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Supplementary Figures 

 

Supplementary Figure S1. 

 

U-matrix for the SOM used to cluster the compounds. Black lines delimit the 31 clusters defined, 

whereas red labels indicate the cluster number. The similarity between each neuron and its 8 

neighboring neurons defines the color code: blue corresponds to high similarity (homogeneous 

areas), and red corresponds to low similarity (heterogeneous areas). Therefore, clusters 

presenting blue and red neurons exhibit higher levels of intra-cluster chemical diversity. 
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Supplementary Figure S2. 

 

 

Benchmarking RF parameters. (a) RMSEtest values as a function of the value of the parameter 

mtry. Converge is reached for mtry values of ~50 onwards. For this calculation, all RF models 
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were composed of 100 trees.  (b) RMSEtest values as a function of the number of trees (ntrees) in 

the forest. Converge is reached when the number of trees is 40 or higher. For this calculation, all 

RF models were trained with mtry values equal to the dimensionality of the input space, namely 

658. All 10-fold CV PGM models used for the results reported in (a) and (b) were trained on the 

uncorrelated bioactivities 0.5 data set using (i) Morgan fingerprints and (ii) the data set view 

“G.t.l Kin.” as input features to the model. These results indicate that the parameter values used 

in this study, namely (i) mtry: dimensionality of the input space, and (ii) ntrees: 100, guarantee 

the convergence of model performance. 
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Supplementary Figure S3. 
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Distribution of respective maximum and minimum RMSEtest (a,b)  and R20 test  (c,d) values for 

the complete data set. Average maximum and minimum values of 1.42/0.35 and 0.96/-0.96, were 

obtained respectively for RMSEtest / R20 test   with the simulated data. The performance of the 10-

fold CV PGM models on the test set was in agreement with the uncertainty of the experimental 

measurements, as mean RMSEtest and R20 test values of 0.40 +/- 0.00 pGI50 unit and 0.83 +/- 0.00 

(with n = 10 models) were obtained. These values are between the two extreme, maximum and 

minimum, theoretical RMSEtest and R20 test values. 
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Supplementary Figure S4. 

 

Y-scrambling validation. Mean (+/- std) RMSEtest (a) and R20 test (b) values were calculated for 

the observed against the predicted bioactivities on the test set calculated with models trained on 

pGI50 values increasingly randomized (n=3). R20 test values become negative when 75% of the 

bioactivity values are randomized. These data suggest that the relationships established by the 

10-fold CV PGM models between compound and cell line descriptors, and the pGI50 values did 

not arise from chance correlations. 
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Supplementary Figure S5. 
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Distribution of respective maximum and minimum RMSEtest (a,b)  and R20 test  (c,d) values for 

the uncorrelated bioactivities 0.5 data set. Average maximum and minimum values of 1.90/0.54 

and 0.94/-0.90 were obtained respectively for RMSEtest/ R20 test with the simulated data. The 

performance of 10-fold CV PGM models was in agreement with the uncertainty of the 

experimental measurements, as mean RMSEtest and R20 test values of 0.58 pGI50 unit and 0.79 

were obtained. These values are between the two extreme, maximum and minimum, theoretical 

RMSEtest and R20 test values. 
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Supplementary Figure S6. 

 

 

Interpolating compound bioactivities to novel cell lines, tissues, and chemical clusters. (a) Cell 

line-averaged RMSEtest values ranged from 0.41 +/- 0.01 (U251) to 0.86 +/- 0.01 pGI50 unit 

(HOP-92). We found significant differences for tissue-averaged performance (Tukey’s HSD, P < 

1 x 10-16), with RMSEtest values ranging from 0.48 +/- 0.01 (prostate) to 0.70 +/- 0.01 (leukemia) 

pGI50 unit. Cell lines originated from the same tissue are depicted in the same color (breast: red, 

central nervous system: magenta, colon: yellow, lung cancer: grey, leukemia: green, melanoma: 

blue, ovarian: orange, prostate: cyan, renal: brown). We did not observe significant differences in 
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tissue-averaged performance for tissues labeled with the same letter. (b) One-way ANOVA 

among the 31 chemical clusters (P > 0.05), with compound cluster-averaged RMSEtest values in 

the 0.48 +/- 0.01 and 0.65 +/- 0.01 pGI50 unit range. This analysis illustrates that the models do 

not constantly favor specific chemical clusters, thus making it possible to interpolate compound 

bioactivities across the chemical space covered by the data at the same level of statistical 

significance. By contrast, interpolating on the cell line side depends significantly on the tissue 

source. 
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Supplementary Figure S7. 

 

 

Learning curves. Mean (+/- std) RMSEtest (a) and R20 test  (b) values were calculated for the 

observed against the predicted bioactivity values on the test set calculated with n=3 models 

obtained using training sets covering an increasingly higher fraction of the complete data set. 

Models trained on 5% of the data set exhibited a mean RMSEtest value of 0.52 pGI50 unit, which 

decreased till 0.39 pGI50 unit when 95% of the data-points were included in the training set. 

These data suggest that 10-fold CV PGM models exhibit high interpolation capabilities. In 

practice, the compound-cell line interaction matrix could be completed with in silico predictions, 

with a RMSEtest value of 0.39 pGI50 unit. 
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Supplementary Figure S8. 

 

  




























 15 

Correlation between observed and predicted pGI50 values. Density correlation plot corresponding 

to the observed against predicted pGI50 values on the test set for: (a) the LOTO model for 

melanoma (RMSEtest and R20 test values of 0.43 pGI50 unit and 0.80), and (b) the LOCO model for 

the melanoma cell line SK-MEL-5 (RMSEtest and R20 test values of 0.37 pGI50 unit and 0.87). The 

color bar indicates the density of points at each region of the plot. For the rest of LOCO and 

LOTO models comparable results were obtained (Table S11), with bioactivity values correctly 

predicted along the whole bioactivity range. 
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Supplementary Figure S9 

 

Correlation between observed and predicted pGI50 values for the 81 drugs present in the 

complete data set for the following model validation scenarios: (a) LOCO, (b) LOTO, and (c) 

LOCCO. The x-axis reports the drug NSC identifiers. Compounds discussed in the main text, 

namely NSC 630176 and NSC 707389, are marked with asterisks. Bars are colored according to 

drug mechanism of action (MoA). The abbreviations of the mechanisms of action are: A2: 
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alkylating at N-2 position of guanine; A7: alkylating at N-7 position of guanine; AM: 

antimetabolite; Ang: angiogenesis; Apo: apoptosis inducer; Db: DNA binder; Df: antifolates; 

DNMT: DNA methyltransferase inhibitor; Dr: ribonucleotide reductase inhibitor; Ds: DNA 

synthesis inhibitor; HDAC: Histone deacetylase; Ho: hormone; P90: hsp90 binder; PI3K: 

PI3kinase; PKC: Protein kinase C; ROS: reactive oxygen species; RSTK: serine/threonine kinase 

inhibitor; T1: topoisomerase 1 inhibitor; T2 : topoisomerase 2 inhibitor;  Tu: tubulin-active 

antimitotic;  YK: tyrosine kinase inhibitor. 
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Supplementary Figure S10 

 

 

Validation of conformal prediction. For each confidence level (ε), represented in the x-axis, the 

number of data-points in the test set which true value lay within the predicted interval is 

calculated, y-axis. The high Spearman’s rs is likely due to the large size of the test set (188,366 

data-points) and to the fact that the CI produced by conformal prediction are always valid 

(Norinder et al., 2014). These data indicate that the modeling framework combining PGM 

models and conformal prediction is more information rich than what would be possible with only 

point prediction algorithms. 
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Supplementary Figure S11. 
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Consistency between the pathway-drug associations calculated with the experimental and the 

predicted bioactivity values. For each pathway, we fitted a linear model controlled by tissue 

source, where the average pathway expression was considered as predictor of drug sensitivity. 

Box plots report the distribution of Spearman’s rs values between the βp coefficients estimated 

with the experimental and the predicted values over the 56 drugs present in the uncorrelated 

bioactivities 0.5 data set, using all pathway-drug associations (FDR < 20%), (a) or only 

significant associations (c), as estimated in the uncorrelated bioactivities 0.5 data set. Bar plots 

representing the drug-averaged Spearman’s rs coefficients calculated with all (b) or with only 

significant (d) pathway-drug associations, averaged over the models labeled with “a” in (a). 

Missing bars in (d) correspond to drugs for which we did not find significant drug-pathway 

associations. (e) Data view-averaged Spearman’s rs coefficients for patterns of growth inhibition 

calculated with the experimental and the predicted values. (f) Bar plot reporting the drug-

averaged Spearman’s rs coefficients for the patterns of growth inhibition calculated with the 

observed and the predicted bioactivities. Data views sharing a letter label and color in (a,c,e) 

perform at the same level of statistical significance. Significance for the Spearman’s rs in (b,d,f) 

is represented with an asterisk if two-sided P value < 0.05, for the Spearman’s rs coefficients 

calculated with the predictions generated  with a model  trained on the “G.t.l. 1,000 genes” data 

view. Bars in (b,d,f) are colored according to compound MoA. 

Abbreviations of mechanisms of action: MoA: Mechanism of action; A2: alkylating at N-2 

position of guanine; A7: alkylating at N-7 position of guanine; AM: antimetabolite; Ang: 

angiogenesis; Apo: apoptosis inducer; Db: DNA binder; Df: antifolates; DNMT: DNA 

methyltransferase inhibitor; Dr: ribonucleotide reductase inhibitor; Ds: DNA synthesis inhibitor; 

HDAC: Histone deacetylase; Ho: hormone; P90: hsp90 binder; PI3K: PI3kinase; PKC: Protein 

kinase C; ROS: reactive oxygen species; RSTK: serine/threonine kinase inhibitor; T1: 

topoisomerase 1 inhibitor; T2 : topoisomerase 2 inhibitor;  Tu: tubulin-active antimitotic;  YK: 

tyrosine kinase inhibitor. 
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Supplementary Figure S12. 
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Correlation of gene expression profiles for the 44 cell lines present in both the NCI60 panel and 

the Cancer Cell Line Enclycopedia (CCLE). (a) Pairwise Spearman’s rs correlation of the 1,000 

most varying genes between the DTP-NCI60 and the CCLE data sets. Both data sets share 44 

cell lines. The correlation between the gene expression profiles of identical cell lines is higher 

than 0.8 in all cases (diagonal of the matrix), with a median Spearman’s rs value close to 0.875. 

(b) The fist box plot on the left reports the Spearman’s rs correlation, above 0.98, between the 

gene transcript levels calculated in triplicates for the NCI60 cell lines. The box plot in the middle 

corresponds to the correlation between the gene expression profiles of the cell lines found in both 

the CCLE and the NCI60 data set (diagonal of the matrix in (a)). The average Spearman’s rs 

correlation is close to 0.875. The third boxplot reports the Spearman’s rs correlation of different 

cell lines (the non-diagonal elements of the matrix in (a)). The high correlation between gene 

expression profiles for the cell lines present in both the CCLE and the NCI60 cell line panel, 

indicates that the PGM models reported in this study could be extended to the CCLE. 
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Supplementary Figure S13 

4

5

6

7

8

9

4 5 6 7 8 9
pIC50 (M) CCLE

pG
I 50

 (M
) N

C
I6

0

4

5

6

7

8

9

4 5 6 7 8 9
Experimental pIC50 (M) from CCLE

Pr
ed

ic
te

d 
pG

I 50
 (M

). 
M

od
el

 tr
ai

ne
d 

on
 N

C
I6

0

a

b

1 2

3 4



 24 

Correlation between in vitro drug sensitivity data from the NCI60 and CCLE. The subset of the 

NCI60 data used in our study and the CCLE share 44 cell lines and 8 drugs, namely: Erlotinib, 

Lapatinib, Nilotinib, Sorafenib, Paclitaxel, Irinotecan and Topotecan. We could retrieve 

bioactivity data from both data sets for a total of 208 compound-cell line pairs. (a) The RMSE 

value for (i) the pGI50 values from the NCI60 data set, against (ii) the pIC50 values from the 

CCLE is 0.87 log10 units. This low concordance was expected given the different assays used to 

screen the NCI60 and CCLE panels, namely sulforhodamine B (SRB) and CellTiter-Glo® 

Luminescent Cell Viability Assay from Promega, respectively. Therefore, three cases are 

possible when comparing data from the NCI60 and the CCLE data sets. In the first case, low 

compound concentration is sufficient to stop cell proliferation whereas high compound 

concentration is required to decrease cellular metabolic activity: this case is labeled with number 

1 in red in the Figure. In the second case, cell proliferation and cellular metabolic activity are 

correlated and similar IC50 values are observed using both assays: this case is labeled with 

number 2 and 3 in red in the Figure. In the third case, low compound concentration is required to 

decrease cellular metabolic activity whereas high compound concentration is required to stop cell 

proliferation: this case is labeled with number 4 in red in the Figure, but does not correspond to a 

populated case for NCI60 and CCLE data sets. (b) Observed pIC50 values from the CCLE vs 

predicted values with a model trained on the NCI60 data set for the 8 drugs and 44 cell lines 

shared between the two data sets. Overall, low correlation is found between the experimental 

data and the predictions. The RMSE value between experimental and predicted bioactivities is 

0.87 log10 units.  This value is similar to the RMSE value obtained in (a), indicating that high 

predictive power cannot be attained given the low concordance of the sensitivity data from the 

CCLE and NCI60 data sets. This low level of concordance illustrates the statement of Haibe-

Kains et al., 2013 about the inconvenience of validating a model trained on a given data set on 

data obtained with a different experimental setup. 
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Supplementary Figure S14 

 

Toy example showing the influence of the range of the response variable (e.g. bioactivities) on 

R2 values. (a) R2 and RMSE values of 0.91 and 0.90, respectively, are obtained when the 

response values range from 0 to 10 (arbitrary units). (b) By contrast, the R2 drops to 0.08 when 

the response value ranges from 0 to 1. Note that in both cases the RMSE values are the same, 

namely 0.90. To simulate y, random noise with mean 0 and standard deviation equal to 1 was 

added to x. The noise added was the exactly the same in both cases, namely (a) and (b). This 

example illustrates that low R2 values obtained with LOTO, LOCO and, especially LOCCO 

models, do not necessarily imply that the predictions are inaccurate. LOCCO and Leave-One-

Compound-Out are particularly prone to this situation, as, in many cases, the activities of a given 

compound across a cell line panel do not present a dynamic range of response. Thus, in these 

cases model predictive power should be based on RMSE values. 
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Supplementary Text 

To compare our modeling approach to previous studies (Menden et al., 2013; Ammad-ud-din et 

al., 2014), we applied PGM to two additional datasets, namely the CCLE and GDS. The same 

metrics to evaluate model performance were used, namely RMSE and R2. PGM models were 

trained on (i) Morgan fingerprints and (ii) the transcript levels for the genes displaying the 

highest variance across the cell line panel. Although this combination of descriptors has led to 

the most predictive models on the NCI60 panel, other combinations of descriptors might be more 

suitable for other data sets.  

Preparation of the GDSC data set 

MAS5-normalized gene transcript levels, measured with HT-HGU133A Affymetrix whole 

genome array, were downloaded from the GDSC website (http://www.cancerrxgene.org/) on 

February 16th 2015. Compound IC50 values were converted to log10 IC50 (µM) values in order 

to enable the comparison of our results with previous studies (Menden et al., 2013; Ammad-ud-

din et al., 2014). In addition, we converted the IC50 values to pIC50 values, i.e. –log10 IC50 

(M).  

10-fold cross-validation was used to assess the interpolation power of the models, leading to 

RMSEtest and R2test values of 0.75 +/- 0.01 and 0.74 +/- 0.01, respectively (Supplementary Table 

S15). To assess the extrapolation power on the cell line space, we used Leave-One-Tissue-Out 

(LOTO) validation (RMSEtest =0.81+/-0.16 and R2test =0.72 +/-0.08), whereas Leave-One-

Compound-Out validation was used to assess the predictive power on the compound space 

(RMSEtest =1.40+/-0.80 and R2test =0.13 +/-0.11). We used Leave-One-Compound-Out instead of 

Leave-One-Compound-Cluster-Out validation given the low number of distinct compounds 

comprised in this data set, namely 139. All models were trained using: (i) 256-bit hashed Morgan 

fingerprints in count format using a maximum substructure radius of 2 bonds, and (ii) transcript 

levels for the 1,000 genes displaying the highest variance across the cell line panel. The results 

for (i) PGM models, and for (ii) the models reported in previous studies are given in 

Supplementary Table S15. 

We note in particular that in Ammad-ud-din et al., 2014 the extrapolation power of the models to 
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novel chemical structures was assessed by randomly dividing the compounds into 8 sets. A 

model was trained on all data-points comprising compounds from 7 sets. The trained model was 

then used to predict the bioactivities for the held-out data. This process was repeated 8 times, 

each time holding out the data from a different compound set. In this setting, which is similar to 

LOCCO except for the fact that compounds are not grouped based on a similarity, it is likely that 

the distribution of IC50 values for a given compound set spans a wide range of values, thus 

permitting to obtain high R2 values for the observed against the predicted bioactivities 

(Supplementary Figure 14). By contrast, the range of IC50 values is likely to be much narrower 

for individual compounds across the cell line panel. Therefore, the R2 values obtained with 

Leave-One-Compound-Out validation with PGM models are likely to be smaller than those 

obtained with LOCCO for the same accuracy in prediction, quantified with the RMSE value for 

the observed against the predicted bioactivities. Hence, it is important to note that although the 

R2 values reported by Ammad-ud-din et al., 2014 when assessing model extrapolation power on 

the chemical space, namely 0.52 +/- 0.37, might be higher in some cases than those obtained 

with Leave-One-Compound-Out validation, namely 0.13 +/- 0.11, this does not necessarily mean 

higher predictive power (Supplementary Figure 14). Therefore, the comparison between the two 

studies should be done in terms of RMSE values, which are 0.85 +/- 0.41 and 1.40 +/- 0.80 for 

Ammad-ud-din et al., 2014 and our PGM models, respectively. 

We note in particular that we did not apply the same validation as Ammad-ud-din et al., 2014, 

namely partitioning the data set in 8 compound sets, as the composition of the 8 different sets 

was not reported by the authors. 

Preparation of the CCLE data set 

Gene transcript levels (Affymetrix U133+2 arrays), RMA-processed and normalized using 

quantile normalization, and compound IC50 values (µM) were downloaded from the CCLE 

website (https://www.broadinstitute.org/ccle/home) on February 16th 2015. IC50 values were 

converted to pIC50 values, i.e. –log10 IC50 (M), and to ln IC50 (µM). 

The same learning strategies applied to the GDSC data set were applied here, namely: 10-fold 

cross-validation (RMSEtest =1.02+/-0.05 and R2test =0.74 +/-0.03), LOTO (RMSEtest =0.97+/-0.26 
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and R2test =0.75 +/-0.12) and Leave-One-Compound-Out (RMSEtest =1.62+/-1.32 and R2test =0.18 

+/-0.15). All models were trained using: (i) 256-bit hashed Morgan fingerprints in count format 

using a maximum substructure radius of 2 bonds, and (ii) the transcript levels for the 1,000 genes 

displaying the highest variance across the cell line panel. The results for these models and for 

previous studies are given in Supplementary Table S15. 
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