
Supplementary Figures 

        
Supplementary Figure 1: The pattern of AbdB-GAL4LDN-driven expression does not 
overlap that of en-GAL4. (a) ECFP driven by AbdB-GAL4LDN did not overlap the anti-engrailed 
(en) antibody-positive region. White-boxed region was magnified in a’-a’’’. (b) GFP driven by 
en-GAL4 overlapped the anti-en antibody-positive region. Blue: Hoechst 33342 (b), Green: 
anti-GFP  (b’) Magenta: anti-en (b’’’). (c-e) Rose diagram indicating the frequency of genitalia 
orientation defects at the adult stage. All of the control flies (c), sqh dsRNA (d) and zip dsRNA 
showed full rotation with en-GAL4 driver. Fly genotypes: AbdB-GAL4 LDN/UAS-H2B::ECFP (a) 
and en-GAL4/UAS-H2B::ECFP (b). en-GAL4 UAS-H2B::ECFP/UAS-LacZ dsRNA; 
UAS-Dcr2/+ (c), en-GAL4 UAS-H2B::ECFP/+; UAS-Dcr2/UAS-sqh dsRNA (d), en-GAL4 
UAS-H2B::ECFP/+; UAS-Dcr2/UAS-zip dsRNA (e).  



 

Supplementary Figure 2: Cells in A8 maintain adherence junctions with each other during 
rotation. Endogenous DE-Cad was stained using an anti-DE-Cad antibody (magenta). All of 
the nuclei were stained by Hoechst33342 (green). (b) is a magnified view of the white boxed 
region in (a). (b’) is the YZ view of the vertical dotted line in (b), and (b’’) is the XZ view of the 
horizontal dotted line in (b). 
 
 
  



 
Supplementary Figure 3: The A8 tergite forms as a monolayer sheet-like disc structure 
that surrounds the A9 genitalia. (a-c). Endogenous Discs Large (Dlg) was stained with an 
anti-Dlg antibody during rotation (at 29 h APF). A fluorescent protein driven by en-GAL4 was 
used as a marker for the posterior region of each segment to identify the segment borders. (b 
and c) Cross-sectional views of the genital disc in (a); the genital disc is indicated by a yellow 
dotted line. Partitions between segments are indicated by white lines. Fly genotype: en-GAL4 
UAS-H2B::ECFP/+; His2Av::mRFP/+. 
 
  



 
Supplementary Figure 4: Inverse relationship between Myo-II accumulation and junction 
shortening. Myo-II was observed as sqh::GFP. The intensity of sqh::GFP (blue lines) and 
junction length (red lines) over time were calculated by ImageJ at cell junctions not showing 
cell intercalation (a-c) and at those showing cell intercalation (d and e). Ratios relative to time 
zero are shown. Images at right-bottom show the junction used for each determination 
(sqh::GFP). Measurements were obtained every 15 sec. 
 
  



 
Supplementary Figure 5: Knockdown of myoID causes the counter-clockwise movement of 
A8a while A8p rotates clockwise, resulting in an apparent lack of genitalia rotation. 
Time-lapse series of genitalia rotation in control (a) and myoID knockdown (b) flies. Ventral is 
at the top. Green: nuclei in the anterior A8 (A8a) cells, visualized by ECFP expressed with the 
AbdB-GAL4LDN driver. Magenta: all nuclei, visualized by His2Av::mRFP. Yellow (or black in 
c’) arrows indicate the direction from the analia to the external genitalia. a and b are 
schematically drawn in a’ and b’. Blue and red arrows indicate the movement of A8p and A8a, 
respectively. In myoID knockdown flies, A8a moved anti-clockwise while A8p moved in the 
clockwise (normal) direction, an apparent lack of genitalia rotation (b).  
 
  



 

Supplementary Figure 6: Schematic representation of the vertex model (a) Cells in 
epithelial sheets are approximated by polygons (right), in which cell boundaries are represented 
by lines and the points where cell boundaries meet are represented by vertices. The green and 
blue points indicate the vertices that interact with the vertex indicated by the red point through 
cells. In addition, the vertices indicated by the blue points interact with the red one through cell 
boundaries. Left, fly genotype: DE-Cad::GFP. (b) Junction remodeling process used in our 
numerical simulation. When an edge length 𝑙 decreased to less than 𝑙!"# with a given length 
scale 𝑙!"#, the vertex positions at the edges were rotated 90˚around the mid-point of the edge 
while maintaining the length 𝑙 . (c) Direction dependence of line tension acting on cell 

boundaries. This setup represents left-right asymmetric cell polarity in our model.  cθ  

specifies the direction in which the line tension is greatest. (d) Schematic representation of the 
fluctuation in anisotropic contraction in our simulation given by eq. [4] in the Supplementary 
Notes. 
 
  



 
Supplementary Figure 7: Initial configuration of cells in the case of flat boundaries. The 
periodic boundary conditions are imposed on the boundaries indicated by the arrows. The 
movement of the whole epithelial sheet does not depend on the initial configuration of the cells. 
 
  



 
Supplementary Figure 8: Process of the continuous shear motion of epithelial cells. The 
four figures show enlarged snapshots around cell B in the numerical simulation given in Fig. 4a. 
When t=3.4, the cell boundary between cells D and E is inclined to the right with respect to the 
vertical (AP) axis, so that boundary has a strong contraction force and shrinks. This shrinkage of 
the boundary 1-2 leads to the cell configuration shown at t=4.8, at which vertices 1 and 2 are so 
close to each other that it undergoes junction remodeling (T1 transition). This junction 
remodeling deletes the boundary between cells D and E and creates a new boundary between 
cells B and C, cell boundary 1'-2'. The direction of cell boundary 1'-2' is inclined to the left, and 
this cell boundary has a relatively weak contraction force to expand. These successive dynamics 
of cell boundaries lead to the continuous shear movement of epithelial cells. Note that this 
movement is achieved only by the property of each cell to try to shrink its cell boundaries on the 
upper left and lower right and to expand those on the upper right and lower left. 
 
  



 

Supplementary Figure 9: Preparation of the initial configuration for the numerical 
simulation based on vertex dynamics associated with circular boundaries. Procedure for 
setting the initial condition in our numerical simulation for the 2-dimensional ring. The initial 
condition is given by the time 𝑡 = −10 to 𝑡 = 0, and obeys the equation of motion without 
anisotropic tension. We assumed a regular hexagonal grid of vertices at 𝑡 = −10. 
 
 

  



Supplementary Note 1 
The vertex model: A mathematical model that describes the dynamics of epithelial sheets  
To theoretically investigate the unidirectional motion of the epithelial sheet, we used a vertex 
model1-5, in which important characteristic features of epithelial cells, such as PCP, cell 
intercalation, and their dynamics are described. We extended this model to describe the 
situations we are concerned with, i.e., the case in which cells in the sheet have LR asymmetric 
planar polarity and the epithelial sheet under consideration is confined by other types of 
epithelial sheets. 
 
Supplementary Note 2 Brief review of the conventional vertex model  
In the vertex model, the boundaries (interfaces) of epithelial cells are approximated by linear 
segments, and the cells are represented by polygons in a 2D plane (Supplementary Figure 6a). 
The linear segments comprising the polygons are sometimes called bonds or linear edges. The 
points where linear segments meet are called “vertices,” and the positions and junction 
relationships of the vertices completely determine the cell configuration of the sheet 
(Supplementary Figure 6a). 
 
 
The model assumes that each vertex bears forces arising from various elements in the epithelial 
cells, such as adherens junctions. These forces are represented by a potential U  (whose 
explicit form is given below). The vertex also bears a frictional force that is proportional to the 
velocity of the vertex, which expresses the difficulty of the motion of each vertex and hence 
junction remodeling progression. Time evolutions of the positions of the vertices are given by 

𝜇!
!  
!"
𝑟! = −∇!𝑈(   𝑟! , 𝑡) , --[1] 

where 𝑟! = 𝑥! , 𝑦!  is the position vector of the i -th vertex. Equation [1] expresses the balance 

of the frictional force −𝜇!
!  
!"
𝑟! and potential forces −∇!𝑈(   𝑟! , 𝑡). Here, µ

i
 is the friction 

coefficient. In our model, µ
i
 is allowed to depend on the vertex index i , which is based on 

the assumption that the rate of change of the length of cell boundaries may depend on the cell 
type. The potential energy U  that is derived from the forces acting on the vertices except for 
the friction forces is given as a function of time and the positions of all the vertices, 

{!ri}={
!r1,
!r2 ,...,

!rM}, where 𝑀 is the total number of vertices. The symbol ∇
i
 in eq. [1] means 

∇
i
= ∂ / ∂


r
i
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In our model, the potential U  consists of four parts: 

U =U
area

+U
perimeter

+U
bond

+U
boundary

. 

Each part is explained in order below. 
 

U
area

 is the potential energy from the cell area change, given by 
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= −∑ ,  

where p
0

 is the area elastic coefficient, which has the dimensions of pressure, nA  is the area 

of the n -th cell, and 0A  is the preferred area. This potential energy represents the pressure 

acting on the cell boundaries. The symbol “cell n ” under the summation indicates that the 
index n  runs from 1 to the total cell number 𝑁. 
 

perimeterU  is the potential energy from the cell perimeter change, given by 

20
0

0

( )
2perimeter n
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kU L L
L

= −∑ ,  --[2] 

where 0k  is the positive coefficient, nL  is the perimeter of the n -th cell, and 0L  is the 

preferred perimeter. This term reflects the fact that the apical area of epithelial cells is 
surrounded by actomyosin cables at adherens junctions, and bears a tensile force from the cables. 

This force tends to keep the cell shape round when 0L  is smaller than 4𝜋𝐴!.  

 

bondU  is the potential energy from the change in edge length, given by 

( )bond ij ij
ij

U t lγ=∑ , --[3] 

where ijl  is the length of the edge connecting the 𝑖 - and 𝑗 -th vertices, given by  

2 2( ) ( )ij i j i jl x x y y= − + − . The index ij  under the summation indicates that the 



summation is taken over all the edges. The quantity ijγ  represents the line tension acting on 

the cell boundary 𝑖𝑗, resulting from the contraction force from the actomyosin network at the 
adherens junctions.  

The vertex model allows a junction remodeling process whose rules are given as 4: When an 

edge length ijl  becomes shorter than a given length minl , the edge is rotated by 90 degrees 

about the midpoint of the edge, and the connection rule of the vertices related to the edge are 
rearranged such that the T1 transition is achieved (Supplementary Figure 6b). 

 
Supplementary Note 3 Our model 
Our observations showed that Myo-II levels depend on the direction of the cell boundaries. This 
observation implies that the line tensions acting on the cell boundaries may also depend on the 

line’s direction. To incorporate this implication into the model, we replaced the line tension ijγ  

in the force balance equation (eq. [1] after the derivative i∇  is performed) with its LR 

asymmetric form (chirality) 

𝛾!"
!!!"#$!%& 𝑡 = 𝑐!𝑏!"(𝑡)  cos!(𝜃!" − 𝜃!),  --[4] 

where 𝜃!" is the angle between the anterior-posterior (AP) axis and the direction of the cell 
boundary ij . (Note that the sign of 𝜃!" is defined as positive if the direction of the angle of the 

cell boundary from the AP axis is clockwise.) cθ  represents the direction in which the line 

tension is greatest (Supplementary Figure 6c). Our observations allowed us to set θ
c
= π / 4  

(Figure 4h and 4i). 0c  is a constant representing the strength of the polarity.  

It should be noted that since our model can explicitly depend on time through 𝛾!"
(!!!"#$!%&), the 

total potential energy 𝑈  does not necessarily decrease with time. Our setup that ijγ  is 

replaced by 𝛾!"
(!!!"#$!%&) in eq. [1] guarantees that 𝛾!"

(!!!"#$!%&) is the force acting on the cell 

boundary ij . 



The coefficient ( )ijb t  in eq. [4] represents the explicit time dependence of ijγ . Our 

experiments showed that the length of cell boundaries fluctuates, implying that line tensions 

fluctuate. Hence, we represent this fluctuation by the coefficient ijb  as 

1 cos(2 )
( )

2
ij ij

ij

f t
b t

π δ+ +
= ,  --[5] 

with random constant frequencies fij ∈ [0,1]  and random initial phases 𝛿!" ∈ [0,2𝜋) for each 

cell boundary ij (Supplementary Figure 6d). Note that when 0ijf = , ijγ  does not fluctuate 

over time.  
 
In our model, we must explicitly consider the boundaries of the epithelial sheet, because the 
tergite A8 we are concerned with is flanked by other segments, A7 and A9, whose properties 
are different from that of A8. The A7 segment does not move during genitalia rotation, so we 
consider A7 as a fixed object in space. Since A9 moves during the rotation, we regard the whole 
A9 as a solid disk that can move with a frictional force. Since the cells at the edges of A8 attach 
to these objects, the movement of these cells is constrained. This effect is expressed in terms of 

the potential ( )i
boundaryU , which holds the 𝑖-th vertex on the edge of the sheet. The explicit form 

of ( )i
boundaryU  reflects the shape of the sheet boundaries, so after the boundary shape is given, 

we can provide the explicit forms (see next section). The total potential representing the 
constraint of movement is formally written as 

( )

( )

i
boundary boundary

vertex i on the sheet boundaries
U U= ∑   

where the index i  includes all of the vertex indices on the boundaries of the sheet. 
 
 
Supplementary Note 4 Two boundary cases in our model  
(1) Flat boundary case  
To examine whether or not the whole epithelial sheet undergoes unidirectional motion, we 
consider the simplest case, a flat system shown in Figure 5a,b and Supplementary Figure 7. In 

this system, the epithelial sheet is confined within the region / 2 / 2y yL y L− < <  by two 



parallel plates, and periodic boundary conditions are imposed at the boundaries (𝑥 = ±𝐿!/2). 
This situation is equivalent to one in which the epithelial sheet forms a closed band with width 

yL  and fixed diameter /yL π . The boundary potential ( )i
boundaryU  is given as  

( ) 2
constraint

1 ( )
2 2

yi
boundary i

L
U k y= −  

when the i -th vertex is on the upper boundary, and  

( ) 2
constraint

1 ( )
2 2

yi
boundary i

L
U k y= +  

when the 𝑖-th vertex is on the lower boundary. Here, constraintk  is a large positive constant. The 

initial configuration of the cells is given as in Supplementary Figure 7. The AP axis is assumed 

to be the y-axis. The parameters used here are 3xL = , 1yL = , 0 / 0.048x yA L L N= = , 

0 02 / 0.78L Aπ π= = , 0 0.2p = , 0 0.78k = , 0 0.35c = , constraint 100.0k = , min 0.01l =  

and 36N = . For the numerical calculation, we applied a simple Euler method with a time 
increment 0.001tΔ = . 
 

We set the value of iµ  as 1.0iµ =  if the i -th vertex is not on the sheet boundaries 

/ 2yy L= ± . When the vertex is on the upper boundary, the friction coefficient is given as 

upperiµ µ= , and when the vertex is on the lower one, loweriµ µ= . In general, upperµ  and 

lowerµ  are different, because the epithelial sheet is flanked by different segments, A7 and A8p. 

We examine the following two cases.  
 

(i) When upperµ  and lowerµ  are equal ( upper lower 1.0µ µ= = ) 

According to the symmetry arguments, if there is no inhomogeneity along the y-axis, the whole 
epithelial sheet does not move in the x-direction, even when any time sequences of line tensions 

are allowed. As this argument states, in the case of upper lowerµ µ= , each cell can move in the 

x-axis, but the whole sheet does not move (Figure 5a and Supplementary Movie 6). 



 

(ii) When upperµ  is greater than lowerµ  ( upper 100.0µ = , lower 1.0µ = ) 

In this case, inhomogeneity along the AP axis exists, so the whole set of epithelial cells, i.e., the 
center of mass of the sheet, can move in the x-direction (Figure 5b and Supplementary Movie 
7).  
 
(2) Circular boundary case 
To compare the results of the numerical simulations with the experimental observations, we 
examine circular boundaries as shown in Figure 5c, where we call the outer boundary the outer 

ring, and the inner boundary the inner ring. The boundary potential energy ( )i
boundaryU  is given 

as  

( ) 2 2 2
constraint 8

1 ( )
2

i
boundary i i AU k x y R= + − 

when the i -th vertex is on the outer ring, and 

( ) 2 2 2
constraint 9

1 ( )
2

i
boundary i i AU k x y R= + −  

when the vertex is on the inner ring. Here, 8AR  and 9AR  are the radius of the outer ring and 

of the inner ring, respectively. The initial conditions are given by the configuration shown in 
Supplementary Figure 9, right. (This configuration is prepared by the numerical time evolution 

from 10t = −  to 0t =  obeying the equation of motion for 0 0c = . At 10t = − , the vertices 

are set as a regular hexagonal grid (Supplementary Figure 9 left).) The AP axis is assumed to be 
the direction specified by the ray from the center of the outer ring to the center of mass of the 
𝑛-th cell. The centers of both the outer and inner rings are set to be the origin of the x-y plane. 
The parameters used here are 𝑅!! = 1.0 , 𝑅!! = 0.5 , 𝑘!"#$%&'(#% = 100.0 , 

𝐴! =
!!!!!!!!!!!

!
～0.014, 𝐿! = 0.8× 8 3𝐴!～0.35, 𝑝! = 10.0, 𝑘! = 1.0, 𝑐! = 0.6,  

𝑙!"# = 0.005, and 𝑁 = 168. The friction coefficient iµ  is given as 1.0iµ =  when the 

vertex i  is not on the circular boundaries. If the vertex is on the outer ring, 7 100.0i Aµ µ= = , 

and if the vertex is on the inner ring, 9i Aµ µ= = 1.0. Fluctuation is included as [0,1]ijf ∈  



and  𝛿!" ∈ [0,2𝜋). 

We performed the numerical simulation with this setting, and found that the cell population can 
rotate continuously (Figure 5c and Supplementary Movie 8).  
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