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Experimental procedures 

Cell cultures 

To keep experimental cell samples in low passage number, a maximum of five passages were 

allowed after thawing cell samples from deep storage for experiments.  All cell lines were 

cultured at 37⁰C and 5% CO2, approximately 10 days prior to imaging. The culture medium for 

patient derived pancreatic cancer cells is DMEM (Invitrogen, Carlsbad, CA) with 10% FBS 

(Gemini Bio-Products, Sacramento, CA). HPDE cells were maintained in Keratinocyte-SFM 

medium (Invitrogen) with 0.1 ng/ml hEGF (Invitrogen) and 25ul/ml bovine pituary extract 

(Invitrogen). HPNE cells were maintained in the medium which is composed of 25% low 

glucose DMEM (Invitrogen), 70% M3 base media (Incell, San Antonio, TX), 5% FBS, 25g/ml 

Gentamicin (Quality Biological, Gaithersburg, MD), and 10ng/ml hEGF. Antibiotics were 

supplemented in all culture medium with the concentration of 100 IU/ml penicillin, and 

100g/ml streptomycin (Sigma-Aldrich, St. Louis, MO). Cell lines were passed every 3 to 4 days, 

based on their growing conditions. Breast carcinoma cell lines were purchased from ATCC 

(American type cell culture, Manassas, VA) with authentication done by the provider. Cells 

(BR01-BR03, BR06-BR11) were cultured on tissue culture dishes in RPMI-1640 medium 

(Gibco) supplemented with 10% fetal bovine serum (Hyclone-Fisher, Logan, UT) and 1% 

Penicillin-streptomycin (Sigma). BR04 and BR05 were culture in Dulbecco’s modified eagle’s 

medium (Cellgro, Herndon, VA), supplemented with 10% fetal bovine serum (Hyclone) and 

Penicillin-streptomycin (Sigma). 

 

3D cell culture 

Cell-impregnated 3D collagen matrices were prepared as described previously 
1-3

. Briefly, cells 

suspended in a 1:1 (v/v) ratio of cell culture medium and reconstitution buffer (0.2 M 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) and 0.26 M NaHCO3 in nanopure water) 

were mixed with the appropriate amounts of soluble rat tail type I collagen (BD Biosciences, San 

Jose, CA, USA) to achieve a final concentration of 2mg/ml.  Adequate amount of 1M sodium 

hydroxide was added to attain a final pH of 7, after which the mixture was added to a 24-well 

glass bottom dish (Greiner Bio-one, NC), and immediately transferred to the incubator 
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maintained at physiological conditions of 37
o 

C and 5% CO2, to allow for collagen 

polymerization and cell spreading. During preparation, all ingredients were kept chilled on ice to 

avoid premature polymerization, with care taken to avoid the formation of bubbles during mixing. 

Samples were incubated overnight and were fixed and stained in preparation for image 

acquisition.     

 

Immunostaining and fluorescence microscopy 

Approximately 12,000 cells were plated in each well of a 24-well glass bottom plate (MatTek, 

MA), corresponding to approximately 20% surface coverage to ensure single cell resolution. 

After 16 h incubation, cells were fixed with 3.7% para-formaldehyde for 12 min at room 

temperature. Cells were then permeabilized with 0.1% Triton X-100 (Sigma) for 10 min; 

nonspecific binding was blocked with phosphate-buffered saline (PBS) supplemented with 1% 

albumin from bovine serum (BSA) for 40 min. Nuclear DNA was stained with Hoechst 33342 

(Sigma) at 1:50 dilution, cytoplasm was stained with the non-specific dye HCS CellMask Deep 

red stain (Invitrogen) at 1:20000 dilution, and actin was stained with phalloidin Alexa Fluor 488 

(Invitrogen) at a 1:40 dilution.  

Fluorescently labeled cell samples were visualized with a Nikon digital sight DS-Qi1MC 

camera mounted on a Nikon TE300 epifluorescence microscope (Nikon Melville, NY), and 

equipped with a motorized stage and motorized excitation and emission filters (Prior Scientific, 

Rockland, MA) controlled by NIS-Elements (Nikon). For each sample, eighty-one (9-by-9 

square grid) fields of view from a low-magnification lens (10x Plan Fluor lens; N.A. 0.3, Nikon) 

were used covering a contiguous area of 6.03 mm x 4.73 mm (28.5 mm
2
). Three fluorescence 

channels for Hoechst 33342, Alexa Fluor 488 and Alexa Fluor 647 and one phase-contrast 

channel were recorded to obtain the necessary morphometric information about the nucleus and 

cellular body of every single cell within the scanning region. Segmentation of nuclear and 

cellular shape from images was conducted using a custom MATLAB code.  Cellular and nuclear 

segmentation was validated using both manual tracing of cells and nuclei and using high-

magnification imaging (40x Plan Fluor lens; N.A. 1.3, Nikon), as explained in the main text. 

  

Image calibration 
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Unavoidable non-uniform illumination of the samples presents challenges when conducting 

intensity-based cell segmentation of fluorescent images. The calibration was performed using 

glass-bottom dish contained dyes for the different fluorescent channels. For each channel, two 

images were acquired: with and without illumination, which were denoted as IF and IB 

respectively.. The calibrated images, ICAL, for reducing the non-uniform illumination of 

fluorescent images and non-uniform distribution of intensity offset was obtained from raw 

images, IRAW, through the following equation, 

 ICAL= (IRAW-IB)/(IF-IB) <IF-IB> 

Calibrated images were further used for nuclei and cell segmentation and quantification (see 

below). 

 

Segmentation of cellular and nuclear boundaries 

To segment individual cells and nuclei, we used slightly different approaches. For nuclear 

segmentation, because of the relatively circular shape and relatively even intensity of the 

Hoechst stain, we filtered calibrated images (as described in the previous section) with a 23 x 23 

pixel normalized Gaussian filter (similar scale as the size of nuclei) and a same size of averaging 

filter same size to obtain Gaussian intensity, IG, and average intensity, IM,. Subtracting IM from IG 

gives IN, the nuclear intensity values without regional background. Empirical testing showed that 

a threshold setting of 10 was optimal. 

Images of cells were first processed with a 3x3 averaging smoothing filter to reduce 

noises. Proper estimation of background intensity level is critical to threshold cell boundaries 

accurately. Most fields of view in an image are cell-free; therefore, large portions of pixels 

reflect background intensity. The background intensity was characterized by the mode value and 

standard deviation of these pixels. Here, we adopted an iterative process for robust background 

intensity distribution. Briefly, we give an intensity threshold value, ITH, to find a subset of pixels, 

IS, with intensity value that is less than this intensity threshold. The intensity threshold value for 

the next iteration is then updated using the following equation, 

ITH = IBG + 3.5 IRBG, 

where IBG is the most frequent intensity among IS and IRBG is the standard deviation of IS.  The 

first threshold value was set using the maximum intensity of image. Three to five iterations 
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generally resulted in stable values of IBG and IRBG, which represent the average background 

intensity value and associated noise in background intensity magnitude, respectively. Next, we 

used IBG and IRBG to select the signal region of fluorescently labeled cells. We defined the 

threshold factor, thcell to select all the pixels in the image with an intensity value larger than a 

threshold intensity( =IBG + thcell  IRBG). The value for thcell was optimized by empirical 

observation, which was usually between 2 and 5.  

Implementing the above approach, we determined cell boundaries using phalloidin-

stained F-actin images. F-actin usually gives a stronger signal at the cell boundary than at the cell 

center, differentiating the boundary from the cytoplasm with less bias than a more homogenous 

dye (such as HCS cell mask). In contrast, HCS cell mask intensities concentrated around the 

nucleus - the thicker region of the cell - and decayed towards the edge of the cell; because of the 

low NA objective, the edge intensity values was blurred, making edge detection very sensitive to 

bias and sample-to-sample variations. 

However, this method only worked for isolated cells. When cells were very close to one 

another or in direct contact, edge intensity values given by phalloidin staining were all above 

background and did not allow for direct segmentation. In these cases, we could use HCS cell 

mask to perform watershed segmentation and identify edges between contacted cells.  Then 

collected set of nuclei and cell objects were used to calculate their associated morphological 

descriptors, as described in the next section. Overall, the more than 95% of cells are segmented 

accurately based on manual inspection. The shape factor (SF) of a shape is defined as 4/P
2 

, 

where A and P is the area and perimeter of a shape. 

 

Decomposition of 2-dimensional shape and identification of shape mode  

Alignment of cell shapes and nucleus shapes was implemented using Procrustes analysis 
4, 5

. In 

brief, after the boundary coordinates of each segmented cellular or nuclear shape in an image 

were obtained, they were resampled to 50 positions that divided the boundaries evenly.  The 

boundary coordinates were then subtracted by their mean value so that the center of the object 

was located at the coordinate (0, 0).  The scale of a shape (R) was calculated using the 

normalized coordinates, Z = (xi, yi), through the following equation, 

       
    

    
      . 
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To unify the scale, the boundaries coordinates of a shape was further normalized by dividing it 

by the scale (R). To eliminate the variation of shape due to rotational or mirror effects, we first 

aligned the major axis of a shape with the horizontal axis by applying a rotational matrix (VM) to 

the boundaries coordinates. The rotational matrix was obtained from the singular vector 

decomposition of Z, where Z = UMSMVM
T
.  The average shape ZR was obtained by averaging the 

normalized boundaries coordinates of all cells from different cell lines. For each cell shape, a 

rotational matrix Q that minimized the distance between ZR and Z, i.e., 

 = (QZ- ZR) (QZ- ZR)
T
, 

 

was obtained from the singular value decomposition of ZR
T
Z = URSRVR and Q is the matrix 

product VU
T
. Due to the fact that cellular and nuclear shapes are enclosed objects,  each of the 50 

coordinates were used as a starting point in either counterclockwise or clockwise directions and 

the corresponding  linear sets were examined to identify the sequence that yielded minimization 

of E for each shape.  Coordinates from this aligned shape were used as descriptors for the shape. 

Principal component analysis (PCA) was then applied on these descriptors for all cell samples to 

obtain eigenshape vectors. The principal components from the eigenshape vectors that spanned 

95% of total variance were used as simplification set of descriptors for cellular or nuclear shapes. 

K-means clustering analysis was then implemented to identify the shape subtypes, i.e. shape 

modes, based on these principal components descriptors. The number of shape modes was 

identified based on separation index 
6
 and Xie and Beni index 

7
.  

 

Determination of the phases of the cell cycle for each single cell  

DNA content of each nucleus was estimated by integrating nuclear intensity of Hoechst 33342 

labeled DNA 
8
. Histograms of DNA content for each cell lines revealed the distribution of the 

cell cycle phases. To determine the percentage of cells in each of the cell-cycle phase, i.e. G1 

phase, S phase and G2/M phase, we fit the DNA content distribution using the Dean Jett 

polynomial model 
9
. Therefore, at a given value of DNA content from a cell we estimated its 

phase at the cell cycle.  

 

Determination of the cell clustering or singlet status  
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For each scanned cell sample, the locations of nuclei on the motorized stages (xs, ys) were 

estimated from the stage location of the image field, (xIS, yIS), and cell locations in the image 

field, (xI, yI), through the following equations; 

(xs, ys) =  (xIS, yIS)  + px  (xI, yI)  

, where px is the pixel size of image. Hence, the distance of a cell to the nearest neighbor cell 

was measured. Average radius of pancreatic epithelium cells is approximately 25 µm and hence 

if cell has no direct physical contacts with other cells, i.e. the singlet cells, the estimated least 

distance to the nearest cells singlet cells condition are twice the cell size (=50 µm). The singlet 

cell condition was estimated based on the cell with the nearest distance to next cells more than 

50 µm. The clustering cells are the cells do not fulfill this criterion. 

 

Sub-sample cross-validation for prediction accuracy 

In addition to the blind tests described in the main text, to measure predictive accuracy, we used 

a repeated random sub-sampling cross-validation strategy based on increasing number of cells. 

We first randomly selected 9 cell lines among 11 PT or metastasis cell lines and build a classifier 

using generalized linear model to predict the metastasized status of cells lines using single 

morphology feature, X.  We used Binomial distribution with Logit link function to establish 

generalized linear model model, i.e. 

Y=exp(X)/(1+exp(X)). 

Where Y is predicted probability of being metastasized cell lines and  is fitted model 

parameters. We then applied this classifier to the other 2 cell lines which are represented by the 

randomly selected cell sample with specified sample size. The process was then repeated 200 

times to estimate overall sensitivity, specificity, and accuracy. The overall accuracy of cross-

validation results is measured by (TP+TN)/(TP+FP+FN+TN), where TP is true positive counts, 

TN is true negative counts, FP is false positive counts and FN is false negative counts.  

Sensitivity and specificity is estimated TP/(TP+FN) and TN/(TN+FP) respectively. 

 

Analysis of cell morphology heterogeneity 
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The Shannon’s entropy, S, of nucleus and cell shape mode (SM) distribution is calculated using 

the following equation, 

                      

, where P(SMk) is the fraction of cells exhibit k-th shape mode, SMk.  Variance of morphology 

parameters including nucleus size and cell size, were calculated by M
2
 = <(M -<M>)

2
>, where 

M is the morphology parameters and <> is expected value of given variables. Variance of cell 

shapes and nucleus shape were calculated by csk
2
 and nsk

2
 where csi  or nsi denoted the 

projected scores at i-th eigenshape factors. To be noted, only the eigenshape vectors that spanned 

95% of total variance were used. 

 

 

Supplementary figure captions 

Supplementary figure 1. Automated cell segmentation: comparison with manual 

segmentation. A. Cellular and nuclear segmentation of four representative cells using the 

automated software approach used in this work (purple) and manual tracing (blue). B. 

Segmentation of the same 100 randomly selected cells using both methods. Results show that 

boundaries of cells obtained from the automated segmentation process correspond well with 

manually traced boundaries of cell and nucleus. C. The same cells were imaged using a high N.A 

(1.45), high magnification (60X) objectives and using a low N.A (0.3), low magnification (10X) 

objective. Automated segmentation of the same cells and nuclei was performed using both 

objectives. Cell and nuclear traces from 100 randomly selected cells are shown. The well 

corresponding cell and nucleus traces from both setups suggest the low N.A and low 

magnification objective yield the sufficient segmentation resolutions. 

 

Supplementary figure 2. Evaluation of optimum nuclear and cellular shape subtypes 

(cluster number) using the separation index (S) and the Xie and Beni’s index (XB). The 

optimum number of clusters should minimize the value of the index. Here, nuclear shapes and 

cellular shapes are parameterized by their value at a set of previous identified eigenshape vectors. 

K-means clustering analysis was applied to nucleus shape samples and cell shapes sample using 

different cluster number and S index and XB index were calculated for each condition. A-B. 

Plots show the S index (A) and XB index (B) as function of cluster numbers (shape subtypes) 
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from nucleus shapes. C-D. Plots show the S index (C) and XB index (D) as function of cluster 

numbers (shape subtypes) using cells shapes. 

 

Supplementary figure 3. Robustness of the VAMPIRE analysis. To ensure the repeatability 

and reliability of the identification of shape modes using this quantitative assay, different 

preparation of the PAC004 cell samples were imaged and their nucleus shapes were collected. 

The eigenshape vectors for nucleus which were identified previously from all pancreatic cancer 

cell lines were applied to decompose a nucleus shape k in to a vectors Pk in which the vector 

components represent the projection value at various eigenshape vectors.  Individual shape 

modes as previously identified can also be represented by the same sets of vector (PS). The shape 

mode which has minimum paired distance to the Pk were the designated shape mode for the 

nucleus shape k. Thus, for each obtained nucleus shapes a nucleus shapes mode were assigned 

and nuclear shape mode distribution of different experiments was obtained. A. The very 

consistent nuclear shape mode distribution was observed in all experiment replicates cell samples 

and is users independent. B. Nuclear shape mode distributions from samples being imaged at 

different days after fixation and fluorescent labeling show a conserved trend.  

 

Supplementary figure 4. Hierarchy clustergram of nucleus shape mode composition for 

PDAC cells.  A clustergram shows the probability of cells in each nucleus shape modes (P(NSk))   

for different PDAC cell lines. Color coding (red to green) corresponds to low and high 

occurrence. Hierarchy clustering results show that several PDAC cells display similar nucleus 

shape mode distributions, PAC05, PAC06, PAC07; PAC08, PAC09, PAC10; and PAC04, 

PAC03 respectively. PAC05, PAC06 and PAC07 have similar compositions of nucleus shape 

modes.  

 

Supplementary figure 5.  Morphological properties of PDAC cells. A-E.  The scatter plot 

shows the distribution of nuclear shape entropy (A), cell shape mode entropy (B), paired 

nucleus-cell shape mode entropy (C), CV of nucleus size (D), CV of cell size (E) for LM 

samples and PT samples. F-G. Coefficient of variation of the shape factors for LM and PT 

samples are plotted. H-I. Average nucleus size (H) and cell size (I) is also insignificant different 



 10 

between LM samples and PT samples. The reported P-values were calculated based on two 

sample t-test.  

 

Supplementary figure 6. Number of gene alterations  in pancreatic cancer. A dot plot shows 

the number of gene alterations for each PT and LM cell lines. No significant difference (P > 0.4) 

was found between PT and LM cell lines using two sample  t-test.  

 

 

Supplementary figure 7. Heterogeneity breast cancer cell morphology. A. A heatmap shows 

the degree of morphological heterogeneity of breast cancer cell lines, including 4 lines derived 

from primary tumors at disease stage IIB (PT) and 6 lines derived from metastatic site (M) at 

disease stage IV (see detailed information of cell lines in Supplementary Table 3).  B. A 3-D 

scatter plot shows CV of nuclear size, CV of cell size and entropy of cell shape of PT (circle) and 

M (square) of breast cancer cell lines. The cell lines with ER/PR/HER2 negative (TN) are 

highlighted (+). C and D. Plots show The CV of nuclear size (C) and shape entropy (D) for 

breast cancer cell lines derived from metastatic lesion (M) and primary tumors (P). Nuclear size 

and nuclear shape entropy is positively correlated with decrease of tumor stage (i.e. metastatic or 

primary tumor), and Pearson correlation coefficients () of 0.33 and 0.20.  No significant 

difference was found (P>0.05).  E and F. The CV of cellular size (E) and shape entropy (F) for 

breast cancer cell lines derived from metastatic lesion (M) and primary tumors (PT) were shown.  

The Pearson correlation coefficient () for cellular size and shape entropy with tumor stages is 

0.42 and 0.42. No significant difference was found (P>0.05).  The reported P-values were 

calculated based on two sample t-test.  

 

 

Supplementary figure 8. A predictive model for metastatic pancreatic cancer cells. A. CV 

cellular size distribution of singlet cells was used as predictor of metastatic characteristic for a 

cell line. Accuracy, specificity and sensitivity as a function of sample size are shown in the plot. 

Overall accuracy reaches 95% when using ~250 singlet cells. B and C. The same procedure was 

applied using the CV of nuclear size distribution and the entropy of nuclear shape as predictors. 

Overall accuracy reaches 95% with a sample size of ~350 cells. 
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Supplementary figure 9. Hierarchy of cell morphological heterogeneity. A. Bar graphs show 

the average variances of nucleus size and cell size among different pancreatic cancer cells at 

different underlying cellular conditions after random permutation of cells in each experiment. 

Variation in nucleus size and cell size is independent of cellular condition after random 

permutation. B. Bar graphs show the average variances of nucleus shape and cell shape among 

different pancreatic cancer cells at different underlying cellular conditions. The shape variances 

are measured by total variance among projection scores in eigenshape vectors and normalized by 

the variance among all populations. Great decrease in variations in nucleus shapes was found for 

clonal cells at G0/G1 phase. C. Variance of averaged nucleus shape and averaged cell shape 

among different progenies are used to measure heritable variation for both LM (PAC01~PAC04) 

and PT (PAC06~ PAC09). LM display in average lower heritable variation in both nucleus shape 

and cell shape (P > 0.05). The reported P-values were calculated using two sample t-test.  
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Supplementary tables 

Supplementary Table 1. List of the patient-derived pancreatic cancer cells line used in this 

study. 

 

Supplementary Table 2. List of the breast cancer cells line used in this study. 

 

Supplementary Table 3. Correlation coefficients of heterogeneity parameters between PT 

cells and LM cells in different conditions. NC=nuclear-cell; N=nuclear; C=cell; 

pop=population; sc=scale; cv=coefficient of variation. 
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Supplementary Figure 9. Wu et al. 

0 

0.05 

0.1 

0.15 

0.2 

0 

0.2 

0.4 

0.6 

0.8 

N
uc

le
us

 sh
ap

e 
va

ria
nc

e 

heritable cell variation 

Ce
ll 

sh
ap

e 
va

ria
nc

e 

C 

P = 0.069 P = 0.10 

0 

0.5 

1 

0.5 

1 

1.5 
All population 

Nucleus shape Cell shape 

R
el

at
iv

e 
va

ria
nc

e 
(%

) 

B 

0 

1.5 

R
el

at
iv

e 
va

ria
nc

e 
(%

) Nucleus size Cell size 

A 

P > 0.1 P > 0.1 
P < 0.0001 P > 0.1 



Supplementary Table  1. Wu et al. 

Sample Official name Other name Age Sex Disease type Tissue derivation Stage

PAC01 A2.1 Pa01C 62 M Ductal adenocarcinoma Liver metastasis IV

PAC02 A38.5 Pa08C 51 M Ductal adenocarcinoma Liver metastasis IV

PAC03 A6L Pa02C 57 M Ductal adenocarcinoma Liver metastasis IV

PAC04 A10.7 Pa03C 60 M Ductal adenocarcinoma Liver metastasis IV

PAC05 Panc215 Pa09C 60 F Ductal adenocarcinoma Primary pancreatic tumor IIB

PAC06 Panc10.05 Pa16C 81 M Ductal adenocarcinoma Primary pancreatic tumor IIB

PAC07 Panc198 Pa20C 69 M Ductal adenocarcinoma Primary pancreatic tumor IIB

PAC08 Panc2.5 Pa21C 54 F Ductal adenocarcinoma Primary pancreatic tumor IIB

PAC09 Panc5.04 Pa18C 77 F Ductal adenocarcinoma Primary pancreatic tumor IIB

PAC10 HPDE HPDE-6/E6E7 63 F Normal ductal epithelium Normal Pancreas N/A

PAC11 HPNE 52 M Normal epithelium Normal Pancreas N/A

PAC20 JD13D Pa04c 59 M Ductal adenocarcinoma Lung metastasis IV

PAC21 3.014 Pa28c 65 M Ductal adenocarcinoma Primary pancreatic tumor IIB



Supplementary Table  2. Wu et al. 

Sample Official name Other name Age Sex ER PR Her2 Disease type Tissue derivation Stage

BR01 ZR-75-1 ATCC CRL-1500 63 F + - - Ductal carcinoma ascites fluid metastasis IV

BR02 T47D ATCC CRL-2865 54 F + + - Ductal carcinoma Pleural effusion metastasis IV

BR03 Cama1 ATCC HTB-21 51 F + - - Adenocarcinoma Pleural effusion metastasis IV

BR04 MDA231 ATCC HTB-26 51 F - - - Adenocarcinoma Pleural effusion metastasis IV

BR05 HCC1428 ATCC CRL-2327 49 F + + - Adenocarcinoma Pleural effusion metastasis IV

BR06 HCC1569 ATCC CRL-2330 70 F - - + Metaplastic carcinoma Mammary gland IV

BR07 HCC38 ATCC CRL-2314 50 F - - - Ductal carcinoma Mammary gland; breast/duct IIB

BR08 HCC1806 ATCC CRL-2335 60 F - - - Acantholytic squamous cell carcinoma Mammary gland IIB

BR09 HCC1500 ATCC CRL-2329 32 F + + - Ductal carcinoma Mammary gland; breast/duct IIB

BR10 HCC1937 ATCC CRL-2336 23 F - - - Ductal carcinoma Mammary gland; breast/duct IIB



Supplementary Table 3. Wu et al. 

clustering singlet G0/G1 S G2/M

CV of nucleus size 0.91 [ 0.64 0.98 ] 0.93 [ 0.69 0.99 ] 0.79 [ 0.26 0.95 ] 0.56 [-0.17 0.89 ] 0.80 [ 0.28 0.96 ] 0.61 [-0.09 0.90 ]

Nucleus shape entropy 0.79 [ 0.28 0.96 ] 0.84 [ 0.40 0.97 ] 0.83 [ 0.37 0.96 ] 0.68 [ 0.03 0.93 ] 0.88 [ 0.51 0.97 ] 0.44 [-0.32 0.85 ]

CV of cell size 0.89 [ 0.55 0.98 ] 0.81 [ 0.31 0.96 ] 0.90 [ 0.59 0.98 ] 0.83 [ 0.37 0.96 ] 0.84 [ 0.39 0.96 ] 0.76 [ 0.20 0.95 ]

Cell shape entropy 0.52 [-0.22 0.88 ] 0.55 [-0.18 0.89 ] 0.59 [-0.11 0.90 ] 0.51 [-0.24 0.88 ] 0.59 [-0.12 0.90 ] 0.52 [-0.22 0.88 ]

NC pop entropy 0.79 [ 0.26 0.95 ] 0.89 [ 0.56 0.98 ] 0.66 [ 0.00 0.92 ] 0.75 [ 0.16 0.94 ] 0.80 [ 0.28 0.96 ] 0.75 [ 0.16 0.94 ]

Note: [] represents lower and upper bounds for a 95% of confidence interval for each coefficient

cell-cell contact cell cycle
overallHeterogeneity parameters
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