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Introduction

In the accompanying manuscript, we have described the goals and methods of CLAMMS
(Copy number estimation using Lattice-Aligned Mixture Models) and summarized the results
of several validation experiments that assess its performance relative to existing tools. In the
following supplementary notes, we provide a detailed explanation of the CLAMMS algorithm–
including rationales for algorithmic design choices and default parameters–and we present the
methods and full results of the validation experiments.
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1 CLAMMS algorithm details

1.1 Calling Windows and Filters

CLAMMS divides exome capture regions that are ≥ 1000 bp long into equally-sized
500-1000 bp windows. This makes it possible to detect CNVs that partially overlap long exons.
Examples of genes with extraordinarily long exons include AHNAK, TTN, and several Mucins.

CLAMMS filters windows with extreme GC content. GC-amplification bias can be corrected
when the bias is mostly consistent for any particular level of GC content. At very low or high
GC content however, we find that stochastic coverage volatility increases dramatically, making
it impossible to normalize effectively. We therefore filter windows where the GC-fraction is
outside of a configurable range which defaults to [0.3, 0.7]. Supplementary Figure 1 illustrates
why we chose these particular thresholds.

Benjamini and Speed (2012) found that “it is the GC content of the full DNA fragment, not
only the sequenced read, that most influences fragment count.” Accordingly, when computing
GC-fractions, we symmetrically extend windows to be at least slightly longer than the average
fragment size (another configurable parameter, which defaults to 200 bp).

CLAMMS also filters windows where the mean mappability score for k-mers starting at
each base in the window (default k=75) is < 0.75, windows in selected regions of extreme
sequence polymorphism (where reads are difficult to map even if the reference sequence is
unique), windows where the mean coverage across samples is < 10% of the expectation for
windows with similar GC content, and windows where > 1/3 of 1000 Genomes Project samples
have copy number > 2 (Handsaker et al., 2015). In total, 12% of exome capture regions are
excluded from the calling process.

In section 6 of this supplement, we evaluate CLAMMS CNV calls and calls made using four
previous algorithms, which by default have much less stringent a-priori filters, against “gold-
standard” calls from SNP genotyping arrays. CLAMMS achieves higher precision and equal
recall for rare variants, suggesting that our filters are beneficial.

1.2 Within-Sample Normalization

The first step of CLAMMS is to normalize the coverage data for each individual sample to
correct for GC-bias and overall average depth-of-coverage. This normalization step applies a
simple formula: Covnorm(w) = Cov(w) / median(Cov | GC(w)), where median(Cov | GC(w))
is the median coverage for the sample conditional on the GC fraction of window w.

The conditional median is computed by binning all windows for a sample by GC fraction
(ex. [0.300, 0.310], [0.315, 0.325], etc.); computing the median coverage for each bin; and
finally computing the normalizing factor for a given GC fraction by using a linear interpolation
between the median coverage for the two bins nearest to it. While the binning resolution is
configurable, we choose a default resolution that balances fine-grained binnings with the need
to provide each bin with a sufficient sample size for estimation.
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Supplementary Figure 1: shows the coefficient of variation (standard deviation
/ mean) of coverage, conditional on GC content, for 50 samples (points jittered
for visibility). Above our default upper-limit of GC = 0.7, coverage variance
becomes very high relative to the mean, making coverage-based CNV calls un-
reliable. Below our default lower-limit of GC = 0.3, the problem is more subtle:
the variance of coverage itself is highly variable between samples. This makes
it impossible to accurately estimate the expected variance of coverage for a par-
ticular sample at a particular window, as each reference panel sample’s coverage
value is an observation from a different distribution.

1.3 Mixture Models

The second step of CLAMMS is to use mixture models to characterize the expected
(normalized) coverage distribution at each calling window, conditional on copy number state.
These mixture models are fit using the expectation-maximization algorithm (EM algorithm)
with input data from a reference panel of samples. Each mixture model has components
corresponding to at least copy numbers 0, 1, 2, and 3. Models for regions with known com-
mon duplications (duplication AF > 1% in 1000 Genomes data, Handsaker et al., 2015) also
include components for copy numbers 4, 5, and 6. The reason that we do not support copy
number > 3 exome-wide is that we observed anomalous spikes in coverage to be prevalent in
exome-sequencing data: for example, in a dataset of ˜3,000 samples, we observed more than

4



1,200 exons (excluding extreme-GC and low-mappability exons) which did not overlap any
duplications in 1000 Genomes data but had > 0.5% of samples with coverage > 2x the
estimated diploid mean.
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Supplementary Figure 2: Mixture models fit to the observed coverage distributions for exons
of the gene GSTT1 (after within-sample normalization has been applied). Each point (jittered
for visibility) shows a sample’s normalized coverage for an exon, with color indicating the most
likely copy number given the model and opacity proportional to the likelihood ratio between the
most- and second-most-likely copy numbers if the exon were to be treated independently of its
neighbors. The mean coverage for a given copy number state differs significantly from exon to
exon even after correcting for GC bias. The mixture model fitting procedure normalizes these
additional non-GC-related coverage biases robustly, regardless of the frequency of non-diploid
copy numbers in the region.
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The components corresponding to non-zero copy numbers are defined to follow a Gaussian
distribution. There are two free parameters related to these Gaussians: µDIP and σDIP , the
mean and standard deviation of the mixture component corresponding to diploid copy number.
For each non-diploid copy number k, the mean is constrained to equal (k/2)∗µDIP (this is why
we call the models “lattice-aligned” in the CLAMMS acronym). σHAP , the standard deviation
for haploid samples, is set equal to

√
0.5 ∗ σDIP , as despite our Gaussian approximations,

coverage conditional on a particular copy number is ideally Poisson-distributed with variance
being equal to the mean. We considered the possibility of overdispersion, but an examination
of the variance of male vs. female samples on chrX suggested that haploid samples did have
approximately half the variance of diploid samples. For copy numbers > 2, coverage variance
should theoretically be greater than for diploid samples, but we found that integrating this into
the model increased the rate of false-positive duplications to an unacceptable extent. Therefore,
we set the standard deviation parameters for components corresponding to copy numbers > 2
to simply be equal to σDIP . The constraints imposed on the parameters of the non-diploid
components help the model avoid overfitting the training data.

Homozygous deletions (copy number 0) theoretically should show zero coverage, but
mismapped reads can give a small level of coverage even in truly deleted regions. We there-
fore define the component for copy number 0 as an exponential distribution with mean (1/λ)
initially equal to 6.25% of µDIP . The mean of this component is constrained to be no greater
than this initial value. If there are no mismapping issues with the region, iterations of the EM
algorithm will drive the mean to 0 (λ→∞). To address this blow-up, if the mean drops below
0.1% of µDIP , we replace the exponential distribution with a point mass at 0.

In summary, the mixture model has 4 parameters: µDIP and σDIP ; λ, the rate of the
exponential component (copy number 0), and lastly a flag indicating if the exponential has
been replaced by a point mass. The model is fit using a maximum of 30 iterations of the EM
algorithm. A heuristic is used to detect early convergence. As EM is a local optimization
procedure, we estimate the initial values of µDIP and σDIP robustly to decrease the chance that
EM converges to a non-global optimum. µDIP is initialized as the median coverage across all
samples for the region in question (in regions where the median sample is haploid, we observe
that the EM iterations do eventually reach the proper diploid mean). σDIP is initialized to
the median absolute deviation (MAD) of the coverage values around their median, scaled by a
constant factor to achieve asymptotic normality (c.f. the mad function in R).

Samples that have low likelihoods for all considered copy number states (> 2.5σ from the
mean) are flagged as outliers for purposes of model-fitting. If a region has outlier samples, the
mixture model is retrained with the outlier coverage values removed.

1.4 Hidden Markov Model

The third and final step of CLAMMS is to call CNVs using a Hidden Markov Model.
The input to the HMM is the normalized coverage values (from the within-sample procedure
described previously) for an individual sample at each calling window. The states of the HMM
are DEL (deletion), DIP (diploid), and DUP (duplication). A specific integer copy number is
assigned to a DEL or DUP call in a post-processing step based on mixture model likelihoods.

The transition probabilities based on those used in XHMM (Fromer et al., 2012), except
with the parameter 1/q, the mean of the prior geometric distribution of # windows in a CNV,
set to 0 (q = ∞). The effect of this is that the HMM places no prior on the # of windows in
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a CNV, instead only using the exponentially-distributed attenuation factor which is based on
actual genomic distance. Therefore, the only two prior assumptions are that 1) DEL and DUP
are equally likely, and 2) the size of CNVs is exponentially distributed.

The emission probabilities are derived from the mixture models. The probability of
observing a (normalized) coverage value x, at a calling window w, given HMM state s, is
determined by the components of the mixture model trained at w that correspond to state s.
Components 0 and 1 correspond to the DEL state; components 3-6 correspond to the DUP
state. A likelihood-weighted average of the probabilities for each relevant copy number is used,
e.g. if for a given calling window, L(CN = 1 | cov) = 9 ∗ L(CN = 0 | cov), then the emission
probability for the DEL state is 0.9 ∗ P (cov |CN = 1) + 0.1 ∗ P (cov |CN = 0).

Using this Hidden Markov Model, we identify CNVs as regions where the maximum-
likelihood sequence of states, predicted by the Viterbi algorithm, is non-diploid. Running
the Viterbi algorithm in only one direction introduces a directional bias to the CNV calls:
there is effectively a high cost to “open” a CNV but a low cost of “extending” it, so the called
CNV regions will tend to overshoot the trailing breakpoint. We therefore only report as CNVs
regions for which the most-likely state is non-diploid in both a run of the Viterbi algorithm in
the 5′ to 3′ direction and a run in 3′ to 5′ direction.

For each discovered CNV, five quality metrics are computed based on probabilities from
the Forward-Backward algorithm: Qany, the phred-scaled probability that the region contains
any CNV; Qextend left and Qextend right, phred-scaled probabilities that the true CNV extends at
least one window further upstream/downstream from the called region; and Qcontract left and
Qcontract right, phred-scaled probabilities that the true CNV is contracted compared to the called
region by at least one window upstream or downstream.

Even with the a priori filtering of windows with GC-content outside of the range [0.3, 0.7],
we still find high rates of stochastic sequencing artifacts at the extreme ends of this range.
We therefore modify the Viterbi and Forward-Backward algorithms to place less credence on
windows with “moderately-extreme” GC-content without ignoring them entirely. This effect is
accomplished by multiplying the log-emission-probability for all states at a given window by
a weight in the range [0, 1] based on the GC-content of the window. This effectively reduces
the relative significance of the data (observed coverage) at this window compared to the prior
(encoded by the state transition probabilities). For GC-fraction f in the default a priori valid
range of [0.3, 0.7], the window weight is set equal to (1 − (5 ∗ abs(f − 0.5))18)18. The high
polynomial term makes the curve flat for non-extreme GC (ex. weight = 0.99993 for f = 0.4),
but drop sharply at the edges of the valid GC range (ex. weight = 0.5 for f = 0.3333).

1.5 Sex Chromosomes

CLAMMS can fit models and make calls for regions on the sex chromosomes if it is given
the sex of each input sample. Basing the expected copy number (diploid or haploid) on sex
explicitly is more effective than normalizing the variance due to sex (XHMM, CoNIFER) or
comparing samples to highly-correlated samples (ExomeDepth, CANOES) because it accounts
for the integer nature of copy number states. A female with 0.5x the expected coverage for a
region on chrX is likely to have a heterozygous deletion. A male with the same level of coverage
is not, because one cannot have a copy number of 1/2.
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2 Batch effects and pipeline implementation details

Systematic coverage biases that arise due to variability in sequencing conditions are
commonly referred to as “batch effects.” Previous algorithms have used two strategies for
addressing these biases. CoNIFER (Krumm et al., 2012) and XHMM (Fromer et al., 2012)
compute the principal components of the sample-by-exon coverage matrix and remove the
contributions of the largest few components. ExomeDepth (Plagnol et al., 2012), and CANOES
(Backenroth et al., 2014) normalize each sample’s coverage values against the average in a
“custom” reference panel of samples which have coverage profiles that are highly-correlated to
the individual sample in question. Both normalization strategies require that a group of samples
be processed together and are therefore difficult to integrate into an automated variant-calling
pipeline. They also require that each sample’s coverage profile be compared to the coverage
profile of every other sample, resulting in quadratic-time computational complexity.

CLAMMS uses the “custom reference panel” approach to correct for batch effects, but
instead of comparing samples based on their coverage profiles–a high-dimensional space–it
considers a low-dimensional metric space consisting of seven sequencing quality control metrics
from Picard (http://broadinstitute.github.io/picard). Working in this low-dimensional space
allows for improved scalability compared to previous algorithms: samples can be indexed ahead-
of-time using a k-d tree structure that allows for fast nearest-neighbor queries and uses a minimal
amount of RAM.

Our variant-calling pipeline works as follows:

1. Query our laboratory information management system to retrieve
seven Picard sequencing quality control metrics for each sample:
GCDROPOUT, ATDROPOUT, MEANINSERTSIZE, ONBAITVSSELECTED,
PCTPFUQREADS, PCTTARGETBASES10X, and PCTTARGETBASES50X.

2. Insert each sample’s QC-metric vector k-d tree data structure,
after applying a linear transform to scale each metric into the range [0, 1]
(scaled value = [raw value - min] / [max - min])

3. In parallel, for each sample:

(a) Compute depth-of-coverage from the BAM file using samtools (Li et al., 2009)
and run CLAMMS’ within-sample normalization step.

(b) Train CLAMMS models using the sample’s 100 nearest neighbors in the k-d tree.

(c) Call CNVs using these models.

Sample code demonstrating how to run the pipeline is provided at the CLAMMS Github
repository. Larger values of k decrease variance in the statistical inference of the mixture model
parameters but increase bias. We chose the default value k = 100 as it seemed to have the best
bias-variance trade-off. The pipeline can be extended to run in an online manner if the k-d tree
is stored in a database (though we have not implemented this feature yet).

For small-scale studies, CLAMMS can also be used without having to compute Picard QC
metrics if one manually assigns samples to batches based on a PCA plot of the sample-by-exon
coverage matrix (an example is provided in the CLAMMS tutorial). A separate set of CLAMMS
models should be trained for each batch and used to call CNVs for samples in that batch.
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3 Effects of population diversity on coverage profiles

Variation in sample quality, sample preparation procedures, and sequencing procedures
is reflected in the Picard metrics that CLAMMS uses to correct batch effects. Population
diversity and admixture are not modeled. However, given modern sequencing and read mapping
technologies, it is highly unlikely that population diversity will have a significant effect on
coverage profiles outside of copy number polymorphic regions. While we do not have data from
diverse populations to prove this claim, we will discuss theoretical considerations in this section.

The two largest factors determining the sequencing depth of coverage for an exon are 1) the
GC content of sequencing DNA fragments which include the exon, and 2) the quality of read
mapping to the exon. In an individual, sequence mutations (SNPs and indels) affect only a small
proportion of the exome, reflecting evolutionary sequence conservation. Any given ˜150 bp DNA
fragment is therefore unlikely to include a large enough number of common variants to have a
significant effect on its GC content. Sequence mutation could have a greater effect on coverage
by causing reads to be mismapped. But if one uses modern read lengths (75 bp or greater)
and the GATK IndelRealigner, common variants are unlikely to cause significant problems with
mappability–except in segmental duplications (which are filtered by the CLAMMS mappability
filter) and regions of extreme sequence polymorphism (CLAMMS blacklists selected loci such
as the HLA and KIR gene clusters).

CLAMMS should therefore be suitable to use with non-homogenous populations. Addi-
tionally, other algorithms with PCA-based batch effect correction may suppress signal from
copy number polymorphisms if sample preparation and sequencing procedures are consistent
enough that common CNVs are represented in the top few principal components of coverage.
CLAMMS’ Picard-based batch effect correction avoids this problem.

9



4 Computational performance

If n is the number of samples to be processed and k is the size of the reference panel
selected for each sample, CLAMMS takes O(kn log n) time to call CNVs for each sample,
an improvement over the O(n2) time complexity of previous algorithms. In practice, samples
take ˜45 seconds to process on an Amazon Web Services m3.xlarge server (excluding the time
required to compute depth-of-coverage and the sequencing QC metrics from the BAM file, as
we compute these anyway for other purposes besides CNV calling). Once reference panels
are selected for each sample (which takes only a few seconds even for tens of thousands of
samples), each “mini-batch” of sample plus reference panel can be processed in parallel, both
across servers and across multiple processes on each individual server. Since each CLAMMS
process only processes k samples at a time, RAM usage is minimal (˜50 MB/process if k = 100).
Supplementary figure 3 compares the RAM usage of CLAMMS–O(k)–vs. other algorithms–
O(n).
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Supplementary Figure 3: RAM usage of CNV-calling algorithms for 50 samples
(all algorithms); 100 and 200 samples (all but CANOES, which we stopped after
running for 4 hours without finishing); and 3164 samples (CLAMMS, XHMM).

10



5 Validation using CEPH pedigree 1463

Our first validation experiment was to evaluate the adherence of CNV calls from CLAMMS
and four other algorithms (XHMM, CoNIFER, CANOES, and ExomeDepth) to Mendelian
inheritance patterns on an 8-member pedigree (a subset of the Centre de’Etude du Polymor-
phism Humain / Utah pedigree 1463, including grandparents NA12889, NA12890, NA12891,
NA12892; parents NA12877, NA12878; and children NA12880, NA12882). Low transmission
rates or an excess of putative de novo variants result from either false positives or false negatives.
Each of the 8 pedigree members was sequenced in three technical replicates. We made CNV
calls using each algorithm’s default parameters as described in their respective tutorials. A
reference panel of 92 unrelated samples was made available to each algorithm. To ensure a
fair comparison, we applied the a-priori filters used by CLAMMS (i.e. filtering extreme-GC
and low-mappability regions) to the input data for all algorithms, so differences in performance
cannot be attributed to CLAMMS’ exclusion of the most problematic genomic regions. We also
exclude sex chromosomes from the comparison.

We computed three metrics for each algorithm: 1) the proportion of calls that were consistent
across all 3 technical replicates; 2) the transmission rate of calls in the 1st and 2nd generations;
and 3) the proportion of calls in the 2nd and 3rd generations that were inherited. We used a
50% overlap criterion when determining whether a call is transmitted/inherited (i.e. a CNV in
a child is inherited if any CNV in its parents overlaps at least 50% of it).

Supplementary Table 1: Performance metrics for CNV calls on the CEPH pedigree

# Calls Call Statistics (%)

Algorithm Total Common Rare Consistent Transmitted Inherited

CLAMMS 323 276 47 91.7 61.9 95.0
XHMM 94 35 59 41.5 9.5 22.1

CoNIFER 37 12 25 68.3 34.8 72.2
CANOES 29 18 11 93.3 0.0 0.0

ExomeDepth 659 419 240 65.3 32.3 61.8

# Calls is for the 8 pedigree members across 3 technical replicates (24 samples in total).
CNVs are classified as common if their allele frequency in Handsaker et al., 2015 or Coe et al., 2014

is ≥ 1%, and classified as rare otherwise (note that “rare” CNVs may be false-positives). We exclude
ExomeDepth calls with Bayes Factor < 10 (the authors do not recommend any particular threshold).

Supplementary Table 1 shows the number of calls made by each algorithm, their consistency
across technical replicates, and their adherence to Mendelian inheritance patterns. All of the
algorithms except CLAMMS are focused exclusively on rare variants, assuming that reference
panel samples are diploid (presenting a unimodal coverage distribution) at all loci. Their
poor performance is therefore to be expected, as by definition, most CNVs in the pedigree are
common variants. CLAMMS on the other hand performs very well for genotyping deletions in
the pedigree (98.6% of calls are inherited) and reasonably well for genotyping duplications (83%
of calls are inherited). The higher-than-Mendelian computed transmission rate (62%) is due
to false negatives in parents. The CNV calls of each algorithm for the pedigree are available
CLAMMS Github repository (https://github.com/jspacker/clamms).
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6 Validation using “gold-standard” array-based CNV calls

Our second validation experiment was to compare CNV calls from CLAMMS, XHMM,
CoNIFER, CANOES, and ExomeDepth to “gold-standard” calls from PennCNV (a CNV-caller
by Wang et al., 2007, that uses data from SNP genotyping arrays) for a set of 3164 samples in
the Regeneron Genetics Center’s human exome variant database. We excluded from the test
set samples for which:

• # PennCNV calls > 50

• LRR SD (“standard deviation of log R ratio”) > 0.23 (95th percentile)

• BAF drift (“B-allele frequency drift”) >0.005 (95th percentile)

Array-based CNV calls, despite generally being more accurate than CNV calls from exome
sequencing read depth, are not a true “gold-standard” and include false positives, including
several putative copy number polymorphic loci (AF > 1%) that did not overlap any variants
in two published datasets (CNV calls from 849 whole genomes by Handsaker et al., 2015, and
array-based CNV calls from 19,584 controls in an autism study by Coe et al., 2014). PennCNV
is also not designed to genotype common CNVs. To minimize the false positive rate in the test
set, we only included CNVs that were rare and not small. We specifically exclude PennCNV
calls for which:

• CNV length < 10 kb or > 2 Mb

• CNV does not overlap at least 1 exon and at least 10 SNPs in the array design

• the CNV overlaps a gap in the reference genome (GRCh37)
or a common genomic rearrangement in HapMap

• allele frequency > 0.1% in Handsaker et al., 2015, Coe et al., 2014, or the 3,164 test
samples (CNVs are included in the allele frequency count if they overlap at least 33.3%
of the CNV in question)

The final test set after all filters have been applied includes 1,715 CNVs (46% DEL, 54%
DUP) in 1,240 samples. For this evaluation, each algorithm was run with default parameters
and procedures as described in their respective tutorials. The CLAMMS tutorial recommends
considering samples with >2x the median # of calls for any particular dataset to be outliers.
For this dataset, the median # of CLAMMS calls/sample is 14, so we exclude CLAMMS calls
from 26 samples (0.8% of the total) where it makes >28 calls. Array calls from these samples
are still included in the test set.

CoNIFER fails if the number of exome capture regions on any chromosome is less than the
number of samples. To get it to work, we had to exclude chromosomes 18 and 21 from its
input data. CANOES ran out of memory on a server with 30 GB RAM available, so we had to
exclude it from the comparison. Testing CANOES on a smaller set of 200 samples, it was very
slow, taking over 8 minutes per sample to call CNVs. ExomeDepth makes a very large number
(˜200) CNV calls per sample and does not provide specific guidelines for how to filter them.
We filtered ExomeDepth calls with Bayes Factor < 10.
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Supplementary Table 2: CNV calls from four algorithms compared to PennCNV “gold-standard”

Metric Algorithm Any Overlap 33% Overlap 50% Overlap

Precision CLAMMS 78.4 71.9 67.2
XHMM (Q30) 66.4 60.2 55.4
XHMM (Q60) 71.2 64.5 59.2

CoNIFER 21.6 11.9 7.6
CANOES NA NA NA

ExomeDepth 57.1 53.0 49.3

Recall CLAMMS 65.4 49.7 41.9
XHMM (Q30) 64.1 51.7 44.3
XHMM (Q60) 59.9 49.7 42.5

CoNIFER 70.9 70.7 70.4
CANOES NA NA NA

ExomeDepth 80.9 57.8 49.2

F-score CLAMMS 71.3 58.8 51.6
XHMM (Q30) 65.2 55.6 49.2
XHMM (Q60) 65.1 56.1 49.5

CoNIFER 33.1 20.4 13.7
CANOES NA NA NA

ExomeDepth 66.9 55.3 49.2

We calculate precision as the % of exome-based calls that could possibly be supported
by a PennCNV call–meaning that they are subject to the same filtering criteria–that are in
fact overlapped by a PennCNV call at the specified overlap threshold. We calculate recall
(sensitivity) as the % of PennCNV calls that are overlapped by any exome-based call (no filters
applied) at the specified overlap threshold. F-score is defined as the harmonic mean of precision
and recall.

As mentioned on the previous page, CANOES is unable to process a dataset of this size
on a server with 30 GB RAM, so it is excluded from the comparison. CoNIFER achieves high
recall, but at the cost of unusably-low precision.

CLAMMS achieves a 9.3% higher F-score than XHMM and a 6.6% higher F-score than
ExomeDepth using the any-overlap criterion. Using the stricter 50%-overlap criterion, CLAMMS
achieves a 4.9% higher F-score than both XHMM and ExomeDepth. This improvement is
driven by CLAMMS’ higher precision (18-20% higher than XHMM and 36-37% higher than
ExomeDepth depending on the overlap threshold).

While CLAMMS’ default parameters favor precision over recall (preferable for population-
level analyses), it can also be configured to increase recall at the cost of precision by increasing a
parameter –cnv rate that determines the transition probabilities of the Hidden Markov Model.
This may preferable for analyses of Mendelian disease pedigrees.
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7 Validation using TaqMan qPCR

We used TaqMan quantitative-PCR to validate a selection of CNV loci (20 rare, 23 common)
predicted by CLAMMS. For each locus, we compared the PCR-based copy number predictions
to CLAMMS CNV genotypes for 56 / 165 samples for rare and common loci respectively. The
CNV loci were selected randomly from the set of all loci that overlapped at least one gene
associated with disease in the Human Gene Mutation Database (Stenson et al., 2012; 7430
genes total; disease associations are from all mutation types, not just known CNVs).

19/20 (95%) of the rare variants were validated.
4/23 common variant loci were plausibly correct, but had high variance in the PCR data,

making the results ambiguous (statistics for these loci are listed as “NA” in Supplementary
Table 4). An additional 2/23 had ambiguous genotypes for a few (˜5) borderline samples, but
were clear for the rest (statistics for these loci are marked with “˜” in Supplementary Table 4).

16/17 (94%) of the unambiguous common variant loci had no false positives and one locus
had 5/6 calls correct. 14/17 (82%) had≥ 90% sensitivity (including 9/17 with 100% sensitivity);
the other 3/17 had sensitivities of 88.0%, 87.5%, and 54.7%.

The means of the precision/sensitivity values for the 17 unambiguous loci plus the two
mostly-clear loci were 99.0% and 94.0% respectively. Plots of the PCR results are available at
the CLAMMS Github repository. Supplementary Figures 4-9 show examples of these plots.

Supplementary Table 3: Rare CNV TaqMan Validations

CNV Size Type Gene† Validated?

chr1:230371759-230415205 43,446 DUP GALNT2 YES
chr10:113913307-114136207 222,900 DUP GPAM YES
chr11:104815479-105009807 194,328 DUP CARD16 YES
chr12:21007961-21392124 384,163 DEL SLCO1B1 YES

chr13:114514707-114538608 23,901 DUP GAS6 YES
chr14:74753163-74991929 238,766 DUP NPC2 YES
chr15:85147158-85681135 533,977 DEL NMB YES
chr16:21152620-21289573 136,953 DUP CRYM YES
chr17:12798256-12920439 122,183 DUP ELAC2 YES
chr18:2544651-2707644 162,993 DUP SMCHD1 YES

chr18:64176231-64239442 63,211 DEL CDH19 YES
chr19:52271911-52588055 316,144 DUP FPR3 YES
chr2:55910919-55920959 10,040 DUP PNPT1 YES

chr3:124390506-124492760 102,254 DUP UMPS YES
chr4:10560030-10567775 26,550 DEL CLNK YES
chr7:82595086-82595804 718 DEL PCLO NO

chr7:121738503-121773781 35,278 DEL AASS YES
chrX:53560269-53622364 62,095 DUP HUWE1 YES

chrX:105137824-105571052 433,228 DUP SERPINA7 YES
chrX:120181538-120183935 2397 DEL GLUD2 YES

† gene that led CNV to be selected (because of a disease association in HGMD)
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Supplementary Table 4: Common CNV TaqMan Validations

CNV Locus Size Type Gene† # True CNV‡ False + False -

chr1:1634914-1663963 29,049 Both CDK11A 27 0 1
chr1:16370987-16390132 19,145 DUP CLCNKB NA* NA NA

chr1:152573207-152586575 13,368 DEL LCE3B 148 0 67
chr1:206317576-206331229 13,653 DEL CTSE 10 0 0
chr10:27687222-27703180 15,958 DEL PTCHD3 10 0 0

chr10:135340899-135379034 38,135 DUP SYCE1 13 0 1
chr11:8959162-8959721 559 DEL ASCL3 8 0 1

chr11:134151918-134214350 62,432 Both GLB1L3 NA* NA NA
chr16:55844428-55866968 22,540 Both CES1 ˜49 ˜0 ˜5
chr19:46623586-46627907 4,321 DEL IGFL3 10 0 1
chr19:54801926-54804222 2,296 DEL LILRA3 69 0 0
chr2:110881367-110962546 81,179 Both NPHP1 7 0 0
chr21:37510122-37618976 108,854 DUP CBR3 8 0 0
chr22:24373137-24384232 11,095 DEL GSTT1 108 0 13
chr22:42523843-42526794 2,951 Both CYP2D6 NA* NA NA
chr2:241627221-241710522 83,301 DUP KIF1A 6 0 0
chr3:151531950-151545961 14,011 DEL AADAC 11 0 1

chr4:3446037-3478270 32,233 DEL HGFAC 6 0 0
chr4:69403342-69434203 30,861 DEL UGT2B17 100 0 1
chr5:70307101-70308743 1,642 Both NAIP ˜42 ˜1 ˜1

chr5:138651764-138658657 6,893 DUP MATR3 NA* NA NA
chr7:142829209-142881529 52,320 DEL PIP 9 0 0

chr9:215201-464220 249,019 DUP DOCK8 5 1 0

* The variance of the TaqMan data for these loci was too high to determine copy number state
† gene that led CNV to be selected (because of a disease association in HGMD)
‡ Using the copy number predicted by TaqMan as the ground-truth.
This is not representative of CNV allele frequency.
The 165 samples genotyped for common CNV loci were not randomly selected:
we attempted to minimize the number of samples required to ensure that each locus
had a reasonable number of samples with non-diploid copy number
(which is why several loci in the table have exactly 10 predicted CNV).
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Supplementary Table 5: False positive and false negative rates for CLAMMS and
four other algorithms at TaqMan-validated common CNV loci

Type Gene # True CNV False + False -

CL ExD CAN XH CoN CL ExD CAN XH CoN

Both CDK11A 27 0 0 0 0 0 1 0 8 1 13
DUP CLCNKB NA NA NA NA NA NA NA NA NA NA NA
DEL LCE3B 148 0 43 0 0 0 67 0 148 148 148
DEL CTSE 10 0 1 0 0 0 0 0 0 0 0
DEL PTCHD3 10 0 0 0 0 0 0 0 3 1 0
DUP SYCE1 13 0 0 0 0 0 1 1 1 1 1
DEL ASCL3 8 0 0 0 0 0 1 1 3 8 8
Both GLB1L3 NA NA NA NA NA NA NA NA NA NA NA
Both CES1 ˜49 ˜0 ˜0 ˜0 ˜0 ˜0 ˜5 ˜20 ˜38 ˜26 ˜36
DEL IGFL3 10 0 0 0 0 0 1 1 5 6 5
DEL LILRA3 69 0 56 0 0 0 0 24 55 55 55
Both NPHP1 7 0 0 0 0 0 0 0 0 0 0
DUP CBR3 8 0 0 0 0 0 0 0 0 0 0
DEL GSTT1 108 0 8 0 1 2 13 1 73 103 101
Both CYP2D6 NA NA NA NA NA NA NA NA NA NA NA
DUP KIF1A 6 0 0 0 0 0 0 0 0 0 0
DEL AADAC 11 0 0 0 0 0 1 1 4 1 1
DEL HGFAC 6 0 1 0 0 0 0 0 1 2 2
DEL UGT2B17 100 0 18 0 0 1 1 7 72 100 99
Both NAIP ˜42 ˜1 ˜87 ˜4 ˜0 ˜3 ˜1 ˜0 ˜38 ˜41 ˜19
DUP MATR3 NA NA NA NA NA NA NA NA NA NA NA
DEL PIP 9 0 0 0 0 0 0 0 0 0 0
DUP DOCK8 5 1 1 1 1 1 0 0 0 0 0

CL = CLAMMS, ExD = ExomeDepth, CAN = CANOES, XH = XHMM, CoN = CoNIFER
“NA” values indicate loci that had too much variance in the TaqMan data to assess copy number.

We called CNVs for the 165 samples used in the TaqMan common CNV validations using
ExomeDepth, CANOES, XHMM, and CoNIFER, and compared their genotyping accuracy to
that of CLAMMS. CANOES, XHMM, and CoNIFER frequently have false negatives at mid-
frequency loci and are almost completely insensitive to very common variants.

Both CLAMMS and ExomeDepth have near-perfect genotyping accuracy at mid-frequency
loci. ExomeDepth genotypes are unreliable however for very common variants, e.g. at the
CES1, LILRA3, UGT2B17, and NAIP loci (highlighted in red).
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Supplementary Figure 4: Comparison of CLAMMS and TaqMan
copy number predictions for the LILRA3 common variant locus.
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Supplementary Figure 5: Comparison of CLAMMS and TaqMan
copy number predictions for the LILRA3 common variant locus.
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Supplementary Figure 6: Comparison of CLAMMS and TaqMan
copy number predictions for the CDK11A common variant locus.
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Supplementary Figure 7: Comparison of CLAMMS and TaqMan
copy number predictions for the CDK11A common variant locus.
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Supplementary Figure 8: Comparison of CLAMMS and TaqMan
copy number predictions for the NAIP common variant locus.
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Supplementary Figure 9: Comparison of CLAMMS and TaqMan
copy number predictions for the NAIP common variant locus.
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8 CNV Visualization Script

Along with CLAMMS’ source code, the CLAMMS Github repository also includes a simple
script to visualize CNVs. Supplementary Figure 10 shows example output for this script.
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