SUPPLEMENTAL APPENDICES

Supplemental Appendix A: Complete List of Search Terms

	Serum Lipid and Lip- lowering drugs	Tendon Structure and Pathology
MeSH	Lipids/ exp Lipoproteins/ Cholesterol/	exp Tendons/
Free text	Lipid*.ti,ab. Cholesterol*.ti,ab. Hyperlipid*.ti,ab. Hypercholesterol*.ti,ab. Triglyceride*.ti,ab. Hypertriglyceride*.ti,ab. High-density lipoprotein*.ti,ab. Low-density lipoprotein*.ti,ab.	Tendon structure*.ti,ab. Tendon thickness*.ti,ab.
MeSH	Hydroxymethylglutaryl-CoA Reductase Inhibitors/ exp Lovastatin/	exp Tendon Injuries/ exp Tendinopathy/ Xanthomatosis/ AND exp Tendons/
Free text	Statin*.ti,ab. Hydroxymethylglutaryl-CoA Reductase Inhibitor*.ti,ab. HMG-CoA.ti,ab. Atorvastatin.ti,ab. Fluvastatin.ti,ab. Lovastatin.ti,ab. Pitavastatin.ti,ab. Pravastatin.ti,ab. Rosuvastatin.ti,ab. Simvastatin.ti,ab.	Tendon pain.ti,ab. Tendon tear*.ti,ab. Tendon strain*.ti,ab. Tendon rupture*.ti,ab. Tend#nopath*.ti,ab. Tend#nopath*.ti,ab. Tend#nos#s.ti,ab. Tend#nos#s.ti,ab. Tenosynovitis.ti,ab. Achillodynia.ti,ab. Jumper* Knee.ti,ab. Tennis Elbow.ti,ab. Golfer* Elbow.ti,ab. Epicondylitis.ti,ab.

MeSH = Medical Subject Heading

Supplemental Appendix B: Quality Assessment of Included Papers

Example: Abate et al., 2014

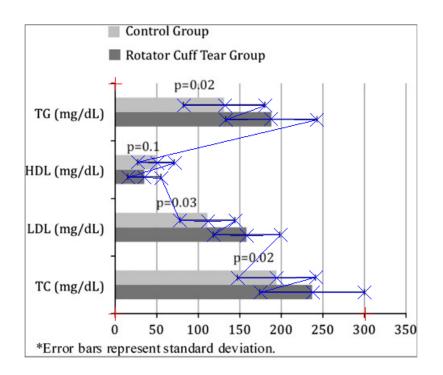
0.	e et al., 2014 Criterion	Decision Rule	Score Y=1 N=0
ΓUI	DY POPULATION		11-0
1	Is the method of recruitment and eligibility criteria reported?	Yes if the study states how participants were recruited, and clear eligibility criteria for participant inclusion and/or exclusion were reported	Y
2	Are the participants representative of the population from which they were recruited?	Yes if the study states that consecutive eligible patients were used, participants were randomly selected, or all participants were used from the source population	N
3	Is there evidence that the controls are free from disease?	Yes if evidence is supplied that the controls are not exposed to the disease	Y
1	Are both groups drawn from the same population?	Yes if both the case and control group were drawn from the same source population	Y
5	Are potential confounding factors identified?	Yes if the cases and controls were matched with respect to the potential confounding factors (age, sex, BMI)	N
5	COME Were lipid levels assessed identically?	Yes if the method for the collection and the analysis of the lipid levels were done in an identical way for the entire population	N
7	Valid definitions	Yes if the method used for assessing tendon structure or tendon pain was defined and explained with reference to its validity	Y
3	Was tendon structure or tendon pain assessed identically?	Yes if the methods for assessing tendon structure or tendon pain were measured in an identical way for the entire population	Y
•	Was assessor blinding reported?	Outcomes and variables were measured by assessors independently, without any knowledge of the key confounding outcome or grouping variables within the study	N

10	Were data available for >80% of those enrolled?	Yes if data were available for at least 80% of all participants enrolled in the study	N
ANA	LYSIS		
11	Appropriate analysis	Yes if data are supplied that allows for the reader to determine if the relationship between abnormal lipid levels and change in tendon structure or pain is statistically significant	Y
		SCORE	6/11
		PERCENTAGE	55%

Supplemental Appendix C: Programs and formulas

Cholesterol Unit Conversion:

To convert milligrams per decileter (mg/dL) to millimole per litre (mmol/L), values should be divided by:


- 38.67 for total cholesterol, HDL and LDL
- 88.57 for triglycerides

*Figures taken from 'Screening for Lipid Disorders in Children and Adolescents – Evidence Synthesis' by Haney, E., Huffman, L., Bougatsos, C et al (2007). Agency for Healthcare Research and Quality (US).

Engauge Digitilzer 4.1:

Engauge Digitilizer 4.1 was developed by Mark Mitch in 2010.

Figure 6. Data extraction using Engauge Digitilizer

Author (Year)	1	2	3	4	5	6	7	8	9	10	11	Score
Abbate (2014)	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	\checkmark	×	×	\checkmark	6/11 (55%)
Abboud (2010)	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	9/11 (82%)
Beri (2009)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	N/A	×	×	×	N/A	\checkmark	6/9 (67%)
Descamps (2001)	×	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	N/A	\checkmark	5/10 (50%)
Durrington (1982)	×	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	\checkmark	\checkmark	6/11 (55%)
Gaida (2009)	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	×	\checkmark	N/A	\checkmark	7/10 (70%)
Gattereau (1973)	\checkmark	×	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	N/A	\checkmark	6/10 (60%)
Junyent (2005)	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	N/A	\checkmark	8/10 (80%)
Klemp (1993)	\checkmark	\checkmark	\checkmark	×	\checkmark	×	\checkmark	\checkmark	×	N/A	\checkmark	7/10 (70%)
Kwak (2013)	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	\checkmark	×	\checkmark	×	6/11 (55%)

Supplemental Appendix D: Summary of Quality Assessment Results

Longo (2010)	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	N/A	\checkmark	8/10 (80%)
Mabuchi (1977)	×	×	\checkmark	×	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark	5/11 (45%)
Mabuchi (1978)	\checkmark	\checkmark	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	7/11 (64%)
Ozgurtas (2003)	×	×	×	×	×	×	\checkmark	×	×	N/A	\checkmark	2/10 (20%)
Rechardt (2013)	\checkmark	\checkmark	N/A	N/A	N/A	\checkmark	\checkmark	\checkmark	×	×	\checkmark	6/8 (75%)
Tsouli (2009)	\checkmark	×	\checkmark	×	\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	8/11 (73%)
Yuzawa (1989)	×	×	\checkmark	×	×	\checkmark	\checkmark	\checkmark	×	\checkmark	\checkmark	6/11 (55%)

 \checkmark = yes, \varkappa = no, N/A = not applicable

Supplemental Appendix E: Results Tables

Table 4

Author (Year)		Population	Setting	Number recruited	Age (years)	Gender (male/female)	BMI† (kg/m^2)
Abate (2014)	Case	Rotator cuff full- thickness tears (pre- and post- menopausal women)	Echography unit of department for lower limb disease	27	Mean = 50.9 SD = 4.1	0/27	Mean = 27.5 SD = 3.1
	Control	No rotator cuff full- thickness tears (pre- and post- menopausal women)	Echography unit of department for lower limb disease	205	Mean = 49.7 SD = 4.0	0/205	Mean = 23.7 SD = 3.0
Abboud (2010)	Case	Full-thickness rotator cuff tears	Outpatient tertiary care clinic	80 (6 excluded)	Mean = 66.1 Range = 21- 93	44/30	Mean = 30.3
	Control	Shoulder complaint, normal rotator cuff	Outpatient tertiary care clinic	80 (7 excluded)	Mean = 67.2 Range = 21- 93	39/34	Mean = 28.7
Beri	Case	Patients billed with a	University-based	93	Mean = 49.04	64/29	

(2009)		discharge diagnosis of tendon rupture	multispecialty group practice in East Lansing, MI.		SD = 17.2		-
(Control	Randomly selected patients who did not have tendon rupture	University-based multispecialty group practice in East Lansing, MI.	279	Mean = 49.04 SD = 17.2	192/87	-
Descamps (2001)	Case	Genetically ascertained FH individuals	Not stated	127	FH (excluded)	FH (excluded)	FH (excluded)
(Control	Individuals with a negative genetic test for ApoB3500 and LDL-R mutations	Not stated	160	Men: Mean = 50 SD = 11 Women: Mean = 51 SD = 13	88/72	Men: Mean = 28.7 SD = 3.4 Women: Mean = 28.3 SD = 4.8
Durrington (1982)	Case	Patients with primary hypercholesterolaemia	Patients attending either a Lipid Clinic or a Metabolic Clinic	32	FH (excluded)	FH (excluded)	FH (excluded)
(Control	Normolipidaemic volunteers	Volunteers	11	Mean = 44 $SD = 4$	4/7	Mean = 28.7 SD = 4
Gaida (2009)	Case	Diagnosed with mid- portion Achilles tendinopathy	Sports Medicine Unit, Umeå University, Sweden	60	Mean = 48 SD = 9.4	32/28	Mean = 25.4 SD = 2.8

	Control	No history of tendon injury	Member of the general community	60	Mean = 47 SD = 9.7	32/28	Mean = 25.4 SD = 2.7
Gattereau (1973)	Case	Classified as having type II hypercholesterolemia	Clinic of Nutrition, Metabolism and Atherosclerosis of the Clinical Research Institute of Montreal	32	Mean = 34.6 SD/R = -	13/19	Mean = 22.02 SD/R = -
	Control	Classified as normolipemic	Clinic of Nutrition, Metabolism and Atherosclerosis of the Clinical Research Institute of Montreal	32	Mean = 34.05 SD/R = -	18/14	Mean = 23.97 SD/R = -
Junyent (2005)	Case	Adults with a diagnosis of primary hypercholesterolaemia	Attending the Lipid Clinic of Hospital Clinic, Barcelona.	81	FH (excluded)	FH (excluded)	FH (excluded)
	Control	Normolipidaemic participants	Recruited from hospital personnel and lists of primary health physicians.	88	Mean = 48 Range = 26- 81	37/51	Mean = 25.8 SD = 4.2
Klemp (1993)	Case	Patients with hyperlipidaemia	The lipid clinic at Tygerberg Hospital	88	Mean = 48 Range= 19-69	42/46	-
	Control	Volunteers with normal lipid profiles	Volunteers	88	-	-	-

Kwak (2013)	Case	Patients with dyslipidaemia	Cardiovascular Center of National Health Insurance Service (NHIS) Ilsan hospital	19	Mean = 60.0 SD = 12.5	6/13	Mean = 25.2 SD = 1.9
	Control	Normolipidaemic controls	Cardiovascular Center of National Health Insurance Service (NHIS) Ilsan hospital	96	Mean = 62.3 SD = 8.5	62/34	Mean = 24.2 SD = 2.6
Longo (2010)	Case	Patients who underwent arthroscopic repair of rotator cuff tear	University teaching hospital	120	Mean = 64.86 Range = 40- 83	45/75	Mean = 27.62 SD/R = -
	Control	Patients who underwent arthroscopic meniscectomy	University teaching hospital	120	Mean = 63.91 Range = 38- 78	45/75	Mean = 27.32 SD/R = -
Mabuchi (1977)	Case	Familial hypercholesterolaemic patients	Not stated	18	FH (excluded)	FH (excluded)	FH (excluded)
	Control	Normal participants	Not stated	36	Not stated	Not stated	Not stated
Mabuchi (1978)	Case	Familial hypercholesterolaemic patients	Not stated	112	FH (excluded)	FH (excluded)	FH (excluded)
	Control	Normal participants with no disease associated with lipid	Not stated	36	Mean = 56 SD = 12	Not stated	Not stated

-
-
Mean = 25.5 SD = 4.3
FH (excluded)
Mean = 25.1 SD = 6.5
FH (excluded)
))

metabolism

	hypercholesterolaemia					
Control	Normocholesterolaemic participants	University staff	34	Mean = 45 $SD = 11$	17/17	Not stated
+ DMI - Dody Maga Inday						

† BMI = Body Mass Index

Table 5Lipid Assessment

Author Year)		Fasting (Yes/No)	Total cholesterol Mean (SD or Range) mmol/L	HDL† Mean (SD or Range) mmol/L	LDL† Mean (SD or Range) mmol/L	Triglycerides Mean (SD or Range) mmol/L	Statin use
Abate	Case	Yes	5.15 (0.62)	1.23 (0.15)	-	1.50 (0.59)	Not stated
2014)	Control	Yes	4.88 (0.67)	1.44 (0.22)	-	1.27 (0.45)	Not stated
Abboud	Case	-	6.13 (1.63)	0.91 (0.52)	4.09 (1.03)	2.11 (0.61)	-
2010)	Control	-	5.02 (1.22)	1.29 (0.57)	2.87 (0.85)	1.49 (0.54)	No
Beri	Case	-	-	-	-	-	24.7 %
2009)	Control	-	-	-	-	-	24.7 %
escamps	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)
2001)	Control	Not stated	Men = 7.16 (1.66) Women = 7.32 (1.37)	Men = 1.24 (0.36) Women = 1.40 (0.47)	Men = 4.78 (1.60) Women = 5.07 (1.34)	Men = 3.06 (2.36) Women = 2.26 (2.01)	Not stated
urringto	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)
(1982)	Control	Not stated	5.2 (0.30)	-	-	-	Not stated
aida	Case	Yes	5.47 (1.02)	1.44 (0.39)	3.37 (0.86)	1.22 (0.77)	6 %
2009)	Control	Yes	5.16 (1.00)	1.58 (0.48)	3.14 (0.93)	0.96 (0.47)	No
attereau 973)	Case	-	Men = 7.9 (1.06) Women = 9.69 (1.72)	-	-	Men = 1.3 (0.30) Women = 1.14 (0.21)	-
	Control	_	Men = 4.42 (0.40)	-	_	Men = 0.96 (0.21)	-

			Women = 4.46 (0.51)			Women = 0.77 (0.22)	
Junyent	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)
(2005)	Control	Yes	5.07 (0.65)	1.42 (0.39)	3.34 (0.54)	1.02 (0.77-1.35)	Not stated
Klemp	Case	-	9.00 (6.76-6.90)	-	-	4.64 (2.50-1.03)	-
(1993)	Control	-	7.96 (6.54-8.94)	-	-	3.53 (2.18-4.63)	-
Kwak (2013)	Case Control	Not stated Not stated	4.03 (1.44) 3.92 (1.04)	1.11 (0.52) 1.09 (0.27)	2.00 (0.96) 2.12 (0.79)	1.69 (0.99) 1.33 (0.81)	Yes in 78.9% Yes in 20.8%
Longo (2010)	Case	Yes	5.66 (1.1)	-	-	1.65 (1.01)	No
	Control	Yes	5.58 (0.98)	-	-	1.47 (0.73)	No
Mabuchi	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)
(1977)	Control	Not stated	5.28 (0.13)	-	-	1.21 (0.05)	Not stated
Mabuchi	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)
(1978)	Control	Not stated	4.84 (0.78)	-	-	1.15 (0.46)	Not stated
Ozgurtas (2003)	Case	No	5.69 (0.75)	1.06 (0.12)	3.91 (0.80)	1.53 (0.61)	Not stated
	Control	Yes	4.09 (0.75)	1.13 (0.18)	2.35 (0.59)	1.22 (0.47)	Not stated
Rechardt (2013)	Case	Yes	5.1 (0.9)	1.7 (0.5)	2.9 (0.8)	1.1 (0.6)	Yes in 6%
	Control	*Cross-sectional study – no control group*					
Tsouli	Case	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)	FH (excluded)

(2009)	Control	Yes	5.22 (0.83)	1.32 (0.23)	3.52 (0.67)	0.90 (0.50)	No
Yuzawa	Case	FH (excluded)					
(1989)	Control	Not stated	4.55 (0.78)	1.32 (0.28)	-	1.29 (0.61)	Not stated

† HDL = High-density lipoprotein, LDL = Low-density lipoprotein

Table	6
-------	---

<u>Results</u> Author (Year)	Relationship investigated	Effect size (95% CI)	Univariate Odds Ratio (95% CI)	Multivariate Odds Ratio (95% CI)	Other
Abate (2014)	Rotator cuff tears and lipid levels	-	-	-	Predictor coefficient (of RC tears): HDL = -0.228 (p =0.001)
Abboud (2010)	Rotator cuff tear and lipid levels	$TC\dagger = 1.11 (0.64 \text{ to } 1.58)$ $HDL\dagger = -0.38 (-0.56 \text{ to } -0.20)$ $LDL\dagger = 1.22 (0.91 \text{ to } 1.53)$ $TG\dagger = 0.62 (0.43 \text{ to } 0.81)$	-	-	-
Beri (2009)	Statins and tendon rupture	-	All = 1.00 (0.54 to 1.84), p = 1.0 Men = 0.62 (0.30 to 1.30), p = 0.20 Women = 3.09 (1.04 to 9.75), $p = 0.04$	All = 1.1 (0.57 to 2.13), p = 0.76 Men = 0.66 (0.29 to 1.51), p = 0.32 Women = 3.76 (1.11 to 12.75), $p = 0.03$	-
Descamp s (2001)	No relevant analyses were conducted	-	-	-	-
Durringto n (1982)	No relevant analyses were conducted	-	-	-	-
Gaida (2009)	Achilles tendinopathy and lipid levels	TC = 0.31 (-0.06 to 0.66) HDL = -0.32 (-0.68 to 0.04) LDL = 0.26 (-0.1 to 0.61)	-	-	-

TG = 0.41 (0.4 to 0.77)

Gattereau (1973)	Non-familial hyperlipidemia and tendon thickness	Men = 0.95 (0.19 to 1.71) Women = 0.86 (0.13 to 1.58)
Junyent (2005)	No relevant analyses were conducted	
Klemp (1993)	Musculoskeletal manifestations and Mixed hyperlipidemia	
Kwak (2013)	ATT and lipid levels	

Pearson's correlation (r) for: ATT and TC = -0.09ATT and HDL = -0.06ATT and LDL = -0.03ATT and TG = -0.04*all results not sig (p>0.05)

_

_

_

-

-

_

-

Longo (2010)	RC tears and lipid levels	TC = 0.08 (-0.18 to 0.33) TG = 0.20 (-0.05 to 0.46)	-	-	-
Mabuchi (1977)	ATT and serum cholesterol	-	-	-	r = 0.454, p<0.01

Mabuchi (1978)	No relevant analyses were conducted	-	-		-	
Ozgurtas (2003)	Achilles tendon rupture and lipid levels	TC = 2.13 (1.52 to 2.7) HDL = -0.49 (-0.97 to 0) LDL = 2.13 (1.42 to 2.69) TG = 0.55 (0.06 to 1.03)	-		-	
Rechardt (2013)	Pain intensity and lipid levels	-	-	TC > 5.3: HDL < 1.48: LDL > 3.3: TG > 1.08:	OR 1.8 2.7 1.7 2.8	CI 0.8-4.0 1.2-6.3 0.7-4.2 1.2-6.6
Tsouli (2009)	No relevant analyses were conducted	-	-	Statin	0.9	0.2-4.3
Yuzawa (1989)	No relevant analyses were conducted	-	-		-	

_

-

-

_

†TC = total cholesterol, HDL = high-density lipoprotein, LDL = low-density lipoprotein, TG = triglycerides

Supplemental Appendix F: Pooled mean and SD calculation

The excel formula for calculating pooled mean is

=(D3*B3+D4*B4)/(D3+D4)

Where B3 and D3 are the mean and sample size of one study, and B4 and D4 are the mean and sample size of another study

The excel formula for calculating pooled standard deviation (SD) is

=SQRT((((D3-1)*C3^2)+((D4-1)*C4^2)+((D3*D4)/(D3+D4))*(B3-B4)^2)/(D3+D4-1))

Where B3, C3 and D3 are the mean, SD and sample size of one study and B4,C4, D4 are the mean, SD and sample size of another study