SUPPLEMENT

Developmental Neurotoxicity of Tobacco Smoke Directed Toward Cholinergic and Serotonergic Systems: More than Just Nicotine

Theodore A. Slotkin¹, Samantha Skavicus¹, Jennifer Card¹, Ashley Stadler¹, Edward D. Levin² and Frederic J. Seidler¹

¹Department of Pharmacology & Cancer Biology ²Department of Psychiatry & Behavioral Sciences Duke University Medical Center Durham, NC 27710 USA

Contents:

Figure S1. nAChR binding in adult female rats

Table S1. Body and brain region weights

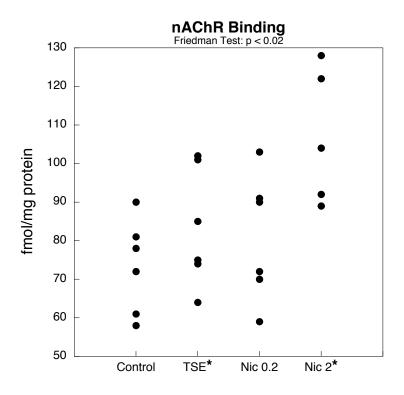

Table S2. ChAT activity

Table S3. HC3 binding

Table S4. HC3/ChAT ratio

Table S5. nAChR binding

Table S6. 5HT receptor binding

FIGURE S1

Non-pregnant, adult female rats were implanted with minipumps delivering TSE, nicotine (Nic) 0.2 mg/kg/day or nicotine 2 mg/kg/day, and cerebrocortical nAChR binding was evaluated after four weeks. Statistical comparisons were conducted non-parametrically because the distribution of values in each group was non-Gaussian (no central cluster). The Friedman test was conducted by matching the highest value in each group, then the next highest, then the third highest, etc. Asterisks denote treatment groups that differ significantly from control (post-hoc Wilcoxon signed-rank test). There was no significant difference between TSE and Nic 0.2.

TABLE S1: Body and Brain Region Weights (mean \pm SE)

	Age	Male				Female				
		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2	
Body Weight (g)	30	111 ± 3	110 ± 3	115 ± 4	112 ± 2	104 ± 1	102 ± 4	100 ± 2	99 ± 1	
	60	376 ± 11	374 ± 11	364 ± 13	381 ± 9	243 ± 1	246 ± 6	234 ± 3	230 ± 6	
	100	546 ± 11	534 ± 14	553 ± 14	542 ± 9	307 ± 11	296 ± 5	302 ± 9	283 ± 6	
	150	654 ± 18	598 ± 8	653 ± 11	647 ± 15	344 ± 8	329 ± 6	336 ± 9	327 ± 3	
Region Weight (mg)										
	30	245 ± 8	247 ± 7	221 ± 8	243 ± 6	236 ± 14	228 ± 3	250 ± 11	234 ± 7	
frontal/parietal cortex	60	260 ± 6	263 ± 15	278 ± 11	277 ± 12	272 ± 11	252 ± 11	241 ± 11	260 ± 7	
Holital/parietal cortex	100	288 ± 16	270 ± 12	290 ± 9	276 ± 6	266 ± 11	263 ± 11	273 ± 6	260 ± 14	
	150	294 ± 11	275 ± 14	305 ± 9	276 ± 5	280 ± 11	269 ± 14	268 ± 11	264 ± 13	
	30	166 ± 10	173 ± 9	177 ± 9	160 ± 12	173 ± 6	177 ± 15	175 ± 9	187 ± 10	
temporal/occipital	60	177 ± 16	203 ± 18	184 ± 15	186 ± 8	176 ± 12	179 ± 8	170 ± 7	181 ± 12	
cortex	100	196 ± 14	206 ± 7	208 ± 15	204 ± 10	179 ± 8	196 ± 9	177 ± 12	181 ± 10	
	150	194 ± 13	183 ± 10	200 ± 8	178 ± 10	173 ± 12	179 ± 5	168 ± 6	173 ± 7	
	30	112 ± 8	122 ± 5	117 ± 6	127 ± 10	118 ± 7	114 ± 5	110 ± 7	114 ± 5	
hippocampus	60	144 ± 6	144 ± 6	145 ± 9	138 ± 5	134 ± 4	138 ± 4	135 ± 4	135 ± 5	
mppocampus	100	149 ± 5	144 ± 4	147 ± 5	146 ± 6	140 ± 7	142 ± 7	145 ± 7	140 ± 8	
	150	153 ± 4	161 ± 3	159 ± 6	149 ± 11	143 ± 8	144 ± 2	139 ± 10	147 ± 8	
	30	68 ± 5	73 ± 7	78 ± 8	79 ± 10	75 ± 7	81 ± 9	91 ± 13	63 ± 6	
striatum	60	100 ± 7	108 ± 10	92 ± 5	111 ± 8	97 ± 3	92 ± 7	102 ± 9	103 ± 4	
Sulatuili	100	124 ± 9	93 ± 6	107 ± 4	103 ± 9	102 ± 8	99 ± 7	100 ± 8	102 ± 10	
	150	116 ± 9	122 ± 6	137 ± 6	114 ± 9	103 ± 7	113 ± 6	121 ± 7	125 ± 8	
	30	295 ± 12	283 ± 8	282 ± 5	279 ± 12	276 ± 12	260 ± 14	261 ± 13	287 ± 10	
	60	368 ± 10	333 ± 16	358 ± 12	329 ± 9	311 ± 22	324 ± 10	315 ± 15	297 ± 13	
midbrain	100	336 ± 13	386 ± 20	387 ± 13	362 ± 15	331 ± 6	326 ± 14	322 ± 8	350 ± 24	
	150	369 ± 5	366 ± 10	381 ± 7	367 ± 15	341 ± 11	359 ± 11	338 ± 10	362 ± 10	
	30	163 ± 6	173 ± 15	174 ± 6	164 ± 5	156 ± 6	164 ± 8	162 ± 7	173 ± 8	
	60	219 ± 5	222 ± 9	221 ± 5	213 ± 8	224 ± 19	212 ± 6	200 ± 10	209 ± 10	
brainstem	100	255 ± 6	247 ± 17	260 ± 11	250 ± 8	226 ± 10	235 ± 7	231 ± 7	245 ± 6	
	150	269 ± 14	274 ± 10	279 ± 9	259 ± 6	241 ± 11	244 ± 6	237 ± 6	254 ± 6	

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. For body weight, three-factor ANOVA (treatment, age, sex) indicates a main effect of treatment (p < 0.002) but no interactions of treatment with the other factors. Hence, post-hoc comparisons were not conducted for individual ages or sexes. The TSE group had significantly lower weights compared to all other groups: p < 0.0003 vs. control, p < 0.006 vs. Nic 0.2, p < 0.02 vs. Nic 2. The average deficits were 4.5%, 4% and 3%, respectively.

For brain region weight, four-factor ANOVA (treatment, age, sex, region) indicates no significant treatment effects and no interactions of treatment with the other factors. Note that weights for frontal/parietal cortex and temporal/occipital cortex are for the right hemisphere only.

Abbreviations: Nic 0.2 = Nicotine 0.2 mg/kg/day; Nic 2 = Nicotine 2 mg/kg/day.

TABLE S2: ChAT Activity (mean \pm SE)

Region	Postnatal Age	Mal	e (pmol/min	per mg prot	ein)	Female (pmol/min per mg protein)				
		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2	
	30	0.81 ± 0.04	0.84 ± 0.04	0.99 ± 0.05	0.87 ± 0.04	0.85 ± 0.02	0.82 ± 0.02	0.94 ± 0.04	0.92 ± 0.06	
frontal/parietal	60	1.06 ± 0.04	1.24 ± 0.06	1.25 ± 0.02	1.25 ± 0.04	1.08 ± 0.04	1.18 ± 0.06	1.32 ± 0.06	1.24 ± 0.04	
cortex	100	0.95 ± 0.04	0.94 ± 0.06	0.96 ± 0.06	0.96 ± 0.04	0.92 ± 0.03	1.01 ± 0.05	0.98 ± 0.06	0.98 ± 0.06	
	150	0.82 ± 0.03	0.90 ± 0.05	0.93 ± 0.02	0.91 ± 0.05	0.98 ± 0.03	0.78 ± 0.03	0.96 ± 0.06	0.96 ± 0.06	
	30	0.59 ± 0.03	0.56 ± 0.03	0.64 ± 0.04	0.63 ± 0.02	0.69 ± 0.05	0.64 ± 0.04	0.64 ± 0.05	0.64 ± 0.02	
temporal/occipital	60	0.67 ± 0.02	0.69 ± 0.05	0.72 ± 0.04	0.64 ± 0.03	0.68 ± 0.03	0.66 ± 0.03	0.71 ± 0.03	0.67 ± 0.03	
cortex	100	0.52 ± 0.02	0.55 ± 0.04	0.55 ± 0.03	0.57 ± 0.02	0.58 ± 0.02	0.57 ± 0.03	0.58 ± 0.03	0.59 ± 0.02	
	150	0.76 ± 0.02	0.72 ± 0.04	0.80 ± 0.03	0.74 ± 0.03	0.77 ± 0.04	0.72 ± 0.05	0.86 ± 0.05	0.80 ± 0.04	
	30	0.66 ± 0.05	0.65 ± 0.03	0.65 ± 0.03	0.68 ± 0.03	0.66 ± 0.02	0.65 ± 0.02	0.66 ± 0.01	0.72 ± 0.03	
1.	60	1.10 ± 0.07	1.11 ± 0.04	1.15 ± 0.03	1.19 ± 0.05	1.22 ± 0.07	1.21 ± 0.07	1.29 ± 0.07	1.21 ± 0.02	
hippocampus	100	0.85 ± 0.06	0.93 ± 0.03	0.91 ± 0.04	0.91 ± 0.02	0.86 ± 0.05	0.86 ± 0.04	0.95 ± 0.04	0.96 ± 0.02	
	150	0.81 ± 0.05	0.85 ± 0.05	0.91 ± 0.03	0.84 ± 0.03	0.86 ± 0.05	0.88 ± 0.03	0.96 ± 0.04	0.90 ± 0.02	
	30	4.05 ± 0.26	4.18 ± 0.07	3.94 ± 0.08	4.54 ± 0.56	4.03 ± 0.72	4.87 ± 0.35	4.12 ± 0.50	4.07 ± 0.31	
-4	60	3.77 ± 0.09	3.44 ± 0.32	3.55 ± 0.25	3.57 ± 0.20	3.85 ± 0.06	3.22 ± 0.19	3.76 ± 0.20	3.87 ± 0.18	
striatum	100	2.92 ± 0.19	3.32 ± 0.22	3.62 ± 0.27	3.59 ± 0.33	3.25 ± 0.22	3.08 ± 0.15	3.48 ± 0.22	3.31 ± 0.29	
	150	2.96 ± 0.12	2.78 ± 0.12	3.28 ± 0.15	3.20 ± 0.20	3.24 ± 0.23	3.03 ± 0.16	3.65 ± 0.31	3.01 ± 0.15	
	30	0.63 ± 0.03	0.73 ± 0.03	0.66 ± 0.03	0.70 ± 0.04	0.64 ± 0.03	0.75 ± 0.02	0.66 ± 0.03	0.69 ± 0.05	
. 11	60	0.67 ± 0.03	0.72 ± 0.01	0.80 ± 0.04	0.76 ± 0.04	0.76 ± 0.02	0.69 ± 0.02	0.79 ± 0.04	0.80 ± 0.04	
midbrain	100	0.60 ± 0.02	0.65 ± 0.03	0.68 ± 0.05	0.65 ± 0.03	0.69 ± 0.03	0.70 ± 0.05	0.72 ± 0.04	0.72 ± 0.05	
	150	0.52 ± 0.03	0.53 ± 0.03	0.55 ± 0.02	0.55 ± 0.03	0.59 ± 0.03	0.51 ± 0.01	0.58 ± 0.04	0.57 ± 0.02	
	30	1.76 ± 0.05	1.72 ± 0.05	1.95 ± 0.03	1.81 ± 0.07	1.88 ± 0.05	1.74 ± 0.04	1.97 ± 0.04	1.85 ± 0.04	
la marian and a mar	60	1.10 ± 0.03	1.10 ± 0.03	1.18 ± 0.04	1.27 ± 0.05	1.19 ± 0.07	1.16 ± 0.03	1.15 ± 0.04	1.26 ± 0.02	
brainstem	100	0.86 ± 0.01	0.94 ± 0.03	1.03 ± 0.03	0.99 ± 0.02	0.99 ± 0.03	0.93 ± 0.04	1.04 ± 0.05	1.01 ± 0.03	
	150	1.13 ± 0.05	1.14 ± 0.06	1.21 ± 0.05	1.28 ± 0.08	1.21 ± 0.04	1.09 ± 0.02	1.30 ± 0.05	1.29 ± 0.05	

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. Results of multivariate ANOVA are provided in the main text. Note that the assays for each region and age were run in separate experiments, so absolute values cannot be compared strictly across ages or between regions. Accordingly, statistical comparisons in the main text were conducted on log-transformed data, which evaluates the treatment differences as a proportion to control values, rather than as an arithmetic difference. Representing the data as proportional differences (percent control) enables a full comparison of treatment effects and treatment interactions with all the other variables, even though absolute values for the controls cannot be compared across regions and ages.

Abbreviations: Nic 0.2 = Nicotine 0.2 mg/kg/day; Nic 2 = Nicotine 2 mg/kg/day.

TABLE S3: HC3 Binding (mean \pm SE)

Region	Postnatal Age		Male (fmol/	mg protein)]	Female (fmo	l/mg protein)
		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2
	30	15.4 ± 1.3	13.2 ± 0.7	17.0 ± 1.2	15.5 ± 1.6	15.6 ± 2.0	14.2 ± 1.2	16.3 ± 1.6	14.2 ± 1.6
frontal/parietal	60	15.4 ± 0.9	15.9 ± 1.3	18.8 ± 0.9	16.4 ± 1.3	17.3 ± 1.1	15.7 ± 1.6	19.7 ± 2.2	16.2 ± 0.6
cortex	100	18.5 ± 1.1	15.7 ± 1.0	16.3 ± 0.8	16.1 ± 1.7	16.8 ± 1.4	16.4 ± 0.6	17.6 ± 1.0	17.8 ± 0.9
	150	15.0 ± 1.5	14.5 ± 1.0	15.3 ± 1.0	13.6 ± 0.7	16.4 ± 1.1	12.7 ± 0.6	15.4 ± 1.6	16.9 ± 1.6
	30	12.7 ± 0.6	11.0 ± 0.5	13.0 ± 0.7	10.6 ± 0.9	13.2 ± 0.8	12.0 ± 1.3	12.4 ± 0.7	11.0 ± 1.3
temporal/occipital	60	11.4 ± 0.7	10.7 ± 1.0	12.8 ± 0.7	10.3 ± 0.4	12.7 ± 0.9	10.2 ± 0.5	11.9 ± 1.1	10.6 ± 0.5
cortex	100	11.1 ± 0.3	10.8 ± 0.6	11.5 ± 0.7	10.6 ± 0.9	10.5 ± 0.2	11.0 ± 0.6	12.3 ± 1.0	12.6 ± 0.8
	150	11.8 ± 0.6	9.7 ± 0.6	11.9 ± 0.5	9.9 ± 0.6	11.5 ± 0.5	9.4 ± 0.4	11.7 ± 0.8	11.3 ± 0.4
	30	19.6 ± 1.9	14.6 ± 0.4	17.5 ± 1.4	16.2 ± 2.0	15.4 ± 1.3	16.1 ± 0.9	15.7 ± 1.7	13.1 ± 1.3
himnocommus	60	16.8 ± 0.6	13.8 ± 0.9	17.2 ± 1.6	14.6 ± 0.7	17.0 ± 0.7	14.9 ± 1.2	17.1 ± 2.5	14.4 ± 0.7
hippocampus	100	13.6 ± 0.6	12.1 ± 1.0	13.6 ± 0.8	14.2 ± 1.4	14.5 ± 1.2	12.7 ± 1.2	14.3 ± 1.0	14.7 ± 0.7
	150	14.6 ± 0.6	12.3 ± 0.7	14.1 ± 0.4	13.4 ± 0.8	13.0 ± 0.3	12.7 ± 0.5	14.5 ± 0.6	13.4 ± 0.7
	30	81 ± 11	76 ± 8	89 ± 11	72 ± 10	76 ± 6	88 ± 5	73 ± 7	62 ± 6
striatum	60	91 ± 4	65 ± 6	97 ± 8	78 ± 7	84 ± 4	58 ± 4	85 ± 8	71 ± 9
striatum	100	75 ± 3	79 ± 7	99 ± 10	99 ± 11	78 ± 6	79 ± 8	97 ± 8	90 ± 9
	150	66 ± 5	64 ± 7	77 ± 6	77 ± 4	75 ± 5	63 ± 5	78 ± 7	77 ± 2
	30	13.0 ± 1.1	12.6 ± 1.3	14.0 ± 1.2	12.1 ± 1.4	13.2 ± 0.8	13.4 ± 1.1	12.9 ± 0.8	11.3 ± 1.0
midbrain	60	11.6 ± 0.7	10.2 ± 0.4	12.0 ± 1.1	11.4 ± 0.6	9.1 ± 0.6	9.1 ± 0.9	10.8 ± 0.5	10.7 ± 1.0
illidoralli	100	12.0 ± 0.5	11.6 ± 0.8	11.3 ± 0.7	11.8 ± 0.5	13.2 ± 1.0	12.2 ± 1.2	12.3 ± 0.9	11.6 ± 0.3
	150	11.2 ± 0.6	10.7 ± 0.7	10.9 ± 0.5	11.7 ± 1.1	11.8 ± 0.6	10.2 ± 0.4	10.8 ± 0.4	11.7 ± 0.7
	30	10.7 ± 0.5	10.9 ± 0.8	12.6 ± 0.6	10.4 ± 0.7	11.2 ± 0.6	11.6 ± 1.0	11.8 ± 0.9	12.1 ± 1.6
husington	60	6.8 ± 0.3	6.4 ± 0.4	6.9 ± 0.4	7.0 ± 0.4	6.3 ± 0.3	5.9 ± 0.2	6.6 ± 0.3	6.3 ± 0.4
brainstem	100	6.9 ± 0.2	5.8 ± 0.2	6.6 ± 0.3	6.4 ± 0.4	6.3 ± 0.2	5.6 ± 0.2	6.3 ± 0.3	6.8 ± 0.4
	150	6.1 ± 0.4	6.2 ± 0.6	5.7 ± 0.3	5.7 ± 0.4	5.5 ± 0.2	5.5 ± 0.3	6.3 ± 0.3	5.8 ± 0.4

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. Results of multivariate ANOVA are provided in the main text. Note that the assays for each region and age were run in separate experiments, so absolute values cannot be compared strictly across ages or between regions. Accordingly, statistical comparisons in the main text were conducted on log-transformed data, which evaluates the treatment differences as a proportion to control values, rather than as an arithmetic difference. Representing the data as proportional differences (percent control) enables a full comparison of treatment effects and treatment interactions with all the other variables, even though absolute values for the controls cannot be compared across regions and ages. Abbreviations: Nic $0.2 = \text{Nicotine } 0.2 \, \text{mg/kg/day}$; Nic $2 = \text{Nicotine } 2 \, \text{mg/kg/day}$.

TABLE S4: HC3/ChAT ratio (mean \pm SE)

Region	Postnatal Age		Ma	ale			Fen	nale	
		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2
	30	19.3 ± 2.0	15.9 ± 0.5	17.3 ± 1.0	17.1 ± 2.0	18.2 ± 2.1	17.3 ± 1.2	17.4 ± 1.5	15.9 ± 2.0
frontal/parietal	60	14.6 ± 0.8	13.7 ± 0.7	14.7 ± 0.6	13.1 ± 0.8	15.6 ± 0.8	13.3 ± 1.1	15.0 ± 1.6	13.0 ± 0.3
cortex	100	19.5 ± 1.1	16.8 ± 1.0	17.2 ± 0.9	17.0 ± 2.1	18.3 ± 1.2	16.4 ± 0.6	18.1 ± 1.1	18.3 ± 0.6
	150	19.7 ± 2.3	16.1 ± 1.0	16.5 ± 1.3	14.9 ± 0.5	16.7 ± 0.7	16.4 ± 0.9	16.3 ± 2.0	17.5 ± 1.1
	30	21.3 ± 2.1	19.9 ± 1.5	21.2 ± 2.2	17.3 ± 2.0	20.0 ± 1.9	18.9 ± 1.8	19.5 ± 0.7	17.1 ± 2.0
temporal/occipital	60	17.1 ± 1.0	15.5 ± 0.5	18.0 ± 1.0	16.1 ± 0.6	18.6 ± 0.7	15.5 ± 0.7	17.2 ± 2.0	15.8 ± 0.9
cortex	100	21.5 ± 1.3	20.2 ± 2.1	20.9 ± 0.9	18.6 ± 1.3	18.2 ± 0.8	19.3 ± 0.8	21.4 ± 1.5	21.1 ± 1.0
	150	15.5 ± 0.7	13.5 ± 1.1	15.0 ± 1.0	13.5 ± 0.8	15.0 ± 0.3	13.3 ± 1.0	13.8 ± 1.3	14.2 ± 0.6
	30	29.7 ± 1.8	22.7 ± 1.3	27.2 ± 1.8	23.6 ± 2.5	23.4 ± 2.1	25.0 ± 1.8	23.8 ± 2.4	18.4 ± 1.9
himnocommus	60	15.8 ± 1.5	12.1 ± 0.9	15.0 ± 1.5	12.3 ± 0.4	13.6 ± 0.7	12.4 ± 1.0	13.0 ± 1.4	11.9 ± 0.6
hippocampus	100	16.4 ± 1.1	13.2 ± 1.3	15.0 ± 1.2	15.7 ± 1.6	17.0 ± 1.6	15.1 ± 2.0	15.0 ± 1.0	15.3 ± 0.8
	150	18.4 ± 1.5	14.5 ± 0.4	15.7 ± 0.8	16.0 ± 0.8	15.4 ± 0.9	14.5 ± 0.7	15.1 ± 0.6	15.1 ± 0.7
	30	18.3 ± 3.3	16.3 ± 2.2	20.9 ± 1.4	12.7 ± 2.5	21.4 ± 3.1	18.5 ± 1.4	17.6 ± 2.2	16.6 ± 3.1
striatum	60	24.2 ± 1.4	19.0 ± 0.5	28.6 ± 2.1	21.7 ± 1.2	22.1 ± 1.1	18.2 ± 1.2	23.6 ± 2.3	20.2 ± 1.3
Stratum	100	27.0 ± 1.8	23.7 ± 1.5	27.4 ± 1.9	29.8 ± 3.8	24.0 ± 1.0	24.4 ± 3.1	28.1 ± 2.2	27.3 ± 1.3
	150	22.3 ± 1.4	22.8 ± 1.8	23.5 ± 1.5	24.4 ± 1.7	23.5 ± 1.6	20.7 ± 0.6	21.4 ± 1.0	25.7 ± 1.2
	30	20.8 ± 1.6	17.8 ± 2.4	21.3 ± 1.5	17.3 ± 1.7	21.2 ± 2.0	17.8 ± 1.3	19.8 ± 1.6	16.5 ± 1.5
midbrain	60	17.1 ± 1.2	14.2 ± 0.6	15.3 ± 1.8	15.4 ± 1.4	12.7 ± 0.5	13.1 ± 1.0	13.9 ± 0.9	13.5 ± 1.4
illidoralli	100	19.8 ± 0.4	17.8 ± 0.7	17.8 ± 0.7	18.3 ± 1.0	19.3 ± 0.9	18.4 ± 1.5	17.1 ± 0.8	17.4 ± 0.3
	150	21.2 ± 1.4	21.4 ± 0.8	20.0 ± 1.3	21.2 ± 1.0	20.1 ± 0.6	19.9 ± 0.3	19.1 ± 1.6	20.6 ± 0.9
	30	6.1 ± 0.1	6.4 ± 0.5	6.5 ± 0.2	5.8 ± 0.5	6.0 ± 0.5	6.7 ± 0.7	6.0 ± 0.5	6.6 ± 0.8
brainstem	60	6.2 ± 0.3	5.9 ± 0.4	5.9 ± 0.4	5.6 ± 0.4	5.4 ± 0.4	5.0 ± 0.2	5.7 ± 0.3	5.0 ± 0.3
oranistem	100	8.1 ± 0.2	6.2 ± 0.3	6.4 ± 0.2	6.6 ± 0.6	6.4 ± 0.3	6.1 ± 0.3	6.2 ± 0.4	6.6 ± 0.5
	150	5.5 ± 0.5	5.3 ± 0.6	4.8 ± 0.3	4.6 ± 0.5	4.6 ± 0.3	5.1 ± 0.3	4.9 ± 0.4	4.5 ± 0.2

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. Results of multivariate ANOVA are provided in the main text. Note that the assays for each region and age were run in separate experiments, so absolute values cannot be compared strictly across ages or between regions. Accordingly, statistical comparisons in the main text were conducted on log-transformed data, which evaluates the treatment differences as a proportion to control values, rather than as an arithmetic difference. Representing the data as proportional differences (percent control) enables a full comparison of treatment effects and treatment interactions with all the other variables, even though absolute values for the controls cannot be compared across regions and ages. Abbreviations: Nic $0.2 = \text{Nicotine } 0.2 \, \text{mg/kg/day}$; Nic $2 = \text{Nicotine } 2 \, \text{mg/kg/day}$.

TABLE S5: nAChR Binding (mean \pm SE)

Region	Postnatal Age		Male (fmol/	mg protein)]	Female (fmo	l/mg protein)
		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2
	30	53 ± 7	58 ± 7	70 ± 7	63 ± 6	67 ± 7	52 ± 9	65 ± 5	60 ± 6
frontal/parietal	60	56 ± 4	50 ± 6	62 ± 4	59 ± 5	51 ± 7	45 ± 5	56 ± 5	59 ± 2
cortex	100	54 ± 2	52 ± 4	52 ± 3	53 ± 4	57 ± 3	51 ± 3	50 ± 3	52 ± 2
	150	55 ± 4	50 ± 2	51 ± 9	46 ± 4	45 ± 6	44 ± 3	43 ± 5	47 ± 7
	30	63 ± 9	68 ± 9	78 ± 10	69 ± 4	59 ± 7	66 ± 9	73 ± 6	65 ± 7
temporal/occipital	60	63 ± 4	46 ± 10	67 ± 7	57 ± 5	52 ± 6	48 ± 6	54 ± 8	60 ± 3
cortex	100	56 ± 3	58 ± 5	59 ± 6	61 ± 2	58 ± 3	56 ± 3	58 ± 2	64 ± 3
	150	57 ± 5	61 ± 2	60 ± 7	61 ± 3	54 ± 5	50 ± 5	65 ± 2	59 ± 6
	30	53 ± 5	35 ± 9	53 ± 2	57 ± 8	45 ± 5	26 ± 9	45 ± 4	43 ± 4
1.:	60	50 ± 5	43 ± 6	52 ± 4	48 ± 4	46 ± 7	44 ± 3	39 ± 7	52 ± 3
hippocampus	100	30 ± 3	31 ± 2	25 ± 4	33 ± 2	33 ± 3	30 ± 3	33 ± 3	36 ± 2
	150	27 ± 2	31 ± 1	26 ± 4	31 ± 3	24 ± 2	29 ± 4	31 ± 2	26 ± 3
	30	78 ± 5	66 ± 10	82 ± 6	79 ± 4	64 ± 6	54 ± 10	81 ± 3	77 ± 5
	60	66 ± 4	59 ± 3	63 ± 4	64 ± 3	48 ± 6	52 ± 4	64 ± 4	61 ± 3
midbrain	100	55 ± 2	56 ± 1	60 ± 2	62 ± 2	62 ± 1	61 ± 2	60 ± 2	65 ± 2
	150	52 ± 4	51 ± 2	57 ± 7	55 ± 4	50 ± 3	48 ± 3	43 ± 5	47 ± 6
brainstem	30	34 ± 4	35 ± 5	42 ± 3	44 ± 2	34 ± 3	19 ± 6	37 ± 3	41 ± 2
	60	30 ± 1	26 ± 2	29 ± 2	31 ± 1	23 ± 4	25 ± 2	29 ± 2	28 ± 1
	100	27 ± 1	25 ± 1	28 ± 2	28 ± 1	28 ± 1	24 ± 1	26 ± 1	29 ± 2
	150	26 ± 1	26 ± 2	24 ± 4	25 ± 2	24 ± 1	23 ± 1	27 ± 1	24 ± 2

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. Results of multivariate ANOVA are provided in the main text. Note that the assays for each region and age were run in separate experiments, so absolute values cannot be compared strictly across ages or between regions. Accordingly, statistical comparisons in the main text were conducted on log-transformed data, which evaluates the treatment differences as a proportion to control values, rather than as an arithmetic difference. Representing the data as proportional differences (percent control) enables a full comparison of treatment effects and treatment interactions with all the other variables, even though absolute values for the controls cannot be compared across regions and ages. Abbreviations: Nic 0.2 = Nicotine 0.2 mg/kg/day; Nic 2 = Nicotine 2 mg/kg/day.

TABLE S6: 5HT Receptor Binding (mean \pm SE)

Subtype and Region	Postnatal Age		Male (fmol/	mg protein)]	Female (fmo	l/mg protein)
5HT _{1A} Receptors		Control	TSE	Nic 0.2	Nic 2	Control	TSE	Nic 0.2	Nic 2
	30	84 ± 10	108 ± 3	106 ± 10	91 ± 11	100 ± 5	92 ± 10	102 ± 8	89 ± 6
frontal/parietal	60	86 ± 3	91 ± 7	101 ± 6	88 ± 7	95 ± 3	78 ± 6	101 ± 7	92 ± 7
cortex	100	97 ± 12	90 ± 14	91 ± 10	92 ± 13	98 ± 11	99 ± 9	101 ± 14	93 ± 10
	150	80 ± 5	77 ± 5	82 ± 5	72 ± 2	80 ± 4	76 ± 5	77 ± 8	85 ± 8
	30	102 ± 14	123 ± 2	124 ± 5	100 ± 10	114 ± 9	115 ± 10	118 ± 7	100 ± 6
temporal/occipital	60	106 ± 5	114 ± 4	123 ± 3	105 ± 3	118 ± 5	103 ± 5	105 ± 12	109 ± 7
cortex	100	106 ± 12	98 ± 16	125 ± 15	120 ± 17	113 ± 11	118 ± 11	132 ± 17	126 ± 18
	150	123 ± 7	126 ± 4	141 ± 6	128 ± 6	129 ± 7	99 ± 5	134 ± 9	145 ± 10
	30	68 ± 3	62 ± 6	69 ± 2	59 ± 9	66 ± 4	53 ± 5	67 ± 5	56 ± 8
midbrain	60	60 ± 3	53 ± 5	56 ± 3	61 ± 6	53 ± 3	44 ± 6	55 ± 2	54 ± 2
illidoralli	100	52 ± 2	39 ± 5	46 ± 5	46 ± 5	52 ± 2	50 ± 2	59 ± 7	46 ± 4
	150	45 ± 2	44 ± 4	45 ± 3	56 ± 6	48 ± 2	44 ± 5	45 ± 3	52 ± 4
	30	34 ± 2	40 ± 2	40 ± 2	39 ± 4	36 ± 1	36 ± 2	42 ± 3	38 ± 3
1	60	39 ± 2	41 ± 1	43 ± 2	42 ± 2	41 ± 2	35 ± 3	39 ± 3	40 ± 2
brainstem	100	29 ± 2	26 ± 3	30 ± 3	29 ± 2	29 ± 2	26 ± 3	30 ± 3	29 ± 4
	150	30 ± 2	30 ± 3	28 ± 1	29 ± 2	28 ± 1	26 ± 1	31 ± 1	30 ± 3
5HT ₂ Receptors									
	30	55 ± 4	65 ± 5	65 ± 1	71 ± 4	54 ± 7	61 ± 2	56 ± 2	66 ± 1
frontal/parietal	60	51 ± 2	63 ± 1	58 ± 1	58 ± 2	57 ± 3	55 ± 1	63 ± 2	61 ± 2
cortex	100	56 ± 2	58 ± 2	57 ± 2	58 ± 2	59 ± 2	52 ± 2	59 ± 2	55 ± 4
	150	46 ± 1	54 ± 2	50 ± 2	49 ± 1	47 ± 2	48 ± 1	52 ± 1	50 ± 2
	30	28 ± 2	30 ± 2	33 ± 3	34 ± 2	34 ± 2	30 ± 1	31 ± 2	30 ± 2
temporal/occipital	60	30 ± 1	34 ± 2	33 ± 1	31 ± 1	34 ± 1	31 ± 1	33 ± 1	35 ± 1
cortex	100	30 ± 1	33 ± 1	32 ± 2	32 ± 1	32 ± 1	29 ± 1	33 ± 1	35 ± 2
	150	23 ± 1	29 ± 1	27 ± 1	27 ± 1	26 ± 1	27 ± 2	30 ± 1	28 ± 1
	30	9.4 ± 0.7	1.03 ± 0.5	10.3 ± 0.5	10.8 ± 1.0	9.7 ± 0.7	9.9 ± 0.3	10.2 ± 0.5	10.8 ± 0.4
	60	9.0 ± 0.2	8.9 ± 0.3	8.7 ± 0.4	9.3 ± 0.5	8.9 ± 0.3	8.7 ± 0.6	9.7 ± 0.3	9.6 ± 0.4
midbrain	100	9.1 ± 0.2	10.2 ± 0.5	10.5 ± 0.5	10.2 ± 0.5	11.1 ± 0.8	9.1 ± 0.6	11.6 ± 0.4	11.1 ± 0.8
	150	9.2 ± 0.3	9.7 ± 0.3	10.0 ± 0.3	10.8 ± 0.2	9.5 ± 0.4	9.3 ± 0.2	10.0 ± 0.4	10.4 ± 0.3
	30	7.5 ± 0.3	8.6 ± 0.3	9.1 ± 0.5	8.9 ± 0.3	8.9 ± 0.3	7.9 ± 0.4	9.9 ± 0.4	8.7 ± 0.3
1	60	9.5 ± 0.3	10.2 ± 0.2	10.5 ± 0.4	10.9 ± 0.3	10.2 ± 0.3	9.3 ± 0.3	10.9 ± 0.4	10.4 ± 0.2
brainstem	100	8.9 ± 0.6	10.0 ± 0.8	10.8 ± 0.9	10.4 ± 0.6	10.4 ± 0.3	10.8 ± 0.9	9.4 ± 0.4	10.6 ± 0.9
	150	8.2 ± 0.3	8.8 ± 0.4	8.5 ± 0.5	8.7 ± 0.3	8.5 ± 0.4	8.5 ± 0.4	9.6 ± 0.5	9.1 ± 0.5

Data represent mean \pm SE obtained from six animals in each treatment group for each age and sex. Results of multivariate ANOVA are provided in the main text. Note that the assays for each region and age were run in separate experiments, so absolute values cannot be compared strictly across ages or between regions. Accordingly, statistical comparisons in the main text were conducted on log-transformed data, which evaluates the treatment differences as a proportion to control values, rather than as an arithmetic difference. Representing the data as proportional differences (percent control) enables a full comparison of treatment effects and treatment interactions with all the other variables, even though absolute values for the controls cannot be compared across regions and ages. Abbreviations: Nic 0.2 = Nicotine 0.2 mg/kg/day; Nic 2 = Nicotine 2 mg/kg/day.