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1. Distribution of error terms after two-way ANOVA batch adjustment

1.1 Statistical model

We assume a general linear model with intercept or more general covariates (α), study groups or
study parameters of interest (β), and batch effects or other covariates to adjust for (γ):

Y = αA+ βB + γC + ϵ (1.1)

where Y = [Y1, . . . , Yn] are the observable random variables, parameters α, β, and γ are p, q, and
r vectors with design matrices A, B, and C, and ϵ = [ϵ1, . . . , ϵn] ∼ N(0, σ2In) where In is the
n× n identity matrix. We also assume that the full design matrix, combining A, B, and C, has
full rank p+ q + r: i.e., that the covariates are linearly independent.

In general, we wish to assess the explanatory power of B when including C as batch effects
and A as additional covariates. Often, p = 1 with α the intercept term, but this formulation
allows general covariates to be included in the analyses. The covariates of B which are subject
to testing are more commonly specified as contrasts on the full design matrix combining A, B,
and C, but in our case this splitting is more convenient.
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Least squares estimates for the parameters can be obtained through

[α̂|β̂|γ̂] = Y Xt(XXt)−1 = [α|β|γ] + ϵXt(XXt)−1 where X =

AB
C

 . (1.2)

1.2 Elimination of covariates A

We can eliminate A from the model, simultaneously removing p degrees of freedom. One way of
doing this is to find an n× n rotation matrix R, i.e. with RRt = I, so that AR = [0|A′] with A′

a p × p invertible matrix. Applying this rotation to all elements, we split the n dimensions into
(n− p) + p: Y R = [Y0|Y ′], BR = [B0|B′], CR = [C0|C ′], and ϵV = [ϵ0|ϵ′] ∼ N(0, σ2In). We may
then eliminate the degrees of freedom used to estimate α from the model yielding

Y0 = β0B0 + γ0C0 + ϵ0 (1.3)

and Y0 and ϵ0 are now n− p vectors. If α is the intercept term, this corresponds to centering all
variables and covariates, but the rotation also eliminates the corresponding degree of freedom.
Parameter estimates are now given by

[β̂0|γ̂0] = [β0|γ0] + ϵXt
0(X0X

t
0)

−1 where X0 =

[
B0

C0

]
. (1.4)

Eliminating the covariates in this manner is strictly not required. We could have done all com-
putations on the full model, but this elimination makes the computations a little simpler to deal
with and present.

1.3 F statistic for model without batch effects

If batch effects are not included in the model, i.e. r = 0, we get the common linear model in
which we get a decomposition Y0 = β̂0B0 + ϵ̂0 with β̂0 = Y0B

t
0(B0B

t
0)

−1, where |ϵ̂|2 ∼ σ2χ2
n−p−q

and |(β̂0 − β0)B0|2 ∼ σ2χ2
q, yielding the common F -statistic

F =
|(β̂0 − β0)B0|2/q
|ϵ̂0|2/(n− p− q)

∼ Fq,n−p−q. (1.5)

If we believe our data are “batch effect free”, and therefore do not include batch in the model, this
is the distribution of the F -statistic we would assume. Hence, this will be the assumed distribution
when batch adjusted data are analysed using a linear model without batch effects included.

1.4 Distribution of F statistic after batch adjustment

We define batch adjusted data Ỹ = Y − γ̂C using the estimated batch effect γ̂ from the full model
using (1.2). After elimination of covariates A, the batch adjusted data becomes Ỹ0 = Y0 − γ̂0C0

where parameter estimates [β̂0|γ̂0] are given by (1.4). The linear decomposition Y0 = β̂0B0 +

γ̂0C0+ ϵ̂0 has |ϵ̂0|2 ∼ σ2χ2
n−p−q−r and |(β̂0−β0)B0+(γ̂0−γ0)C0|2 ∼ σ2χ2

q+r, and so the variance
of the error term is the same in the batch adjusted case Ỹ0 = β̂0B0 + ϵ̂0. However, the sum of
squares |(β̂0 − β0)B0|2 explained by B is less easily expressed.
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For convenience, we define the projection ρW to the n − k-hyperplane perpendicular to the
k-hyperplane spanned by the rows of W for any non-degenerate k × n matrix with k 6 n,

ρW = I −W t(WW t)−1W and ρU,V = ρW where W =

[
U
V

]
, (1.6)

through which solutions will be more easily expressed.
Determining β̂0B0, using [β̂0|γ̂0] = Y0X

t
0(X0X

t
0)

−1 and

Xt
0(X0X

t
0)

−1

[
B0

0

]
= [Bt

0|Ct
0]

[
P

−(C0C
t
0)

−1C0B
t
0P

]
B0 = ρC0B

t
0PB0 (1.7)

with P = (B0ρC0B
t
0)

−1, yields

(β̂0 − β0)B0 = ϵ0ρC0B
t
0PB0 ∼ N(0, σ2L) where L = Bt

0PB0 (1.8)

since ϵ0 ∼ N(0, σ2I). Let λ1, . . . , λq > 1 be the non-zero eigenvalues of L: this inequality holds
since L is a non-degenerate symmetric rank q matrix, and has the same eigenvalues as PB0B

t
0

the inverse of which, (B0B
t
0)

−1B0ρC0B
t
0, has eigenvalues in (0, 1) (not 0 since B0 and C0 are

linearly independent). Then, by decomposing the variation along the eigenvectors,

|(β̂0 − β0)B0|2 = σ2

q∑
i=1

λiSi where S1, . . . , Sq ∼ χ2
1. (1.9)

Using Satterthwaite’s approximation, which matches the first two momenta, we get

|(β̂0 − β0)B0|2 ∼ σ2

q∑
i=1

λiχ
2
1 ≈ σ̃2χ2

q̃ (1.10)

where
q̃σ̃2

σ2
=

q∑
i=1

λi = tr(L) and
q̃σ̃4

σ4
=

q∑
i=1

λ2
i = tr(L2). (1.11)

From λi > 1 follows that σ̃2 > σ2, q̃σ̃2 > qσ2, and q̃ 6 q. Equality happens when all λi = 1,
which occurs when B0 and C0 are orthogonal, i.e. B0C

t
0 = 0.

The accuracy of Satterthwaite’s approximation depends on the variability of the eigenvalues
λi. If these are all identical, the approximation is exact. However, if the eigenvalues vary greatly,
the extreme upper tail of the distribution will be more heavily influenced by the larger eigenvalues,
and thus have a longer upper tail, than the approximation takes into account.

1.5 Reformulation in terms of the original design matrices

We would like to express σ̃2 and q̃ terms of the original design matrices, i.e. before elimination
of covariates. The rotated design matrices were defined as B0 = BR0, etc., using the rotation
R = [R0|R′] so that AR0 = 0 while AR′ is non-singular. Hence, it follows that R0R

t
0 = ρA. This

allows us to express

L = Rt
0B

tPBR0 where P = (BR0ρC0R
t
0B

t)−1 = (BρA,CB
t)−1. (1.12)
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We can then compute q̃ and σ̃2 from

q̃σ̃2

σ2
= tr(M), and

q̃σ̃4

σ4
= tr(M2) with M = BρAB

t(BρA,CB
t)−1 (1.13)

since M = BR0R
t
0B

tP and L = Rt
0B

tPBR0 have the same non-zero eigenvalues. Notice that if
B is orthogonal to A, which can be achieved by replacing B with B − V A for some matrix V ,
then BρA = B. If C is also made orthogonal to A, then ρA,C can be replaced by ρC .

1.6 Comparison to running full ANOVA or linear model

If the full model, including batch effects, is analysed using a traditional ANOVA or linear model
approach, the result will be an F -statistic with distribution F ∼ Fq,n−p−q−r: the q degrees of
freedom for measuring the effect contribute evenly to the statistic.

If batch-adjusted data are analysed without including covariates, the q degrees of freedom end
up scaled up by factors λ1, . . . , λq. The corrected F -distribution can account for this. However,
if the λi eigenvalues vary, some degrees of freedom will contribute more to the F -statistic than
others, which makes for inefficient use of the data, and results in a reduction in the effective
degrees of freedom to q̃: the F -statistic becomes more variable than that from the common linear
modelling approach which exploited the full q degrees of freedom.

Thus, although an appropriate distribution of the F -statistic can be found for the two-step
approach, there will still be some loss of power.

1.7 Implementation in R

In order to demonstrate the computations, we provide the R script theory/F-distribution.r

at https://github.com/ous-uio-bioinfo-core/batch-adjust-warning-reports.git.

2. Methods for batch adjustment

2.1 Methods similar to ComBat

Though our work was originally focused on ComBat, we realise that other methods are also
available which remove batch effects in much the same way and thus have the same problems.
Below is a list of the methods encountered along with a brief description.

2.1.1 Partek The commercial software Partek Genomics Suite is commonly used software for
analysing genomic data. Included in it is a Batch Remover tool which, based on the user guide
(obtained from Partek support), seems to estimate the batch and group effects using an ANOVA
model and then remove the estimated batch effects. It is clear from the user guide that the main
purpose of this tool is for visualization, and if further statistical tests are performed on the data
set, the batch factor must still be included.

2.1.2 removeBatchEffect The method removeBatchEffect found in the popular limma (Smyth
and Speed, 2003) package adjusts for batch effects using an ANOVA model with batch and groups
included. The methods help description states that its use is for visualization and not for further
linear modelling.

https://github.com/ous-uio-bioinfo-core/batch-adjust-warning-reports.git
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2.1.3 ber The recent R package ber (Giordan, 2013) uses, in addition to ANOVA, bagging
to better estimate the batch effects. Inclusion of group labels for which the effects should be
preserved seems to be its recommended use. So far 4 citations are listed in google scholar

2.2 Applications and pipelines that use ComBat

The inclusion of ComBat in numerous pipelines makes its use easier, but may also make it more
difficult to identify the potential problems we discuss. We found several pipelines or libraries with
ComBat included, some are soft wrappers, while others have a more worrisome implementation.
The short descriptions below are made from a shallow review of the article, tutorial or code. We
have not tried them out.

2.2.1 ChAMP ChAMP (Morris and others, 2014, version 1.2.8) is a pipeline for analysing the
llumina Infinium HumanMethylation450 BeadChip. Batch effect adjustment is optional with a
modified version of ComBat specifically implemented to use the BeadChip, which consist of
12 samples, as batch. From the tutorial example, no parameters are passed to their ComBat
implementation. However, inspection of the code shows that sample information entered earlier
will automatically be used as covariates. This recent tool has already 15 citations in google scholar.

2.2.2 intCor The intCor package (Fernández-Albert and others, 2014, version 1.03) may be
used to analyse data from liquid chromatography coupled to mass spectrometry experiments.
ComBat correction is optional and it seems that group assignments entered earlier in the pipeline
is automatically used as covariates. This new pipeline has not many users so far.

2.2.3 AltAnalyze AltAnalyze (Emig and others, 2010, version 2.0.8) is a tool for analysing
alternative splicing. ComBat as an option was included in 2013. The user guide states that prior
entered group assignments will be used as covariates. ComBat is here implemented in Python
rather than R. The tool has 59 citations in Google scholar, most prior to the inclusion of ComBat.

2.2.4 inSilicoMerging The R package inSilicoMerging (Taminau and others, 2012, version
1.8.7) combines public available microarray gene expression data. The implementation of ComBat
is presently without covariates as an option. It has 12 citations according to google scholar.

2.2.5 GenePattern GenePattern (Reich and others, 2006, version 3.9.0) is a popular platform
for analysing gene expression data. It incorporates a lot of tools including ComBat. The imple-
mentation is a soft wrapper around ComBat, and the inclusion of covariates is handled similar.

2.2.6 SCAN.UPC SCAN.UPC (Piccolo and others, 2013, version 2.6.3) is a microarray nor-
malization method d to facilitate personalized-medicine workflows. It includes a soft wrapper
around ComBat, which seems to be made out of convince and operates as the original. Currently
it has 7 citations in google scholar.

2.2.7 TCGA The Cancer Genome Atlas generates and shares lots of data, some with batch
effects. Several batch adjustment tools are implemented, including ComBat. However, it seems
that the inclusion of covariates is not an option.
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