors and genes on the X and Y chromosomes among the first 20, 40 and 60 DE
genes as a function of the number of selected genes for various correction methods.

ν Clustering error 20 40 60

10.σ1(WW>) 1.000 13 13 14
σ1(WW>) 0.998 14 17 17
10−1σ1(WW>) 0.998 15 21 24
5.10−2σ1(WW>) 0.851 16 22 26
10−2σ1(WW>) 0.427 16 22 27
10−3σ1(WW>) 0.674 15 19 20
10−4σ1(WW>) 0.932 10 11 11
10−5σ1(WW>) 0.955 7 8 8

Table 2. Clustering errors and genes on the X and Y chromosomes among the first 20, 40 and 60 DE genes
as a function of the number of selected genes for naive RUV-2 corrected data with different shrinkage
levels.

Another possible way to assess which ν leads to better normalizations is to count how many

genes known to be differentially expressed for a known factor of interest are indeed detected as

such after each normalization. This approach was used in Gagnon-Bartsch and Speed (2012). It

implies by definition that we know a biological signal of interest, and a few differentially expressed

genes. This may not be the case for all datasets, and even when this type of information is available

it is only a guideline since detecting these positive control genes does not guarantee that other

signals of interest are maintained.
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ν Clustering error 20 40 60

10.σ1(WW>) 1.000 13 13 13
σ1(WW>) 0.998 14 16 17
10−1σ1(WW>) 0.998 16 20 22
5.10−2σ1(WW>) 0.761 15 21 22
10−2σ1(WW>) 0.091 15 22 26
10−3σ1(WW>) 0.179 14 18 20
10−4σ1(WW>) 0.305 7 8 8
10−5σ1(WW>) 0.903 3 3 3

Table 3. Clustering errors and genes on the X and Y chromosomes among the first 20, 40 and 60 DE
genes as a function of the number of selected genes for RUV-2+iteration corrected data with different
shrinkage levels.

Table 2 and 3 show the number of detected positive control genes for increasing values of

ν, without and with iterations respectively. The factor of interest considered is gender and the

positive control genes are the ones located on chromosomes X and Y — Table 1 shows the same

thing for other methods, for comparison purpose. In both cases, the ν = 10−2σ1(WW>) value

suggested by the analysis of RLE plots leads to the largest number of detected positive control

genes. The tables also show the clustering error (after keeping the 1260 largest variance genes)

for each normalization. For this criterion again ν = 10−2σ1(WW>) leads to the best correction

possible among the assessed values.

Admittedly, measuring how well the data cluster by gender — like we do in Section 5.2 of

the main manuscript — after using genes on the X and Y chromosomes — or worse, using the

clustering error itself — to choose ν would be over optimistic. The goal here is rather to discuss

and illustrate different ways to assess how well a normalization performs. In our case, all criteria,

including RLE which does not require the knowledge of a known factor of interest, agree on what

the best normalization is.
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4.3 PCA plots for different shrinkage levels

In Section 5.2, we measure how each normalization method performs by assessing how well the

data cluster by gender after normalization — the clustering error displayed on Table 2 and 3

— and by visual inspection of PCA plots. Figures 6 and 7 show these PCA plots for naive

and iterated random RUV respectively, with increasing levels of shrinkage. Consistently with

Table 2 and 3, we observe that ν = 10−2σ1(WW>) leads to a better clustering by gender than

ν = 5.10−2σ1(WW>), and that normalization using less shrinkage starts removing gender effect

as well.

Finally, Figures 8 and 9 show the brain region factor on PCA plots for naive and iterated

random RUV respectively, with increasing levels of shrinkage. It is visually very clear that for

larger values of ν (between 5.10−2σ2(WW>) and σ2(WW>)), the main effect in the data is brain

region, more specifically cerebellar hemisphere samples (’c’, in green) versus anterior cingulate

(’a’, in red) and dorsolateral prefrontal cortex (’d’, in blue) ones. For ν = 10.σ1(WW>), this

effect is still present along the second principal component, but the main effect is the lab: in this

case, the data is practically uncorrected, as seen by comparison with the left panel of Figure 4 in

the main manuscript. This illustrates a crucial point: looking for the right value of ν — or more

generally of amount of variance to be removed — does not make sense in general. In this case,

smaller values of ν are good to recover the gender signal of the dataset, either by clustering or

differential expression analysis. If, on the other hand, one is interested by the brain region signal,

larger values of ν are preferable. In practice on new data, it is therefore important to try different

values of ν and analyse the results obtained after each adjustment.
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Fig. 6. PCA plots of the gender data after a naive random RUV correction with different shrinkage levels.
Colors represent gender: pink for female, blue for male. Minuscule letters are brain regions: anterior
cingulate cortex (a), dorsolateral prefontal cortex (d) and cerebellar hemisphere (c). Capital letters are
labs: UC Irvine (I), UC Davis (D) and University of Michigan, Ann Arbor (M).
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Fig. 7. PCA plots of the gender data, after iterated random RUV correction with different shrinkage
levels. Colors represent gender: pink for female, blue for male. Minuscule letters are brain regions: anterior
cingulate cortex (a), dorsolateral prefontal cortex (d) and cerebellar hemisphere (c). Capital letters are
labs: UC Irvine (I), UC Davis (D) and University of Michigan, Ann Arbor (M).
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Fig. 8. PCA plots of the gender data, after naive random RUV correction with different shrinkage levels.
Colors and minuscule letters represent brain regions: anterior cingulate cortex (red, a), dorsolateral
prefontal cortex (blue, d) and cerebellar hemisphere (green, c). Capital letters are labs: UC Irvine (I),
UC Davis (D) and University of Michigan, Ann Arbor (M).
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Fig. 9. PCA plots of the gender data, after iterated random RUV correction with different shrinkage
levels. Colors and minuscule letters represent brain regions: anterior cingulate cortex (red, a), dorsolateral
prefontal cortex (blue, d) and cerebellar hemisphere (green, c). Capital letters are labs: UC Irvine (I),
UC Davis (D) and University of Michigan, Ann Arbor (M).
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5. TCGA glioblastoma data

5.1 Data

We now illustrate the performances of our method on the gene expression array data generated

in the TCGA project for glioblastoma (GBM) tumors (Cancer Genome Atlas Research Network,

2008). These tumors were studied in detail in Verhaak and others (2010). For each of the 460

samples, gene expression was measured on three different platforms: Affymetrix HT-HG-U133A

Genechips at the Broad Institute, Affymetrix Human Exon 1.0 ST Genechips at Lawrence Berke-

ley Laboratory and Agilent 244K arrays at University of North Carolina. Verhaak and others

(2010) selected 200 tumors and 2 normal samples from the dataset based on sample quality cri-

terions and filtered 1740 genes based on their coherence among the three platforms and their

variability within each platform.

The expression values from the three platforms were then merged using factor analysis. They

identified four GBM subtypes by clustering analysis on this restricted dataset: Classical, Mes-

enchymal, Proneural and Neural. We study these 202 samples across the three platforms, keeping

all the 11861 genes in common across the three platforms. Among these 202 samples, 173 were

identified by Verhaak and others (2010) as “core” samples: they were good representers of each

subtypes. 38 of them are Classical, 56 Mesenchymal, 53 Proneural and 26 Neural.

5.2 Design

For the purpose of the experiment, we study how well a particular correction allows us to recover

the correct label of the 147 Classical, Mesenchymal and Proneural tumors, leaving the other ones

aside. Our objective is to recover the correct subtypes using a k-means with 3 clusters.

We consider two settings. In the first one, we use a full design with all 147 samples from 3

platforms. In the second one we build a confounding setting in which we only keep the Classical
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samples on Affymetrix HT-HG-U133A arrays, the Mesenchymal samples on Affymetrix Human

Exon arrays and the Proneural samples on Agilent 244K arrays. In each case, we use 5 randomly

selected samples that we keep for all 3 platforms and use as replicates.

We do not use other samples as replicates even in the full design when all samples could

potentially be used as replicates. Among the 5 selected samples one was Neural, two Proneural,

and two were not assigned a subtype. The results presented are qualitatively robust to the choice

of these replicates.

In the confounded design, a correction which simply removes the platform effect is likely to

also lose all the subtype signal because it is completely confounded with the platform, up to the

replicate samples. The reason why we only keep 3 subtypes is to allow such a total confounding of

the subtypes with the 3 platforms. In this design however, applying no correction at all is likely

to yield a good clustering by subtype because we expect the platform signal to be very strong.

A good correction method should therefore perform well in both the confounded and the full

design. In the full design, the platform effect is orthogonal to the subtype effect so we expect

the correction to be easier. Of course in this case, the uncorrected data is expected to cluster by

platform which this time is very different from the clustering by subtype since each sample is

present on each platform.

5.3 Result

Table 4 shows the clustering error obtained for each correction method on the two designs.

Recall that since there are 3 clusters, clustering errors range between 0 and 2. As expected, the

uncorrected data give a maximal error on the full design and 0 in the presence of confounding.

This is because, as seen on Figure 10, the uncorrected data cluster by platform which in the full

design are orthogonal to the subtypes and in the second design are confounded with subtypes.

For similar reasons, centering the data by platform works well in the full design but fails



22

Method Full Confounding
No correction 2 0
Mean-centering 0.3 1.93
Ratio method 0.31 0.79
Naive RUV-2 2 0
Random α 0.21 1.5

+ iterations 0.15 1
Replicate based 0.2 0.61

+ iterations 0.17 0.16

Table 4. Clustering error of TCGA GBM data with full and confounded designs for various correction
methods. Since there are 3 clusters, errors range between 0 and 2.

when there is confounding because removing the platform effect removes most of the subtype

effect. When replicates are available, a variant of mean centering is to remove the average of

replicate samples from each platform. This is known as the ratio method (Luo and others, 2010)

and does improve on regular mean-centering in the presence of confounding. A disadvantage of

this method is that it amounts to considering that W is a partition of the data by batch (in

this case by platform) whereas as discussed in Section 2 of this supplementary material, the

actual unwanted variation may be a non linear function of the batch, possibly involving other

sources. Note that we do not explicitly assess the ratio method for the other benchmarks because

all samples are used as replicates so removing the average of replicate samples from each batch

amount to centering the samples by batch and the ratio method becomes equivalent to mean

centering.

Naive RUV-2 gives a maximal error in the full design, 0 otherwise. This result is actually

caused by the fact that naive RUV-2 is extremely sensitive to the choice of k. Since the total

number of differences formed on the 15 replicates is 10, we use k = 2 as a default for naive RUV-2

and the replicate based procedure. In the full design, the platform effect is contained in the first

three principal components of the control gene matrix Yc and the fourth principal component

contains the subtype effect. This can clearly be seen on Figure 10. Removing only one or two

directions of variance leaves too much platform effect. Removing a third one (k = 3) gives a small
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Fig. 10. Uncorrected full design GBM data in the space of their first four principal components. Left
panel: PC 1 and 2, right panel: PC 3 and 4. Colors denote subtypes, shapes denote platforms.
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Fig. 11. GBM full design random α with (left) and without (right) iterations. Colors represent subtypes,
shapes represent platforms.

error of 0.15 and removing a fourth one gives an error of 1.83.

When the platform is confounded with the subtype, removing one or two components leads

to a perfect clustering by subtype because the third principal component still contains plat-
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Fig. 12. GBM full design replicate-based with (left) and without (right) iterations. Colors represent
subtypes, shapes represent platforms.
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Fig. 13. GBM confounded design random α with (left) and without (right) iterations. Colors represent
subtypes, shapes represent platforms.
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Fig. 14. GBM confounded design replicate-based with (left) and without (right) iterations. Colors repre-
sent subtypes, shapes represent platforms.

form/subtype signal. Removing more does not allow us to recover a clustering by subtype. So if

we used k = 3 instead of k = 2, the result would be inverted: good for the full design, bad in the

presence of confounding.

The random α model works well in the full design, less so in the presence of confounding, as

illustrated on Figure 11 and 13 respectively. While it was reasonably robust to the choice of the

ridge parameter ν on the gender data, it is more sensitive on this one. Using ν = σ1(W>W ) ×

5.10−2 instead of 10−3 does not remove enough platform effect and leads to an error of 2 on the

full design, 0 in the presence of confounding. Using a smaller factor of 5.10−4 leads to an error

of 0.27 (1.65 with confounding), and 10−4 to an error of 1.94 (1.98 with confounding).

Because the correction made by the random α model is softer than the one of the fixed α naive

RUV-2, using ν = σ1(W>W ) × 10−3 allows us to recover subtype signal in both designs. The

sensitivity to ν is likely to be caused by the large difference of magnitude between σ1(W>W ) and

the next eigen values: the first one represents 98% of the total variance. This is to be expected

in most cases in presence of a strong technical batch effect.
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In both designs, iterating between estimation of Xβ using sparse dictionary learning and

estimation of α using ridge regression further improves the performances. The replicate-based

correction gives good results for both designs, as illustrated on Figure 12 and 14. Like for the

gender data, it seems to be robust to the choice of k. For k = 10 it gives errors 0.2 and 0.53 in

the first and second design respectively. Here again, adding iterations on (Xβ,α) improves the

quality of the correction in each case.

As with the gender data, the difference observed between the correction methods cannot be

explained solely by the fact that some of them remove more variance than others. For example in

the full design, naive RUV-2, the replicate based procedure and the random α correction lead to

similar ‖Wα‖F but to very different performances: naive RUV-2 fails to remove enough platform

signal whereas the other corrections remove enough of it for the arrays to cluster by subtype.

In the confounding design, both naive RUV-2 and the replicate based procedure lead to

similar ‖Wα‖F and similar performances. The random α correction leads to a larger ‖Wα‖F

which explains its poor behavior. Estimating what amount of variance should be removed is part

of the problem, so it would not be correct to conclude that the random α correction works as well

as the others in this case. It is however interesting to check whether the problem of a particular

method is its removing too much or not enough variance or whether it is a qualitative problem.

6. MAQC-II data

We finally assess our correction methods on a gene expression dataset which was generated in

the context of the MAQC-II project (Shi and others, 2010). The study was done on rats and

the objective was to assess hepatotoxicity of 8 drugs. For each drug, three time points were done

(animals were sacrificed 6, 24 or 48 hours after drug injection) for three different doses : low,

medium and high. For each of these 8 × 3 × 3 combinations, 4 animals were tested for a total

of 288 animals. For each animal, one blood and one liver sample were taken. Gene expression in
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blood and in the liver were measured using Agilent arrays and gene expression in the liver was

also measured using Affymetrix arrays.

The Agilent arrays were loaded using the marray R package. Each array was loess normalized,

dye swaps were averaged and each gene was then assigned the median log ratio of all probesets

corresponding to the gene. The Affymetrix arrays were normalized using the gcrma R package.

Each gene was then assigned the median log ratio of all probesets corresponding to the gene. For

this experiment we retain samples from all platforms and tissues for the highest dose of each drug

and for the last two time points 24 hours and 48 hours. Most of these drugs are not supposed to

be effective for the earlier time points. This leads to a set of 186 arrays that we restrict to the

9502 genes which are common to all platforms. Each sample has a replicate for each tissue and

platform, but there is no replicate against the time effect. For control genes, we used the same

list of housekeeping genes as for the other datasets but converted to their rat orthologs, leading

to 210 control genes.

The interest of this complex design is obvious for the purpose of this paper: the resulting

dataset contains a large number of arrays measuring gene expression influenced by the adminis-

tered drug which we consider to be our factor of interest and by numerous sources of unwanted

factors. Array type, tissue, time and dose are likely to influence gene expression, preventing the

arrays from clustering by drug.

This clustering problem is much harder than the gender and glioblastoma ones. First of all,

the drug signal may not be as strong as the gender which at least for a few genes is expected to

be very clear or as the glioblastoma subtypes which were defined on the same dataset. Second

and maybe more important, it is an 8-class clustering problem, which is intrinsically harder than

2- or 3-class clusterings. Finally as we discuss in Section 7 of this supplementary material, the

control genes for this dataset do not behave as expected.

The errors obtained after applying each correction are displayed in Table 5. Recall that for this
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Method Error
No correction 5.9
Mean-centering 5.1
Naive RUV-2 6.6
Random α 4.7

+ iteration 5.4
Replicate based 2.8 – 3.8

+ iterations 2.8 – 3.8

Table 5. Clustering error of MAQC-II data for various correction methods.
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Fig. 15. Samples of the MAQC-II study represented in the space of their first two principal components
before correction (left panel) and after centering by tissue and platform region (right panel). Each color
represents a different drug. The labels indicate the platform of each sample.

dataset, we are trying to recover a partition in 8 classes corresponding to the 8 drugs of the study

so the maximum clustering error is 7. The left panel of Figure 15 represents the uncorrected

samples in the space of the first two principal components. The first principal components is

clearly driven by the presence of two different types of arrays. The clustering error in this case is

5.9.

Centering by platform-tissue, i.e. centering separately the Affymetrix arrays, the Agilent liver

and the Agilent blood, the data points do not cluster by platform anymore but just like for the

gender data this does not lead to a clear clustering by drug. This can be seen on the right panel
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of Figure 15. The resulting clustering error is 5.1. The naive RUV-2 correction doesn’t lead to

any improvement compared to the uncorrected data, leading to an error of 6.6.

The random α estimator hardly improves the performances, and its iterative variant even

increases a little the error. Figure 16 shows that these methods lead to a better organization

of the samples by drug, but still far from a clean clustering. The replicate-based method leads

to better performances. Even though we do 200 runs of k-means to minimize the within sum

of squares objective, different occurrences of the 200 runs lead to different clusterings with close

objectives. We choose to indicate the range of clustering errors given by these different clusterings

(2.8–3.8).

The iterative version of the estimator gives the same range of errors. Figure 17 shows that these

corrections indeed lead to a better organization of the samples by drugs in the space spanned by

the first two principal components, but fails to correct the time effect against which no replicate

is available.

The deflation ‖Wα‖F obtained by the naive RUV-2 and replicate based procedures are larger

than the one obtained by the random α correction, but this is not the reason for the replicate

based procedure to work better than the random α correction: the former is quite robust to

changes in k and the latter does not improve when changing ν.

7. Benefit of control genes

In the experiments on gene expression data presented in Section 5 of the main manuscript, and

Sections 5 and 6 of this supplementary material, we have assumed that control genes had little

association with X and allowed proper estimation for the methods we introduced. In this section,

we assess this hypothesis on our three benchmarks. Table 6 reproduces the results on the first two

benchmarks of the non-iterative methods that we considered and which make use of control genes.

In addition for each method and each of our first two benchmarks, we show the performance of
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Fig. 16. Samples of the MAQC-II study represented in the space of their first two principal components
after applying the random α correction (left panel) and its iterative variant (right panel). Each color
represents a different drug. The labels indicate the time of each sample.
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Fig. 17. Samples of the MAQC-II study represented in the space of their first two principal components
after applying the replicate-based correction (left panel) and its iterative variant (right panel). Each color
represents a different drug. The labels indicate the time of each sample.
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the same method using all genes as control genes. For the gender data, we give the clustering

error when filtering in 1260 genes, which correspond to the last point of Figure 3 in the main

paper.

Method Gender
control

Gender
all genes

GBM 1
control

GBM 1
all genes

GBM 2
control

GBM 2
all genes

Naive RUV-2 0.75 0.92 2 1.52 0 0.93
Replicate-based 0.77 0.77 0.2 0.25 0.61 0.37
Random α 0.43 0.99 0.21 0.24 1.5 1.8

Table 6. Clustering error of gender and glioblastoma data with full (1) or confounded (2) designs for
various correction methods relying on control genes using either all genes or control genes.

The results of MAQC-II data are not presented in Table 6 but the result of each method is

the same whether we use our control genes or all the genes for this dataset. Overall, we can see

that some methods are affected by the use of control genes on the gender data, but using all the

genes only mildly affects the performances of most methods on the GBM dataset, and as we said

do not affect the performances on the MAQC-II dataset at all. This suggests that the genes that

we used as control genes were indeed less affected by the factor of interest for the gender data but

were not for the glioblastoma and MAQC-II data. This is consistent with the fact that methods

which rely heavily on the control genes like naive RUV-2 and random α are very sensitive to

the amplitude of the correction for the glioblastoma dataset and do not work for the MAQC-II

dataset.

As one may expect from the discussion of Section 11 for this supplementary material, the

replicate-based method introduced in Section 3 of the main manuscript is less affected than

methods that rely solely on control genes, even on the gender dataset. Remember that our

replicate-based procedure estimates W by regressing the control genes Yc against the variations

observed among contrasts of replicates which can make it robust to the fact that control genes

are affected by the factor of interest.

In order to verify the fact that the control genes used for the gender data are good control
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Fig. 18. boxplot of the CCA of control and non-control genes with the factor of interest X for the gender
(left panel), glioblastoma (center panel) and MAQC-II (right panel) datasets.

genes whereas the ones used for the other datasets are not good control genes, we show the

CCA of all control genes and all non-control genes with the factor of interest X as a boxplot for

each dataset on Figure 18. Interestingly, the control genes used in the gender data are typically

more associated with X than the non-control genes whereas the opposite is observed for the

glioblastoma and MAQC-II datasets. This seems to contradict the fact that control genes help

identifying W in the gender data and does not in the two others. Since W is essentially estimated

using PCA on Yc which is a multivariate procedure, we represent the first canonical correlation of

X with the eigen space corresponding to the k first eigenvectors as a function of k on Figure 19.

It is clear from the figure that for the gender dataset the eigen space built using control genes

has a smaller association with X than the one built using non-control genes whereas this is much

less clear for the two other datasets.

To conclude, the case of gender data suggests that when good control genes are available

they do help estimate and remove unwanted variation, especially for estimators which do not use

replicate samples. The notion of good control samples seems to have more to do with the fact

that the directions of maximum variance among these genes are not associated with X than with

individual univariate association of the genes with X. When control genes are as associated as

the other genes with X, methods using replicate samples still give reasonable estimates and other
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Fig. 19. First canonical correlation of the factor of interest X with the space spanned by the k first
eigenvectors of the empirical covariance computed on control genes (in red) and non-control genes (in
black) against k for the gender (left panel), glioblastoma (center panel) and MAQC-II (right panel)
datasets.

methods become either ineffective or very sensitive to the amplitude of the correction.

8. Effect of hyperparameter misspecification for the experiments in Section 4

In Section 4 of the main manuscript, we used the same value of k (for naive RUV-2 and the

replicate based method) and ν (for the random effect estimator) in the estimator and in the data

generating model. More precisely for the random effect model, we use the known variance ratio

νpop
∆
=
(
σ2
β + σ2

ε

)
/σ2

α as ridge parameter for the random effect estimator: if there was no Xβ

term in the model, the ν such that (W>W + νIk)−1W>Y is the maximum likelihood estimator

of the RUV model would be σ2
ε/σ

2
α, but since the non-iterative random effect estimator does

not account for the Xβ term, the excess of variance must be counted in ν. In a sense, the non-

iterative random effect estimator considers a modified ε which also contains Xβ. In addition for

the random effect model and its iterative variants, we use k = m instead of the true k to limit

the number of hyperparameters.

We now consider the effect of using incorrect values for these hyperparameters.

Figure 20 shows the effect of misspecifying k on the naive RUV-2 estimator (3) for the three

protocols — X independent of W , moderate association, X = W . The x-axis represents the k
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Fig. 20. Reconstruction error ‖(Y − Ŵα) − (Y −Wα)‖2/‖Y −Wα‖2 of naive RUV-2 as a function of
the hyperparameter k for the three simulations.

used in the estimator, and the y-axis gives the corresponding reconstruction error. The correct

k = 2 always performs best, and over or under estimation of k increases the error especially when

X is different from W . When X = W , the reconstruction error starts high for k = 2 and is less

affected by over estimation of k since most of the signal of interest is already removed at k = 2.

Figure 21 shows the effect of misspecifying ν on the random effect estimator (4). The x-axis

represents the log ratio of the ν used for the estimator and the model ν: values of the ratio

greater than 0 mean that we overestimated ν, values less than 0 mean that we underestimated

it. As for k with the fixed effect method, misspecification of ν increases the reconstruction error,

but the method shows some robustness to misspecification. The increase is slower in case of

underestimation — removing too much signal — than overestimation — not removing enough.

Finally, Figure 22 represents the reconstruction error on the y-axis against the k used for the

replicate-based estimator of Wα introduced in Section 3 of the main manuscript. By construction,

k cannot be larger than the rank of Y d, which is 10 in this experiment. As we observed in Section 4

of the main manuscript, the method performs less well than control gene based correction in their
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Fig. 21. Reconstruction error ‖(Y − Ŵα) − (Y − Wα)‖2/‖Y − Wα‖2 of the random α method as a
function of the hyperparameter ν for the three simulations, using k = m.

ideal settings: when good control genes are used, in the presence of little confounding and using

the correct hyperparameters. It is however essentially unaffected by the level of confounding of

X and W and performs better than control-gene based methods in the presence of confounding

or when the latter use incorrect values of k and ν.

Figure 22 suggest that the increase of reconstruction error caused by misspecification of k is

similar to the one of control-gene based methods, but limited by construction since k cannot be

larger than the rank of Y d.

9. Effect of the unsupervised adjustment on differential analysis

The whole idea of removing unwanted variation without specifying a factor of interest can be

confusing. Most methods in the literature on unwanted variation aim at getting a better power

to detect differentially expressed genes with respect to a factor of interest, or at improving the

prediction of this factor of interest.

By contrast, our objective is to correct the data when no factor of interest is specified, typically



36

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

k

R
ec

on
st

ru
ct

io
n 

er
ro

r

No confounding
Moderate confounding
Total confounding

Fig. 22. Reconstruction error ‖(Y − Ŵα)− (Y −Wα)‖2/‖Y −Wα‖2 of the replicate-based method as a
function of the hyperparameter k for the three simulations.

before conducting unsupervised analysis such as clustering or PCA. Testing for differential expres-

sion requires a factor of interest to be known, and as this factor becomes known, we recommend

using targeted techniques, such as the ones introduced in Leek and Storey (2007); Listgarten and

others (2010); Gagnon-Bartsch and Speed (2012); Gagnon-Bartsch and others (2013).

For the sake of completeness, we present here a few results obtained with the random α

method (Section 2 of the main manuscript) on a differential analysis problem — which, again,

would constitute a misuse in our view, and which we do not recommend. We use synthetic data,

with the same setting as in Section 4 of the main manuscript, except that X has only one

dimension and 90% of the β coefficients are 0. Accordingly, the baseline ν that we use for the

random α technique is 0.9 ∗ (σ2
ε/σ

2
α) + 0.1 ∗ (σ2

ε +σ2
β)/σ2

α). We also try strongly misspecified ν by

multiplying this baseline by 0.01 and 100, and compare to uncorrected data, perfectly corrected

data (using the true Wα term) and the RUV-2 method of Gagnon-Bartsch and Speed (2012).

RUV-2 uses the value of the factor of interest X to correct for unwanted variation and should not

be confused with the naive RUV-2 technique used in the experiments of the main manuscript.
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Plots on Figure 23 show the sensitivity vs specificity for t-tests in the three confounding

settings used in Section 4 of the main manuscript: total confounding, moderate confounding and

no confounding between the factor of interest X and the unwanted variation factor W . In the

absence of confounding, the presence of unwanted variation has little effect on the power of the

test and testing the uncorrected data (red line) yields a curve similar to that obtained when

testing the perfectly corrected data (black line). The only approach behaving differently is the

misspecified random α method with the 0.01 multiplier which removes too much variance and

leads to a — limited — loss of power. Table 7 shows that the behavior in terms of adjustment

— the actual purpose of our random α technique — is different: while leaving the unwanted

variation in the data has little effect on the detection power, it yields a very different matrix than

the one without unwanted variation, as reflected by the large reconstruction error. The random

α method achieves a low error, which is then increased when ν is misspecified, but overcorrecting

(factor 0.01) yields a much lower error than undercorrecting — the opposite behavior to what we

observed on power.

In the case of a moderate confounding between X and W , not correcting the data yields a

much lower power than perfectly correcting it. The random α method does not allow to recover

all of the lost power, but leads to similar performances as RUV-2 – which uses the factor of

interest. Hyperparameter misspecification lowers the performances: undercorrected data (factor

100) behave like uncorrected data, while overcorrected data have a larger power.

Finally in the total confounding setting, the presence of unwanted variation causes a large

loss of power. The random α method leads to little improvement. Undecorrected data behave

like uncorrected data, and overcorrected data lead to almost no power. Here again, we observe

the opposite behavior in terms of reconstruction error: overcorrecting gives a much lower error

than undercorrecting – and both yield a lower error than the uncorrected data. Interestingly,

RUV-2 which is targeted to differential analysis also loses its power: when X = W , its fixed effect
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Uncorrected random α ν × 0.01 ν × 100 RUV-2
Independent 1.7 0.08 0.62 1.4 0.04
Moderate 1.7 0.15 0.65 1.44 0.12
Confounded 1.7 0.18 0.67 1.47 3.36

Table 7. Reconstruction errors ‖(Y − Ŵα) − (Y −Wα)‖2/‖Y −Wα‖2 for the synthetic data used in
Figure 23.

model becomes unidentifiable. In Gagnon-Bartsch and others (2013), we discuss random effect

models targeted to differential analysis, which use X and would be able to deal better with this

somewhat degenerate setting.

To conclude, we observe some level of association between the quality of adjustment — which is

the objective of our methods — and power for testing the effect of the factor of interest: very good

reconstructions generally yield more power than poor reconstructions. However this association is

not direct and reliable: sometimes a method which better removes unwanted variation performs

less well at testing. This is consistent with what we observe in Table 1, 2 and 3, where some

methods lead to lower clustering errors but detect fewer genes on the sex chromosomes. We

emphasize that when the objective is to apply hypothesis testing procedures, more targeted

techniques than the ones introduced in this work should be used.

10. Using Ŵr using all genes as control genes

The extreme case where all genes are used as control genes is of interest. In this case Ŵrα̂ =

Y α̂>c (α̂cα̂
>
c )−1α̂ = Y QkQ

>
k , where Qk are the first k right singular vectors of Y d. Finally, Y −

Ŵrα̂ = Y (I − QkQ>k ): using all genes as control genes amounts to projecting the samples onto

the orthogonal complement to the span of the first k right singular vectors of Y d. This shows

how the replicate-based correction is dual to naive RUV-2: it uses negative control samples rather

than genes, and amounts to projecting samples, rather than genes, to some subspace. As for the

effect of the correction, assuming α̂ ≈ α, and the RUV model of the main manuscript, it holds

asymptotically that Ŵrα̂ = Y α̂>(α̂α̂>)−1α̂ ≈ Wα, since dot products between independent



39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

S
pe

ci
fic

ity

Perfect correction
Uncorrected
Random alpha
RUV−2
nu*0.01
nu*100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

S
pe

ci
fic

ity

Perfect correction
Uncorrected
Random alpha
RUV−2
nu*0.01
nu*100

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity

S
pe

ci
fic

ity

Perfect correction
Uncorrected
Random alpha
RUV−2
nu*0.01
nu*100

Fig. 23. Sensitivity vs specificity after various correction techniques with no (top left), partial (top right)
and total confounding (bottom).

multivariate normal variables are close to 0 in high dimension. This is a random effect point of

view, the fixed effect version being that Ŵrα̂ ≈ Wα if α̂ ≈ α and βα>(αα>)−1α has a small

norm, which corresponds to the condition on the correlation between W and X for naive RUV-2

to work. In practice, this different condition means that Ŵrα̂ can work well even if there is a

high level of confounding between X and W , but requires that their respective effects β and α be

uncorrelated — a similar discussion is provided in Section 3.6.3 of Gagnon-Bartsch and others

(2013) for the RUV-4 technique when X is observed. This analysis suggests that even without

negative control genes, the replicate-based method may still provide useful corrections.
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11. Comparison of the two estimators of W

The procedure described in Section 3 of the main manuscript yields an estimator of W , which

can be plugged in any of the procedures we discussed in Section 2 of the main manuscript. The

estimator Ŵ2 we considered so far was obtained using the first left singular vectors of the control

genes Yc, which can also be thought of as a regression of the control genes on their first right

singular vectors, i.e., the main variations EkQ
> observed in the control genes. By contrast the

estimator Ŵr introduced in Section 3 of the main manuscript is obtained by a regression of the

control genes against the main variations observed in the control genes for the control samples

formed by differences of replicates.

Assuming our control genes are influenced by the factor of interest X, i.e., βc 6= 0, the

estimator of W based solely on control genes may have more association with X than it should,

whereas the one using differences of replicate samples should not be affected. On the other hand,

restricting ourselves to the variation observed in differences of replicates may be too restrictive

because we don’t capture unwanted variation when no replicates are available.

To make things more precise, let us assume that the control genes are actually influenced by

the factor of interest X and that βc ∼ N (0, σ2
βc

). In this case we have E[YcY
>
c ] = XX>σ2

βc
+

WW>σ2
α + Imσ

2
ε , so if we use Yc to estimate W or Σ as we do for Ŵ2 the estimate will be biased

towards X.

Let us now consider the estimator Ŵr obtained by the replicate based procedure. To sim-

plify the analysis we assume that k = d and therefore α̂ = Y d in the procedure described

in Section 3 of the main manuscript. Consequently Ŵ α̂ = Yc(Y
d
c )>

(
Y dc (Y dc )>

)−1
Y d. Define

Ŵr
∆
= Yc(Y

d
c )>

(
Y dc (Y dc )>

)− 1
2 . Assuming Xd is indeed equal to 0 we can develop:

Ŵr =(Xβc +Wαc + εc)(W
dαc + εdc)

>

(
W dαcα

>
c (W d)> +W dαc(ε

d
c)
> + εdcα

>
c (W d)> + εdc(ε

d
c)
>)− 1

2 .
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We now make some heuristic asymptotic approximations in order to get a sense of the behavior

of Ŵr. αcα
>
c and εdc(ε

d
c)
> are Wishart variables which by the central limit theorem are close to

cImσ
2
α and cImσ

2
ε respectively if the number c of control genes is large enough regardless how

good the control genes are, i.e., how small σβc
is. In addition dot products between independent

multivariate normal variables are close to 0 in high dimension so we approximate βcα
>
c , βcε

>
c

and αcε
>
c by 0. The approximations involving βc depend in part how good the control genes are,

but can still be valid for larger σβc
if the number of control genes is large enough. We further

assume that σε � σα and that the control samples are independent from the samples for which

we estimate W and ignore the cImσ
2
ε and εc(ε

d
c)
> terms.

Implementing all these approximations yields Ŵr ' σαc
1
2W (W d)>

(
W d(W d)>

)− 1
2 . Writing

W d = A∆B> for the SVD of W d, we obtain Ŵr ' σαc
1
2WBrA

>
r , where r is the rank of W d and

Ar, Br contain the first r columns of A and B respectively. First it is interesting to note that this

approximation does not depend on the control genes anymore. In the experiments on synthetic

data of Section 4 of the main manuscript, using lots of non-control genes yields better estimates

than a few control genes.

This suggests moreover that if W d has rank k Ŵr is a good estimator of W in the sense that

it is not biased towards X even if the control genes are influenced by X. If W d is column rank

deficient, the Br mapping can delete or collapse unwanted factors in Ŵr.

The effect is easier to observe on the estimator of the covariance Σ of the residuals Y −Xβ:

ŴrŴ
>
r ' σ2

αcWBrB
>
r W

>. Consider for example the following case with 3 unwanted factors

and 3 replicate samples with unwanted variation (1, 0, 3), (0, 1, 3) and (1, 1, 3). The W d and

corresponding BrB
>
r obtained by taking differences between replicates (1, 2), (1, 3) and (3, 2) are

W d =

 1 −1 0
0 −1 0
1 0 0

 and BrB
>
r =

 1 0 0
0 1 0
0 0 0

 ,

so the BrB
>
r factor removes the third factor from the estimate of Σ. This is because the 3

replicates have the same value for the third factor.
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Similarly if two factors are perfectly correlated on the replicate samples, e.g., the first two

factors for (1, 1, 0), (0, 0, 1) and (1, 1, 1), the W d and corresponding BrB
>
r for the same differences

between replicates (1, 2), (1, 3) and (3, 2) are

W d =

 1 1 −1
0 0 −1
1 1 0

 and BrB
>
r =

 1/2 1/2 0
1/2 1/2 0
0 0 1

 ,

which collapses the first two factors into an average factor and leaves the third one unchanged.

Finally, another option in the context of random α models is to combine the control gene

based and replicate based estimators of W by concatenating them. In terms of Σ, this amounts

to summing the two estimators of the covariance matrix. This may help if, as in our first example,

some factors are missing from Ŵr because all pairs of replicates have the same value for these

factors. In this case, combining it with Ŵ2 could lead two an estimate containing less X but still

containing all the unwanted factors.

12. Alternative formulation of the random effect estimator

The following proposition provides an alternative formulation of the random effect estimator

introduced in the main manuscript:

Proposition 1 Let R ∈ Rm×n, W ∈ Rm×k, ν > 0, then

min
α∈Rk×n

{
‖R−Wα‖2F + ν‖α‖2F

}
= ‖R‖2S(W,ν), (12.1)

where S(W, ν)
∆
= ν−1

(
WW> + νIm

)
.

Proof. The left hand side of (12.1) is a standard ridge regression and has a closed form solution:

α∗
∆
= arg min

α∈Rk×n

{
‖R−Wα‖2F + ν‖α‖2F

}
=
(
W>W + νIk

)−1
W>R,

so for any R ∈ Rk×n,
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min
α∈Rk×n

{
‖R−Wα‖2F + ν‖α‖2F

}
=
∥∥∥(Im −W (

W>W + νIk
)−1

W>
)
R
∥∥∥2

F

+ ν
∥∥∥(W>W + νIk

)−1
W>R

∥∥∥2

F

=tr R>
(
Im − 2W

(
W>W + νIk

)−1
W> +W

(
W>W + νIk

)−1
W>W

(
W>W + νIk

)−1
W>

+ νW
(
W>W + νIk

)−2
W>

)
R,

where we used the fact that ‖A‖2F = tr A>A. This is tr R>
(
Im +WBW>

)
R with:

B
∆
=
(
W>W + νIk

)−1
W>W

(
W>W + νIk

)−1
+ ν

(
W>W + νIk

)−2 − 2
(
W>W + νIk

)−1

=
(
W>W + νIk

)−1
(
W>W

(
W>W + νIk

)−1
+ ν

(
W>W + νIk

)−1 − 2Ik

)
=
(
W>W + νIk

)−1
((
W>W + νIk

) (
W>W + νIk

)−1 − 2Ik

)
= −

(
W>W + νIk

)−1
,

so

min
α∈Rk×n

{
‖R−Wα‖2F + ν‖α‖2F

}
= tr R>

(
Im −W

(
W>W + νIk

)−1
W>

)
R

= ‖R‖2S(W,ν).

�

min
Xβ∈M

‖Y −Xβ‖2(WW>+νIm), (12.2)

is the maximum likelihood estimator of Xβ for the model Y = Xβ+η, where ηj ∼ N (0,WW>+

νIm), j = 1, . . . , n, equivalent to the random α model introduced in the main manuscript. ‖Y −

Xβ‖2(WW>+νIm) generalizes the regular `2 objective of classical unsupervised problem such as

k-means and PCA to include a covariance information over the observations. If the objective is

to estimate Xβ, e.g., to do clustering, one could directly try to minimize ‖Y −Xβ‖2(WW>+νIm).
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Fig. 24. Reconstruction error ‖(Y − Ŵα)− (Y −Wα)‖2/‖Y −Wα‖2 of the replicate based method as a
function of the number of replicates in the independent setting.

While both formulations have the same set of global minimizers Xβ, neither of the formu-

lations can be solved exactly in general, and for some M the global minimizers of one may be

better estimators than those of the other. We tried such an approach for k-means clustering with

no success.

13. Effect of the number of replicate samples on the performance of the

replicate-based method

Figure 24 shows the reconstruction error as a function of the number of replicates in the inde-

pendent setting of the experiments on synthetic data (first column of Table 1). It suggests that

a large number of replicates — around 30/100 here — could be required to match the perfor-

mance obtained with the random effect estimators using good control genes. It is however a safer

alternative against confounding or poor quality of control genes.

14. Correlation on samples vs correlation on genes

In model (4) we arbitrarily chose to endow α with a distribution, which is equivalent to introducing

an m×m covariance matrix Σ on the rows of the Y −Xβ residuals. If we choose instead to model



45

the rows of W as iid normal vectors with spherical covariance, we introduce a n × n covariance

matrix Σ′ on the columns of the Y −Xβ residuals. If X is observed and if we consider a random β

as well, the maximum a posteriori estimator of β incorporates the prior encoded in Σ′ by shrinking

the βj of positively correlated genes towards the same value and enforcing a separation between

the βj of negatively correlated genes. This approach was used in Desai and Storey (2012). As an

example if α ∈ R1×n is a constant vector, i.e., if Σ′ is a constant matrix with an additional positive

value on its diagonal, the maximum a posteriori estimator of β boils down to the “multi-task

learning” estimator (Evgeniou and others, 2005; Jacob and others, 2009) detailed in Section 15

of this supplementary material. This model as is does not deal with any source of unwanted

variation which may affect the samples. Using two noise terms in the regression model, one with

correlation on the samples and the other one on the genes would lead to the same multi-task

penalty shrinking some βj together, but with a ‖.‖2Σ loss instead of the regular Frobenius loss

discussed in Section 15 of this supplementary material.

This discussion assumes Σ′ is known and used to encode some prior on the residuals of the

columns of Y − Xβ. If however Σ′ needs to be estimated, and estimation is done using the

empirical covariance of Y −Xβ, the estimators of β derived from (4) and from the model with

an n × n covariance Σ′ on the Y −Xβ residuals become very similar, the only difference being

that in one case the estimator of α|W,Y −Xβ is shrinked and in the other case the estimator of

W |α, Y −Xβ is shrinked.

15. Estimator of β for a particular Σ′ defined on the columns of the residuals

In this Section, we show how a model similar to (4) and discussed in Section 14 of this sup-

plementary material is related to a “multi-task learning” estimator (Evgeniou and others, 2005;

Jacob and others, 2009).
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We consider the following model:

Y = Xβ + ε̃, (15.3)

where Y, ε̃ ∈ Rm×n, X ∈ Rm×p, β ∈ Rp×n. We further assume that each row of ε̃ is distributed

as N (0,Σ′) where Σ′ ∈ Rn×n is a covariance matrix. This is different from (4) where the m×m

covariance was defined on the rows of ε̃.

(15.3) is equivalent to

Y = Xβ +Wα+ ε, (15.4)

where each column Wj of W is such that Wj
iid∼ N (0, σ2

W Im), εij
iid∼ N (0, σ2) and α ∈ Rk×n for

some k 6 m is such that α>α+ σ2In = Σ′.

Assume k = 1 and α = 1>, where 1 is the all-one vector in Rn. Then Σ′ = σ2In + 11>, i.e. a

constant matrix plus some additional constant on the diagonal. In this special case, W is a single

standard normal column vector and (15.4) can be written:

Y = Xβ +Wα+ ε

= Xβ +W1> + ε

= X
(
β + (X>X)−1X>W1>

)
+ ε+R,

where R is the projection of W1> to the orthogonal space of X. We can disregard it because a

noise orthogonal to X has no effect on a regression against X. Denoting V
∆
= (X>X)−1X>W1>,

we see that (15.3) with this particular covariance is equivalent to assuming Y = Xb + ε, where

b = β + V . Each column of V is equal to v = (X>X)−1X>W , i.e., to the projection of W on

X. If β is assumed to be non-random and we estimate it by maximum likelihood we recover the

regular OLS: β + V is not identifiable. If we add a normal prior on β, the maximum a posteriori
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(MAP) equation is:

max
β,v

L(β, v|X,Y ) ∝ max
β,v

L(X,Y |β, v)p(β)p(v) (15.5)

= max
β,v
{logL(X,Y |β, v) + log p(β) + log p(v)} (15.6)

= min
β,v
‖Y −X(β + V )‖2F + λ‖β‖2F + ν‖v‖2F , (15.7)

where λ, ν depend on the prior variances of β and α. Then plugging b = β + V and denoting its

columns by bi,

min
β,v

{
‖Y −X(β + V )‖2F + λ‖β‖2F + ν‖v‖2F

}
= min

b,v

{
‖Y −Xb‖2F + λ

n∑
i=1

‖bi − v‖2F + ν‖v‖2F

}

= min
b

{
‖Y −Xb‖2F + λmin

v

(
n∑
i=1

‖bi − v‖2F +
ν

λ
‖v‖2F

)}

= min
b

{
‖Y −Xb‖2F + λ

n∑
i=1

‖bi − b̄‖2F + ν‖b̄‖2F

}
,

where b̄
∆
= arg minv

(∑n
i=1 ‖bi − v‖2F + ν

λ‖v‖
2
F

)
is a shrinked average of the bi. The first equality

is replacing β+V by b and β by b−V . The second equality is moving the minv to the part which

depends on v. The last equality carries out the minimization over v.

Adding a block structure to Σ′, or equivalently rows to α which are 1 for some genes and 0

for others, leads to an additional regularizer which penalizes the sum of squares among the βi

within each block.
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